/*
* Linux syscalls
*
* Copyright (c) 2003 Fabrice Bellard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see .
*/
#define _ATFILE_SOURCE
#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "qemu/path.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
//#include
#include
#include
#include
#include
#include
#include
#include
#include "qemu-common.h"
#ifdef CONFIG_TIMERFD
#include
#endif
#ifdef TARGET_GPROF
#include
#endif
#ifdef CONFIG_EVENTFD
#include
#endif
#ifdef CONFIG_EPOLL
#include
#endif
#ifdef CONFIG_ATTR
#include "qemu/xattr.h"
#endif
#ifdef CONFIG_SENDFILE
#include
#endif
#define termios host_termios
#define winsize host_winsize
#define termio host_termio
#define sgttyb host_sgttyb /* same as target */
#define tchars host_tchars /* same as target */
#define ltchars host_ltchars /* same as target */
#include
#include
#include
#include
#include
#include
#include
#include
#if defined(CONFIG_FIEMAP)
#include
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef CONFIG_RTNETLINK
#include
#include
#endif
#include
#include "linux_loop.h"
#include "uname.h"
#include "qemu.h"
#ifndef CLONE_IO
#define CLONE_IO 0x80000000 /* Clone io context */
#endif
/* We can't directly call the host clone syscall, because this will
* badly confuse libc (breaking mutexes, for example). So we must
* divide clone flags into:
* * flag combinations that look like pthread_create()
* * flag combinations that look like fork()
* * flags we can implement within QEMU itself
* * flags we can't support and will return an error for
*/
/* For thread creation, all these flags must be present; for
* fork, none must be present.
*/
#define CLONE_THREAD_FLAGS \
(CLONE_VM | CLONE_FS | CLONE_FILES | \
CLONE_SIGHAND | CLONE_THREAD | CLONE_SYSVSEM)
/* These flags are ignored:
* CLONE_DETACHED is now ignored by the kernel;
* CLONE_IO is just an optimisation hint to the I/O scheduler
*/
#define CLONE_IGNORED_FLAGS \
(CLONE_DETACHED | CLONE_IO)
/* Flags for fork which we can implement within QEMU itself */
#define CLONE_OPTIONAL_FORK_FLAGS \
(CLONE_SETTLS | CLONE_PARENT_SETTID | \
CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID)
/* Flags for thread creation which we can implement within QEMU itself */
#define CLONE_OPTIONAL_THREAD_FLAGS \
(CLONE_SETTLS | CLONE_PARENT_SETTID | \
CLONE_CHILD_CLEARTID | CLONE_CHILD_SETTID | CLONE_PARENT)
#define CLONE_INVALID_FORK_FLAGS \
(~(CSIGNAL | CLONE_OPTIONAL_FORK_FLAGS | CLONE_IGNORED_FLAGS))
#define CLONE_INVALID_THREAD_FLAGS \
(~(CSIGNAL | CLONE_THREAD_FLAGS | CLONE_OPTIONAL_THREAD_FLAGS | \
CLONE_IGNORED_FLAGS))
/* CLONE_VFORK is special cased early in do_fork(). The other flag bits
* have almost all been allocated. We cannot support any of
* CLONE_NEWNS, CLONE_NEWCGROUP, CLONE_NEWUTS, CLONE_NEWIPC,
* CLONE_NEWUSER, CLONE_NEWPID, CLONE_NEWNET, CLONE_PTRACE, CLONE_UNTRACED.
* The checks against the invalid thread masks above will catch these.
* (The one remaining unallocated bit is 0x1000 which used to be CLONE_PID.)
*/
//#define DEBUG
/* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
* once. This exercises the codepaths for restart.
*/
//#define DEBUG_ERESTARTSYS
//#include
#define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
#define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
#undef _syscall0
#undef _syscall1
#undef _syscall2
#undef _syscall3
#undef _syscall4
#undef _syscall5
#undef _syscall6
#define _syscall0(type,name) \
static type name (void) \
{ \
return syscall(__NR_##name); \
}
#define _syscall1(type,name,type1,arg1) \
static type name (type1 arg1) \
{ \
return syscall(__NR_##name, arg1); \
}
#define _syscall2(type,name,type1,arg1,type2,arg2) \
static type name (type1 arg1,type2 arg2) \
{ \
return syscall(__NR_##name, arg1, arg2); \
}
#define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
static type name (type1 arg1,type2 arg2,type3 arg3) \
{ \
return syscall(__NR_##name, arg1, arg2, arg3); \
}
#define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
{ \
return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
}
#define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5) \
static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
{ \
return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
}
#define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
type5,arg5,type6,arg6) \
static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
type6 arg6) \
{ \
return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
}
#define __NR_sys_uname __NR_uname
#define __NR_sys_getcwd1 __NR_getcwd
#define __NR_sys_getdents __NR_getdents
