/* * QEMU System Emulator * * Copyright (c) 2003-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu-common.h" #include "qemu-timer.h" #include "slirp/slirp.h" #include "main-loop.h" #include "qemu-aio.h" #ifndef _WIN32 #include "compatfd.h" static int io_thread_fd = -1; void qemu_notify_event(void) { /* Write 8 bytes to be compatible with eventfd. */ static const uint64_t val = 1; ssize_t ret; if (io_thread_fd == -1) { return; } do { ret = write(io_thread_fd, &val, sizeof(val)); } while (ret < 0 && errno == EINTR); /* EAGAIN is fine, a read must be pending. */ if (ret < 0 && errno != EAGAIN) { fprintf(stderr, "qemu_notify_event: write() failed: %s\n", strerror(errno)); exit(1); } } static void qemu_event_read(void *opaque) { int fd = (intptr_t)opaque; ssize_t len; char buffer[512]; /* Drain the notify pipe. For eventfd, only 8 bytes will be read. */ do { len = read(fd, buffer, sizeof(buffer)); } while ((len == -1 && errno == EINTR) || len == sizeof(buffer)); } static int qemu_event_init(void) { int err; int fds[2]; err = qemu_eventfd(fds); if (err == -1) { return -errno; } err = fcntl_setfl(fds[0], O_NONBLOCK); if (err < 0) { goto fail; } err = fcntl_setfl(fds[1], O_NONBLOCK); if (err < 0) { goto fail; } qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL, (void *)(intptr_t)fds[0]); io_thread_fd = fds[1]; return 0; fail: close(fds[0]); close(fds[1]); return err; } /* If we have signalfd, we mask out the signals we want to handle and then * use signalfd to listen for them. We rely on whatever the current signal * handler is to dispatch the signals when we receive them. */ static void sigfd_handler(void *opaque) { int fd = (intptr_t)opaque; struct qemu_signalfd_siginfo info; struct sigaction action; ssize_t len; while (1) { do { len = read(fd, &info, sizeof(info)); } while (len == -1 && errno == EINTR); if (len == -1 && errno == EAGAIN) { break; } if (len != sizeof(info)) { printf("read from sigfd returned %zd: %m\n", len); return; } sigaction(info.ssi_signo, NULL, &action); if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) { action.sa_sigaction(info.ssi_signo, (siginfo_t *)&info, NULL); } else if (action.sa_handler) { action.sa_handler(info.ssi_signo); } } } static int qemu_signal_init(void) { int sigfd; sigset_t set; /* * SIG_IPI must be blocked in the main thread and must not be caught * by sigwait() in the signal thread. Otherwise, the cpu thread will * not catch it reliably. */ sigemptyset(&set); sigaddset(&set, SIG_IPI); sigaddset(&set, SIGIO); sigaddset(&set, SIGALRM); sigaddset(&set, SIGBUS); pthread_sigmask(SIG_BLOCK, &set, NULL); sigdelset(&set, SIG_IPI); sigfd = qemu_signalfd(&set); if (sigfd == -1) { fprintf(stderr, "failed to create signalfd\n"); return -errno; } fcntl_setfl(sigfd, O_NONBLOCK); qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL, (void *)(intptr_t)sigfd); return 0; } #else /* _WIN32 */ static HANDLE qemu_event_handle = NULL; static void dummy_event_handler(void *opaque) { } static int qemu_event_init(void) { qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL); if (!qemu_event_handle) { fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError()); return -1; } qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL); return 0; } void qemu_notify_event(void) { if (!qemu_event_handle) { return; } if (!SetEvent(qemu_event_handle)) { fprintf(stderr, "qemu_notify_event: SetEvent failed: %ld\n", GetLastError()); exit(1); } } static int qemu_signal_init(void) { return 0; } #endif static AioContext *qemu_aio_context; int qemu_init_main_loop(void) { int