#define __NR_sys_getdents64 __NR_getdents64
#define __NR_sys_getpriority __NR_getpriority
#define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
#define __NR_sys_rt_tgsigqueueinfo __NR_rt_tgsigqueueinfo
#define __NR_sys_syslog __NR_syslog
#define __NR_sys_futex __NR_futex
#define __NR_sys_inotify_init __NR_inotify_init
#define __NR_sys_inotify_add_watch __NR_inotify_add_watch
#define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
#if defined(__alpha__) || defined(__x86_64__) || defined(__s390x__)
#define __NR__llseek __NR_lseek
#endif
/* Newer kernel ports have llseek() instead of _llseek() */
#if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
#define TARGET_NR__llseek TARGET_NR_llseek
#endif
#ifdef __NR_gettid
_syscall0(int, gettid)
#else
/* This is a replacement for the host gettid() and must return a host
errno. */
static int gettid(void) {
return -ENOSYS;
}
#endif
#if defined(TARGET_NR_getdents) && defined(__NR_getdents)
_syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
#endif
#if !defined(__NR_getdents) || \
(defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
_syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
#endif
#if defined(TARGET_NR__llseek) && defined(__NR_llseek)
_syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo,
loff_t *, res, uint, wh);
#endif
_syscall3(int, sys_rt_sigqueueinfo, pid_t, pid, int, sig, siginfo_t *, uinfo)
_syscall4(int, sys_rt_tgsigqueueinfo, pid_t, pid, pid_t, tid, int, sig,
siginfo_t *, uinfo)
_syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
#ifdef __NR_exit_group
_syscall1(int,exit_group,int,error_code)
#endif
#if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
_syscall1(int,set_tid_address,int *,tidptr)
#endif
#if defined(TARGET_NR_futex) && defined(__NR_futex)
_syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
const struct timespec *,timeout,int *,uaddr2,int,val3)
#endif
#define __NR_sys_sched_getaffinity __NR_sched_getaffinity
_syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
unsigned long *, user_mask_ptr);
#define __NR_sys_sched_setaffinity __NR_sched_setaffinity
_syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
unsigned long *, user_mask_ptr);
#define __NR_sys_getcpu __NR_getcpu
_syscall3(int, sys_getcpu, unsigned *, cpu, unsigned *, node, void *, tcache);
_syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
void *, arg);
_syscall2(int, capget, struct __user_cap_header_struct *, header,
struct __user_cap_data_struct *, data);
_syscall2(int, capset, struct __user_cap_header_struct *, header,
struct __user_cap_data_struct *, data);
#if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
_syscall2(int, ioprio_get, int, which, int, who)
#endif
#if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
_syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
#endif
#if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
_syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
#endif
#if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
_syscall5(int, kcmp, pid_t, pid1, pid_t, pid2, int, type,
unsigned long, idx1, unsigned long, idx2)
#endif
static bitmask_transtbl fcntl_flags_tbl[] = {
{ TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
{ TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
{ TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
{ TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
{ TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
{ TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
{ TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
{ TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
{ TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, },
{ TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
{ TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
{ TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
{ TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
#if defined(O_DIRECT)
{ TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
#endif
#if defined(O_NOATIME)
{ TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME },
#endif
#if defined(O_CLOEXEC)
{ TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC },
#endif
#if defined(O_PATH)
{ TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH },
#endif
#if defined(O_TMPFILE)
{ TARGET_O_TMPFILE, TARGET_O_TMPFILE, O_TMPFILE, O_TMPFILE },
#endif
/* Don't terminate the list prematurely on 64-bit host+guest. */
#if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
{ TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
#endif
{ 0, 0, 0, 0 }
};
enum {
QEMU_IFLA_BR_UNSPEC,
QEMU_IFLA_BR_FORWARD_DELAY,
QEMU_IFLA_BR_HELLO_TIME,
QEMU_IFLA_BR_MAX_AGE,
QEMU_IFLA_BR_AGEING_TIME,
QEMU_IFLA_BR_STP_STATE,
QEMU_IFLA_BR_PRIORITY,
QEMU_IFLA_BR_VLAN_FILTERING,
QEMU_IFLA_BR_VLAN_PROTOCOL,
QEMU_IFLA_BR_GROUP_FWD_MASK,
QEMU_IFLA_BR_ROOT_ID,
QEMU_IFLA_BR_BRIDGE_ID,
QEMU_IFLA_BR_ROOT_PORT,
QEMU_IFLA_BR_ROOT_PATH_COST,
QEMU_IFLA_BR_TOPOLOGY_CHANGE,
QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED,
QEMU_IFLA_BR_HELLO_TIMER,
QEMU_IFLA_BR_TCN_TIMER,
QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER,
QEMU_IFLA_BR_GC_TIMER,
QEMU_IFLA_BR_GROUP_ADDR,
QEMU_IFLA_BR_FDB_FLUSH,
QEMU_IFLA_BR_MCAST_ROUTER,
QEMU_IFLA_BR_MCAST_SNOOPING,
QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR,
QEMU_IFLA_BR_MCAST_QUERIER,
QEMU_IFLA_BR_MCAST_HASH_ELASTICITY,
QEMU_IFLA_BR_MCAST_HASH_MAX,
QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT,
QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT,
QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL,
QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL,
QEMU_IFLA_BR_MCAST_QUERIER_INTVL,
QEMU_IFLA_BR_MCAST_QUERY_INTVL,
QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL,
QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL,
QEMU_IFLA_BR_NF_CALL_IPTABLES,
QEMU_IFLA_BR_NF_CALL_IP6TABLES,
QEMU_IFLA_BR_NF_CALL_ARPTABLES,
QEMU_IFLA_BR_VLAN_DEFAULT_PVID,
QEMU_IFLA_BR_PAD,
QEMU_IFLA_BR_VLAN_STATS_ENABLED,
QEMU_IFLA_BR_MCAST_STATS_ENABLED,
QEMU___IFLA_BR_MAX,
};
enum {
QEMU_IFLA_UNSPEC,
QEMU_IFLA_ADDRESS,
QEMU_IFLA_BROADCAST,
QEMU_IFLA_IFNAME,
QEMU_IFLA_MTU,
QEMU_IFLA_LINK,
QEMU_IFLA_QDISC,
QEMU_IFLA_STATS,
QEMU_IFLA_COST,
QEMU_IFLA_PRIORITY,
QEMU_IFLA_MASTER,
QEMU_IFLA_WIRELESS,
QEMU_IFLA_PROTINFO,
QEMU_IFLA_TXQLEN,
QEMU_IFLA_MAP,
QEMU_IFLA_WEIGHT,
QEMU_IFLA_OPERSTATE,
QEMU_IFLA_LINKMODE,
QEMU_IFLA_LINKINFO,
QEMU_IFLA_NET_NS_PID,
QEMU_IFLA_IFALIAS,
QEMU_IFLA_NUM_VF,
QEMU_IFLA_VFINFO_LIST,
QEMU_IFLA_STATS64,
QEMU_IFLA_VF_PORTS,
QEMU_IFLA_PORT_SELF,
QEMU_IFLA_AF_SPEC,
QEMU_IFLA_GROUP,
QEMU_IFLA_NET_NS_FD,
QEMU_IFLA_EXT_MASK,
QEMU_IFLA_PROMISCUITY,
QEMU_IFLA_NUM_TX_QUEUES,
QEMU_IFLA_NUM_RX_QUEUES,
QEMU_IFLA_CARRIER,
QEMU_IFLA_PHYS_PORT_ID,
QEMU_IFLA_CARRIER_CHANGES,
QEMU_IFLA_PHYS_SWITCH_ID,
QEMU_IFLA_LINK_NETNSID,
QEMU_IFLA_PHYS_PORT_NAME,
QEMU_IFLA_PROTO_DOWN,
QEMU_IFLA_GSO_MAX_SEGS,
QEMU_IFLA_GSO_MAX_SIZE,
QEMU_IFLA_PAD,
QEMU_IFLA_XDP,
QEMU___IFLA_MAX
};
enum {
QEMU_IFLA_BRPORT_UNSPEC,
QEMU_IFLA_BRPORT_STATE,
QEMU_IFLA_BRPORT_PRIORITY,
QEMU_IFLA_BRPORT_COST,
QEMU_IFLA_BRPORT_MODE,
QEMU_IFLA_BRPORT_GUARD,
QEMU_IFLA_BRPORT_PROTECT,
QEMU_IFLA_BRPORT_FAST_LEAVE,
QEMU_IFLA_BRPORT_LEARNING,
QEMU_IFLA_BRPORT_UNICAST_FLOOD,
QEMU_IFLA_BRPORT_PROXYARP,
QEMU_IFLA_BRPORT_LEARNING_SYNC,
QEMU_IFLA_BRPORT_PROXYARP_WIFI,
QEMU_IFLA_BRPORT_ROOT_ID,
QEMU_IFLA_BRPORT_BRIDGE_ID,
QEMU_IFLA_BRPORT_DESIGNATED_PORT,
QEMU_IFLA_BRPORT_DESIGNATED_COST,
QEMU_IFLA_BRPORT_ID,
QEMU_IFLA_BRPORT_NO,
QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK,
QEMU_IFLA_BRPORT_CONFIG_PENDING,
QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER,
QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER,
QEMU_IFLA_BRPORT_HOLD_TIMER,
QEMU_IFLA_BRPORT_FLUSH,
QEMU_IFLA_BRPORT_MULTICAST_ROUTER,
QEMU_IFLA_BRPORT_PAD,
QEMU___IFLA_BRPORT_MAX
};
enum {
QEMU_IFLA_INFO_UNSPEC,
QEMU_IFLA_INFO_KIND,
QEMU_IFLA_INFO_DATA,
QEMU_IFLA_INFO_XSTATS,
QEMU_IFLA_INFO_SLAVE_KIND,
QEMU_IFLA_INFO_SLAVE_DATA,
QEMU___IFLA_INFO_MAX,
};
enum {
QEMU_IFLA_INET_UNSPEC,
QEMU_IFLA_INET_CONF,
QEMU___IFLA_INET_MAX,
};
enum {
QEMU_IFLA_INET6_UNSPEC,
QEMU_IFLA_INET6_FLAGS,
QEMU_IFLA_INET6_CONF,
QEMU_IFLA_INET6_STATS,
QEMU_IFLA_INET6_MCAST,
QEMU_IFLA_INET6_CACHEINFO,
QEMU_IFLA_INET6_ICMP6STATS,
QEMU_IFLA_INET6_TOKEN,
QEMU_IFLA_INET6_ADDR_GEN_MODE,
QEMU___IFLA_INET6_MAX
};
typedef abi_long (*TargetFdDataFunc)(void *, size_t);
typedef abi_long (*TargetFdAddrFunc)(void *, abi_ulong, socklen_t);
typedef struct TargetFdTrans {
TargetFdDataFunc host_to_target_data;
TargetFdDataFunc target_to_host_data;
TargetFdAddrFunc target_to_host_addr;
} TargetFdTrans;
static TargetFdTrans **target_fd_trans;
static unsigned int target_fd_max;
static TargetFdDataFunc fd_trans_target_to_host_data(int fd)
{
if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
return target_fd_trans[fd]->target_to_host_data;
}
return NULL;
}
static TargetFdDataFunc fd_trans_host_to_target_data(int fd)
{
if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
return target_fd_trans[fd]->host_to_target_data;
}
return NULL;
}
static TargetFdAddrFunc fd_trans_target_to_host_addr(int fd)
{
if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
return target_fd_trans[fd]->target_to_host_addr;