ret; GSource *src; init_clocks(); init_timer_alarm(); qemu_mutex_lock_iothread(); ret = qemu_signal_init(); if (ret) { return ret; } /* Note eventfd must be drained before signalfd handlers run */ ret = qemu_event_init(); if (ret) { return ret; } qemu_aio_context = aio_context_new(); src = aio_get_g_source(qemu_aio_context); g_source_attach(src, NULL); g_source_unref(src); return 0; } static fd_set rfds, wfds, xfds; static int nfds; static GPollFD poll_fds[1024 * 2]; /* this is probably overkill */ static int n_poll_fds; static int max_priority; #ifndef _WIN32 static void glib_select_fill(int *max_fd, fd_set *rfds, fd_set *wfds, fd_set *xfds, uint32_t *cur_timeout) { GMainContext *context = g_main_context_default(); int i; int timeout = 0; g_main_context_prepare(context, &max_priority); n_poll_fds = g_main_context_query(context, max_priority, &timeout, poll_fds, ARRAY_SIZE(poll_fds)); g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds)); for (i = 0; i < n_poll_fds; i++) { GPollFD *p = &poll_fds[i]; if ((p->events & G_IO_IN)) { FD_SET(p->fd, rfds); *max_fd = MAX(*max_fd, p->fd); } if ((p->events & G_IO_OUT)) { FD_SET(p->fd, wfds); *max_fd = MAX(*max_fd, p->fd); } if ((p->events & G_IO_ERR)) { FD_SET(p->fd, xfds); *max_fd = MAX(*max_fd, p->fd); } } if (timeout >= 0 && timeout < *cur_timeout) { *cur_timeout = timeout; } } static void glib_select_poll(fd_set *rfds, fd_set *wfds, fd_set *xfds, bool err) { GMainContext *context = g_main_context_default(); if (!err) { int i; for (i = 0; i < n_poll_fds; i++) { GPollFD *p = &poll_fds[i]; if ((p->events & G_IO_IN) && FD_ISSET(p->fd, rfds)) { p->revents |= G_IO_IN; } if ((p->events & G_IO_OUT) && FD_ISSET(p->fd, wfds)) { p->revents |= G_IO_OUT; } if ((p->events & G_IO_ERR) && FD_ISSET(p->fd, xfds)) { p->revents |= G_IO_ERR; } } } if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) { g_main_context_dispatch(context); } } static int os_host_main_loop_wait(uint32_t timeout) { struct timeval tv, *tvarg = NULL; int ret; glib_select_fill(&nfds, &rfds, &wfds, &xfds, &timeout); if (timeout < UINT32_MAX) { tvarg = &tv; tv.tv_sec = timeout / 1000; tv.tv_usec = (timeout % 1000) * 1000; } if (timeout > 0) { qemu_mutex_unlock_iothread(); } ret = select(nfds + 1, &rfds, &wfds, &xfds, tvarg); if (timeout > 0) { qemu_mutex_lock_iothread(); } glib_select_poll(&rfds, &wfds, &xfds, (ret < 0)); return ret; } #else /***********************************************************/ /* Polling handling */ typedef struct PollingEntry { PollingFunc *func; void *opaque; struct PollingEntry *next; } PollingEntry; static PollingEntry *first_polling_entry; int qemu_add_polling_cb(PollingFunc *func, void *opaque) { PollingEntry **ppe, *pe; pe = g_malloc0(sizeof(PollingEntry)); pe->func = func; pe->opaque = opaque; for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next); *ppe = pe; return 0; } void qemu_del_polling_cb(PollingFunc *func, void *opaque) { PollingEntry **ppe, *pe; for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) { pe = *ppe; if (pe->func == func && pe->opaque == opaque) { *ppe = pe->next; g_free(pe); break; } } } /***********************************************************/ /* Wait objects support */ typedef struct WaitObjects { int num; int revents[MAXIMUM_WAIT_OBJECTS + 1]; HANDLE events[MAXIMUM_WAIT_OBJECTS + 1]; WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1]; void *opaque[MAXIMUM_WAIT_OBJECTS + 1]; } WaitObjects; static WaitObjects wait_objects = {0}; int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) { WaitObjects *w = &wait_objects; if (w->num >= MAXIMUM_WAIT_OBJECTS) { return -1; } w->events[w->num] = handle; w->func[w->num] = func; w->opaque[w->num] = opaque; w->revents[w->num] = 0; w->num++; return 0; } void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) { int i, found; WaitObjects *w = &wait_objects; found = 0; for (i = 0; i < w->num; i++) { if (w->events[i] == handle) { found = 1; } if (found) { w->events[i] = w->events[i + 1]; w->func[i] = w->func[i + 1]; w->opaque[i] = w->opaque[i + 1]; w->revents[i] = w->revents[i + 1]; } } if (found) { w->num--; } } void qemu_fd_register(int fd) { WSAEventSelect(fd, qemu_event_handle, FD_READ | FD_ACCEPT | FD_CLOSE | FD_CONNECT | FD_WRITE | FD_OOB); } static int os_host_main_loop_wait(uint32_t timeout) { GMainContext *context = g_main_context_default(); int ret, i; PollingEntry *pe; WaitObjects *w = &wait_objects; gint poll_timeout; static struct timeval tv0; /* XXX: need to suppress polling by better using win32 events */ ret = 0; for (pe = first_polling_entry; pe != NULL; pe = pe->next) { ret |= pe->func(pe->opaque); } if (ret != 0) { return ret; } if (nfds >= 0) { ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv0); if (ret != 0) { timeout = 0; } } g_main_context_prepare(context, &max_priority); n_poll_fds = g_main_context_query(context, max_priority, &poll_timeout, poll_fds, ARRAY_SIZE(poll_fds)); g_assert(n_poll_fds <= ARRAY_SIZE(poll_fds)); for (i = 0; i < w->num; i++) { poll_fds[n_poll_fds + i].fd = (DWORD_PTR)w->events[i]; poll_fds[n_poll_fds + i].events = G_IO_IN; } if (poll_timeout < 0 || timeout < poll_timeout) { poll_timeout = timeout; } qemu_mutex_unlock_iothread(); ret = g_poll(poll_fds, n_poll_fds + w->num, poll_timeout); qemu_mutex_lock_iothread(); if (ret > 0) { for (i = 0; i < w->num; i++) { w->revents[i] = poll_fds[n_poll_fds + i].revents; } for (i = 0; i < w->num; i++) { if (w->revents[i] && w->func[i]) { w->func[i](w->opaque[i]); } } } if (g_main_context_check(context, max_priority, poll_fds, n_poll_fds)) { g_main_context_dispatch(context); } /* If an edge-triggered socket event occurred, select will return a * positive result on the next iteration. We do not need to do anything * here. */ return ret; } #endif int main_loop_wait(int nonblocking) { int ret; uint32_t timeout = UINT32_MAX; if (nonblocking) { timeout = 0; } /* poll any events */ /* XXX: separate device handlers from system ones */ nfds = -1; FD_ZERO(&rfds); FD_ZERO(&wfds); FD_ZERO(&xfds); #ifdef CONFIG_SLIRP slirp_update_timeout(&timeout); slirp_select_fill(&nfds, &rfds, &wfds, &xfds); #endif qemu_iohandler_fill(&nfds, &rfds, &wfds, &xfds); ret = os_host_main_loop_wait(timeout); qemu_iohandler_poll(&rfds, &wfds, &xfds, ret); #ifdef CONFIG_SLIRP slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0)); #endif qemu_run_all_timers(); return ret; } /* Functions to operate on the main QEMU AioContext. */ QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque) { return aio_bh_new(qemu_aio_context, cb, opaque); } void qemu_aio_flush(void) { aio_flush(qemu_aio_context); } bool qemu_aio_wait(void) { return aio_poll(qemu_aio_context, true); } #ifdef CONFIG_POSIX void qemu_aio_set_fd_handler(int fd, IOHandler *io_read, IOHandler *io_write, AioFlushHandler *io_flush, void *opaque) { aio_set_fd_handler(qemu_aio_context, fd, io_read, io_write, io_flush, opaque); } #endif void qemu_aio_set_event_notifier(EventNotifier *notifier, EventNotifierHandler *io_read, AioFlushEventNotifierHandler *io_flush) { aio_set_event_notifier(qemu_aio_context, notifier, io_read, io_flush); }