}
return NULL;
}
static void fd_trans_register(int fd, TargetFdTrans *trans)
{
unsigned int oldmax;
if (fd >= target_fd_max) {
oldmax = target_fd_max;
target_fd_max = ((fd >> 6) + 1) << 6; /* by slice of 64 entries */
target_fd_trans = g_renew(TargetFdTrans *,
target_fd_trans, target_fd_max);
memset((void *)(target_fd_trans + oldmax), 0,
(target_fd_max - oldmax) * sizeof(TargetFdTrans *));
}
target_fd_trans[fd] = trans;
}
static void fd_trans_unregister(int fd)
{
if (fd >= 0 && fd < target_fd_max) {
target_fd_trans[fd] = NULL;
}
}
static void fd_trans_dup(int oldfd, int newfd)
{
fd_trans_unregister(newfd);
if (oldfd < target_fd_max && target_fd_trans[oldfd]) {
fd_trans_register(newfd, target_fd_trans[oldfd]);
}
}
static int sys_getcwd1(char *buf, size_t size)
{
if (getcwd(buf, size) == NULL) {
/* getcwd() sets errno */
return (-1);
}
return strlen(buf)+1;
}
#ifdef TARGET_NR_utimensat
#if defined(__NR_utimensat)
#define __NR_sys_utimensat __NR_utimensat
_syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
const struct timespec *,tsp,int,flags)
#else
static int sys_utimensat(int dirfd, const char *pathname,
const struct timespec times[2], int flags)
{
errno = ENOSYS;
return -1;
}
#endif
#endif /* TARGET_NR_utimensat */
#ifdef TARGET_NR_renameat2
#if defined(__NR_renameat2)
#define __NR_sys_renameat2 __NR_renameat2
_syscall5(int, sys_renameat2, int, oldfd, const char *, old, int, newfd,
const char *, new, unsigned int, flags)
#else
static int sys_renameat2(int oldfd, const char *old,
int newfd, const char *new, int flags)
{
if (flags == 0) {
return renameat(oldfd, old, newfd, new);
}
errno = ENOSYS;
return -1;
}
#endif
#endif /* TARGET_NR_renameat2 */
#ifdef CONFIG_INOTIFY
#include
#if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
static int sys_inotify_init(void)
{
return (inotify_init());
}
#endif
#if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
{
return (inotify_add_watch(fd, pathname, mask));
}
#endif
#if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
static int sys_inotify_rm_watch(int fd, int32_t wd)
{
return (inotify_rm_watch(fd, wd));
}
#endif
#ifdef CONFIG_INOTIFY1
#if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
static int sys_inotify_init1(int flags)
{
return (inotify_init1(flags));
}
#endif
#endif
#else
/* Userspace can usually survive runtime without inotify */
#undef TARGET_NR_inotify_init
#undef TARGET_NR_inotify_init1
#undef TARGET_NR_inotify_add_watch
#undef TARGET_NR_inotify_rm_watch
#endif /* CONFIG_INOTIFY */
#if defined(TARGET_NR_prlimit64)
#ifndef __NR_prlimit64
# define __NR_prlimit64 -1
#endif
#define __NR_sys_prlimit64 __NR_prlimit64
/* The glibc rlimit structure may not be that used by the underlying syscall */
struct host_rlimit64 {
uint64_t rlim_cur;
uint64_t rlim_max;
};
_syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
const struct host_rlimit64 *, new_limit,
struct host_rlimit64 *, old_limit)
#endif
#if defined(TARGET_NR_timer_create)
/* Maxiumum of 32 active POSIX timers allowed at any one time. */
static timer_t g_posix_timers[32] = { 0, } ;
static inline int next_free_host_timer(void)
{
int k ;
/* FIXME: Does finding the next free slot require a lock? */
for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
if (g_posix_timers[k] == 0) {
g_posix_timers[k] = (timer_t) 1;
return k;
}
}
return -1;
}
#endif
/* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
#ifdef TARGET_ARM
static inline int regpairs_aligned(void *cpu_env, int num)
{
return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
}
#elif defined(TARGET_MIPS) && (TARGET_ABI_BITS == 32)
static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
#elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
/* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
* of registers which translates to the same as ARM/MIPS, because we start with
* r3 as arg1 */
static inline int regpairs_aligned(void *cpu_env, int num) { return 1; }
#elif defined(TARGET_SH4)
/* SH4 doesn't align register pairs, except for p{read,write}64 */
static inline int regpairs_aligned(void *cpu_env, int num)
{
switch (num) {
case TARGET_NR_pread64:
case TARGET_NR_pwrite64:
return 1;
default:
return 0;
}
}
#else
static inline int regpairs_aligned(void *cpu_env, int num) { return 0; }
#endif
#define ERRNO_TABLE_SIZE 1200
/* target_to_host_errno_table[] is initialized from
* host_to_target_errno_table[] in syscall_init(). */
static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
};
/*
* This list is the union of errno values overridden in asm-/errno.h
* minus the errnos that are not actually generic to all archs.
*/
static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
[EAGAIN] = TARGET_EAGAIN,
[EIDRM] = TARGET_EIDRM,
[ECHRNG] = TARGET_ECHRNG,
[EL2NSYNC] = TARGET_EL2NSYNC,
[EL3HLT] = TARGET_EL3HLT,
[EL3RST] = TARGET_EL3RST,
[ELNRNG] = TARGET_ELNRNG,
[EUNATCH] = TARGET_EUNATCH,
[ENOCSI] = TARGET_ENOCSI,
[EL2HLT] = TARGET_EL2HLT,
[EDEADLK] = TARGET_EDEADLK,
[ENOLCK] = TARGET_ENOLCK,
[EBADE] = TARGET_EBADE,
[EBADR] = TARGET_EBADR,
[EXFULL] = TARGET_EXFULL,
[ENOANO] = TARGET_ENOANO,
[EBADRQC] = TARGET_EBADRQC,
[EBADSLT] = TARGET_EBADSLT,
[EBFONT] = TARGET_EBFONT,
[ENOSTR] = TARGET_ENOSTR,
[ENODATA] = TARGET_ENODATA,
[ETIME] = TARGET_ETIME,
[ENOSR] = TARGET_ENOSR,
[ENONET] = TARGET_ENONET,
[ENOPKG] = TARGET_ENOPKG,
[EREMOTE] = TARGET_EREMOTE,
[ENOLINK] = TARGET_ENOLINK,
[EADV] = TARGET_EADV,
[ESRMNT] = TARGET_ESRMNT,
[ECOMM] = TARGET_ECOMM,
[EPROTO] = TARGET_EPROTO,
[EDOTDOT] = TARGET_EDOTDOT,
[EMULTIHOP] = TARGET_EMULTIHOP,
[EBADMSG] = TARGET_EBADMSG,
[ENAMETOOLONG] = TARGET_ENAMETOOLONG,
[EOVERFLOW] = TARGET_EOVERFLOW,
[ENOTUNIQ] = TARGET_ENOTUNIQ,
[EBADFD] = TARGET_EBADFD,
[EREMCHG] = TARGET_EREMCHG,
[ELIBACC] = TARGET_ELIBACC,
[ELIBBAD] = TARGET_ELIBBAD,
[ELIBSCN] = TARGET_ELIBSCN,
[ELIBMAX] = TARGET_ELIBMAX,
[ELIBEXEC] = TARGET_ELIBEXEC,
[EILSEQ] = TARGET_EILSEQ,
[ENOSYS] = TARGET_ENOSYS,
[ELOOP] = TARGET_ELOOP,
[ERESTART] = TARGET_ERESTART,
[ESTRPIPE] = TARGET_ESTRPIPE,
[ENOTEMPTY] = TARGET_ENOTEMPTY,
[EUSERS] = TARGET_EUSERS,
[ENOTSOCK] = TARGET_ENOTSOCK,
[EDESTADDRREQ] = TARGET_EDESTADDRREQ,
[EMSGSIZE] = TARGET_EMSGSIZE,
[EPROTOTYPE] = TARGET_EPROTOTYPE,
[ENOPROTOOPT] = TARGET_ENOPROTOOPT,
[EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT,
[ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT,
[EOPNOTSUPP] = TARGET_EOPNOTSUPP,
[EPFNOSUPPORT] = TARGET_EPFNOSUPPORT,
[EAFNOSUPPORT] = TARGET_EAFNOSUPPORT,
[EADDRINUSE] = TARGET_EADDRINUSE,
[EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL,
[ENETDOWN] = TARGET_ENETDOWN,
[ENETUNREACH] = TARGET_ENETUNREACH,
[ENETRESET] = TARGET_ENETRESET,
[ECONNABORTED] = TARGET_ECONNABORTED,
[ECONNRESET] = TARGET_ECONNRESET,
[ENOBUFS] = TARGET_ENOBUFS,
[EISCONN] = TARGET_EISCONN,
[ENOTCONN] = TARGET_ENOTCONN,
[EUCLEAN] = TARGET_EUCLEAN,
[ENOTNAM] = TARGET_ENOTNAM,
[ENAVAIL] = TARGET_ENAVAIL,
[EISNAM] = TARGET_EISNAM,
[EREMOTEIO] = TARGET_EREMOTEIO,
[EDQUOT] = TARGET_EDQUOT,
[ESHUTDOWN] = TARGET_ESHUTDOWN,
[ETOOMANYREFS] = TARGET_ETOOMANYREFS,
[ETIMEDOUT] = TARGET_ETIMEDOUT,
[ECONNREFUSED] = TARGET_ECONNREFUSED,
[EHOSTDOWN] = TARGET_EHOSTDOWN,
[EHOSTUNREACH] = TARGET_EHOSTUNREACH,
[EALREADY] = TARGET_EALREADY,
[EINPROGRESS] = TARGET_EINPROGRESS,
[ESTALE] = TARGET_ESTALE,
[ECANCELED] = TARGET_ECANCELED,
[ENOMEDIUM] = TARGET_ENOMEDIUM,
[EMEDIUMTYPE] = TARGET_EMEDIUMTYPE,
#ifdef ENOKEY
[ENOKEY] = TARGET_ENOKEY,
#endif
#ifdef EKEYEXPIRED
[EKEYEXPIRED] = TARGET_EKEYEXPIRED,
#endif
#ifdef EKEYREVOKED
[EKEYREVOKED] = TARGET_EKEYREVOKED,
#endif
#ifdef EKEYREJECTED
[EKEYREJECTED] = TARGET_EKEYREJECTED,
#endif
#ifdef EOWNERDEAD
[EOWNERDEAD] = TARGET_EOWNERDEAD,
#endif
#ifdef ENOTRECOVERABLE
[ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE,
#endif
#ifdef ENOMSG
[ENOMSG] = TARGET_ENOMSG,
#endif
#ifdef ERKFILL
[ERFKILL] = TARGET_ERFKILL,
#endif
#ifdef EHWPOISON
[EHWPOISON] = TARGET_EHWPOISON,
#endif
};
static inline int host_to_target_errno(int err)
{
if (err >= 0 && err < ERRNO_TABLE_SIZE &&
host_to_target_errno_table[err]) {
return host_to_target_errno_table[err];
}
return err;
}
static inline int target_to_host_errno(int err)
{
if (err >= 0 && err < ERRNO_TABLE_SIZE &&
target_to_host_errno_table[err]) {
return target_to_host_errno_table[err];
}
return err;
}
static inline abi_long get_errno(abi_long ret)
{
if (ret == -1)
return -host_to_target_errno(errno);
else
return ret;
}
static inline int is_error(abi_long ret)
{
return (abi_ulong)ret >= (abi_ulong)(-4096);
}
const char *target_strerror(int err)
{
if (err == TARGET_ERESTARTSYS) {
return "To be restarted";
}
if (err == TARGET_QEMU_ESIGRETURN) {
return "Successful exit from sigreturn";
}
if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) {
return NULL;
}
return strerror(target_to_host_errno(err));
}
#define safe_syscall0(type, name) \
static type safe_##name(void) \
{ \
return safe_syscall(__NR_##name); \
}
#define safe_syscall1(type, name, type1, arg1) \
static type safe_##name(type1 arg1) \
{ \
return safe_syscall(__NR_##name, arg1); \
}
#define safe_syscall2(type, name, type1, arg1, type2, arg2) \
static type safe_##name(type1 arg1, type2 arg2) \
{ \
return safe_syscall(__NR_##name, arg1, arg2); \
}
#define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
{ \
return safe_syscall(__NR_##name, arg1, arg2, arg3); \
}
#define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
type4, arg4) \
static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
{ \
return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
}
#define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
type4, arg4, type5, arg5) \
static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5) \
{ \
return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
}
#define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
type4, arg4, type5, arg5, type6, arg6) \
static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
type5 arg5, type6 arg6) \
{ \
return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
}
safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
int, flags, mode_t, mode)
safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
struct rusage *, rusage)
safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
int, options, struct rusage *, rusage)
safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
struct timespec *, tsp, const sigset_t *, sigmask,
size_t, sigsetsize)
safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
int, maxevents, int, timeout, const sigset_t *, sigmask,
size_t, sigsetsize)
safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
const struct timespec *,timeout,int *,uaddr2,int,val3)
safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
safe_syscall2(int, kill, pid_t, pid, int, sig)
safe_syscall2(int, tkill, int, tid, int, sig)
safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
safe_syscall5(ssize_t, preadv, int, fd, const struct iovec *, iov, int, iovcnt,
unsigned long, pos_l, unsigned long, pos_h)
safe_syscall5(ssize_t, pwritev, int, fd, const struct iovec *, iov, int, iovcnt,
unsigned long, pos_l, unsigned long, pos_h)
safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
socklen_t, addrlen)
safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
safe_syscall2(int, flock, int, fd, int, operation)
safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
const struct timespec *, uts, size_t, sigsetsize)
safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
int, flags)
safe_syscall2(int, nanosleep, const struct timespec *, req,
struct timespec *, rem)
#ifdef TARGET_NR_clock_nanosleep
safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
const struct timespec *, req, struct timespec *, rem)
#endif
#ifdef __NR_msgsnd
safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
int, flags)
safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
long, msgtype, int, flags)
safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
unsigned, nsops, const struct timespec *, timeout)
#else
/* This host kernel architecture uses a single ipc syscall; fake up
* wrappers for the sub-operations to hide this implementation detail.
* Annoyingly we can't include linux/ipc.h to get the constant definitions
* for the call parameter because some structs in there conflict with the
* sys/ipc.h ones. So we just define them here, and rely on them being
* the same for all host architectures.
*/
#define Q_SEMTIMEDOP 4
#define Q_MSGSND 11
#define Q_MSGRCV 12
#define Q_IPCCALL(VERSION, OP) ((VERSION) << 16 | (OP))
safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
void *, ptr, long, fifth)
static int safe_msgsnd(int msgid, const void *msgp, size_t sz, int flags)
{
return safe_ipc(Q_IPCCALL(0, Q_MSGSND), msgid, sz, flags, (void *)msgp, 0);
}
static int safe_msgrcv(int msgid, void *msgp, size_t sz, long type, int flags)
{
return safe_ipc(Q_IPCCALL(1, Q_MSGRCV), msgid, sz, flags, msgp, type);
}
static int safe_semtimedop(int semid, struct sembuf *tsops, unsigned nsops,
const struct timespec *timeout)
{
return safe_ipc(Q_IPCCALL(0, Q_SEMTIMEDOP), semid, nsops, 0, tsops,
(long)timeout);
}
#endif
#if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
size_t, len, unsigned, prio, const struct timespec *, timeout)
safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
size_t, len, unsigned *, prio, const struct timespec *, timeout)
#endif
/* We do ioctl like this rather than via safe_syscall3 to preserve the
* "third argument might be integer or pointer or not present" behaviour of
* the libc function.
*/
#define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
/* Similarly for fcntl. Note that callers must always:
* pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
* use the flock64 struct rather than unsuffixed flock
* This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
*/
#ifdef __NR_fcntl64
#define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
#else
#define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
#endif
static inline int host_to_target_sock_type(int host_type)
{
int target_type;
switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
case SOCK_DGRAM:
target_type = TARGET_SOCK_DGRAM;
break;
case SOCK_STREAM:
target_type = TARGET_SOCK_STREAM;
break;
default:
target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
break;
}
#if defined(SOCK_CLOEXEC)
if (host_type & SOCK_CLOEXEC) {
target_type |= TARGET_SOCK_CLOEXEC;
}
#endif
#if defined(SOCK_NONBLOCK)
if (host_type & SOCK_NONBLOCK) {
target_type |= TARGET_SOCK_NONBLOCK;
}
#endif
return target_type;
}
static abi_ulong target_brk;
static abi_ulong target_original_brk;
static abi_ulong brk_page;
void target_set_brk(abi_ulong new_brk)
{
target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
brk_page = HOST_PAGE_ALIGN(target_brk);
}
//#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
#define DEBUGF_BRK(message, args...)
/* do_brk() must return target values and target errnos. */
abi_long do_brk(abi_ulong new_brk)
{
abi_long mapped_addr;
abi_ulong new_alloc_size;
DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
if (!new_brk) {
DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
return target_brk;
}
if (new_brk < target_original_brk) {
DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
target_brk);
return target_brk;
}
/* If the new brk is less than the highest page reserved to the
* target heap allocation, set it and we're almost done... */
if (new_brk <= brk_page) {
/* Heap contents are initialized to zero, as for anonymous
* mapped pages. */
if (new_brk > target_brk) {
memset(g2h(target_brk), 0, new_brk - target_brk);
}
target_brk = new_brk;
DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
return target_brk;
}
/* We need to allocate more memory after the brk... Note that
* we don't use MAP_FIXED because that will map over the top of
* any existing mapping (like the one with the host libc or qemu
* itself); instead we treat "mapped but at wrong address" as
* a failure and unmap again.
*/
new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
PROT_READ|PROT_WRITE,
MAP_ANON|MAP_PRIVATE, 0, 0));
if (mapped_addr == brk_page) {
/* Heap contents are initialized to zero, as for anonymous
* mapped pages. Technically the new pages are already
* initialized to zero since they *are* anonymous mapped
* pages, however we have to take care with the contents that
* come from the remaining part of the previous page: it may
* contains garbage data due to a previous heap usage (grown
* then shrunken). */
memset(g2h(target_brk), 0, brk_page - target_brk);
target_brk = new_brk;
brk_page = HOST_PAGE_ALIGN(target_brk);
DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
target_brk);
return target_brk;
} else if (mapped_addr != -1) {
/* Mapped but at wrong address, meaning there wasn't actually
* enough space for this brk.
*/
target_munmap(mapped_addr, new_alloc_size);
mapped_addr = -1;
DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
}
else {
DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
}
#if defined(TARGET_ALPHA)
/* We (partially) emulate OSF/1 on Alpha, which requires we
return a proper errno, not an unchanged brk value. */
return -TARGET_ENOMEM;
#endif
/* For everything else, return the previous break. */
return target_brk;
}
static inline abi_long copy_from_user_fdset(fd_set *fds,
abi_ulong target_fds_addr,
int n)
{
int i, nw, j, k;
abi_ulong b, *target_fds;
nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
if (!(target_fds = lock_user(VERIFY_READ,
target_fds_addr,
sizeof(abi_ulong) * nw,
1)))
return -TARGET_EFAULT;
FD_ZERO(fds);
k = 0;
for (i = 0; i < nw; i++) {
/* grab the abi_ulong */
__get_user(b, &target_fds[i]);
for (j = 0; j < TARGET_ABI_BITS; j++) {
/* check the bit inside the abi_ulong */
if ((b >> j) & 1)
FD_SET(k, fds);
k++;
}
}
unlock_user(target_fds, target_fds_addr, 0);
return 0;
}
static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
abi_ulong target_fds_addr,
int n)
{
if (target_fds_addr) {
if (copy_from_user_fdset(fds, target_fds_addr, n))
return -TARGET_EFAULT;
*fds_ptr = fds;
} else {
*fds_ptr = NULL;
}
return 0;
}
static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
const fd_set *fds,
int n)
{
int i, nw, j, k;
abi_long v;
abi_ulong *target_fds;
nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
if (!(target_fds = lock_user(VERIFY_WRITE,
target_fds_addr,
sizeof(abi_ulong) * nw,
0)))
return -TARGET_EFAULT;
k = 0;
for (i = 0; i < nw; i++) {
v = 0;
for (j = 0; j < TARGET_ABI_BITS; j++) {
v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
k++;
}
__put_user(v, &target_fds[i]);
}
unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
return 0;
}
#if defined(__alpha__)
#define HOST_HZ 1024
#else
#define HOST_HZ 100
#endif
static inline abi_long host_to_target_clock_t(long ticks)
{
#if HOST_HZ == TARGET_HZ
return ticks;
#else
return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
#endif
}
static inline abi_long host_to_target_rusage(abi_ulong target_addr,
const struct rusage *rusage)
{
struct target_rusage *target_rusage;
if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
return -TARGET_EFAULT;
target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
unlock_user_struct(target_rusage, target_addr, 1);
return 0;
}
static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
{
abi_ulong target_rlim_swap;
rlim_t result;
target_rlim_swap = tswapal(target_rlim);
if (target_rlim_swap == TARGET_RLIM_INFINITY)
return RLIM_INFINITY;
result = target_rlim_swap;
if (target_rlim_swap != (rlim_t)result)
return RLIM_INFINITY;
return result;
}
static inline abi_ulong host_to_target_rlim(rlim_t rlim)
{
abi_ulong target_rlim_swap;
abi_ulong result;
if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
target_rlim_swap = TARGET_RLIM_INFINITY;
else
target_rlim_swap = rlim;
result = tswapal(target_rlim_swap);
return result;
}
static inline int target_to_host_resource(int code)
{
switch (code) {
case TARGET_RLIMIT_AS:
return RLIMIT_AS;
case TARGET_RLIMIT_CORE:
return RLIMIT_CORE;
case TARGET_RLIMIT_CPU:
return RLIMIT_CPU;
case TARGET_RLIMIT_DATA:
return RLIMIT_DATA;
case TARGET_RLIMIT_FSIZE:
return RLIMIT_FSIZE;
case TARGET_RLIMIT_LOCKS:
return RLIMIT_LOCKS;
case TARGET_RLIMIT_MEMLOCK:
return RLIMIT_MEMLOCK;
case TARGET_RLIMIT_MSGQUEUE:
return RLIMIT_MSGQUEUE;
case TARGET_RLIMIT_NICE:
return RLIMIT_NICE;
case TARGET_RLIMIT_NOFILE:
return RLIMIT_NOFILE;
case TARGET_RLIMIT_NPROC:
return RLIMIT_NPROC;
case TARGET_RLIMIT_RSS:
return RLIMIT_RSS;
case TARGET_RLIMIT_RTPRIO:
return RLIMIT_RTPRIO;
case TARGET_RLIMIT_SIGPENDING:
return RLIMIT_SIGPENDING;
case TARGET_RLIMIT_STACK:
return RLIMIT_STACK;
default:
return code;
}
}
static inline abi_long copy_from_user_timeval(struct timeval *tv,
abi_ulong target_tv_addr)
{
struct target_timeval *target_tv;
if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1))
return -TARGET_EFAULT;
__get_user(tv->tv_sec, &target_tv->tv_sec);
__get_user(tv->tv_usec, &target_tv->tv_usec);
unlock_user_struct(target_tv, target_tv_addr, 0);
return 0;
}
static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
const struct timeval *tv)
{
struct target_timeval *target_tv;
if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0))
return -TARGET_EFAULT;
__put_user(tv->tv_sec, &target_tv->tv_sec);
__put_user(tv->tv_usec, &target_tv->tv_usec);
unlock_user_struct(target_tv, target_tv_addr, 1);
return 0;
}
static inline abi_long copy_from_user_timezone(struct timezone *tz,
abi_ulong target_tz_addr)
{
struct target_timezone *target_tz;
if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
return -TARGET_EFAULT;
}
__get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
__get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
unlock_user_struct(target_tz, target_tz_addr, 0);
return 0;
}
#if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
#include
static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
abi_ulong target_mq_attr_addr)
{
struct target_mq_attr *target_mq_attr;
if (!lock_user_struct(VERIFY_READ, target_mq_attr,
target_mq_attr_addr, 1))
return -TARGET_EFAULT;
__get_user(attr->mq_flags, &target_mq_attr->mq_flags);
__get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
__get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
__get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
return 0;
}
static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
const struct mq_attr *attr)
{
struct target_mq_attr *target_mq_attr;
if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
target_mq_attr_addr, 0))
return -TARGET_EFAULT;
__put_user(attr->mq_flags, &target_mq_attr->mq_flags);
__put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
__put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
__put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
return 0;
}
#endif
#if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
/* do_select() must return target values and target errnos. */
static abi_long do_select(int n,
abi_ulong rfd_addr, abi_ulong wfd_addr,
abi_ulong efd_addr, abi_ulong target_tv_addr)
{
fd_set rfds, wfds, efds;
fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
struct timeval tv;
struct timespec ts, *ts_ptr;
abi_long ret;
ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
if (ret) {
return ret;
}
ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
if (ret) {
return ret;
}
ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
if (ret) {
return ret;
}
if (target_tv_addr) {
if (copy_from_user_timeval(&tv, target_tv_addr))
return -TARGET_EFAULT;
ts.tv_sec = tv.tv_sec;
ts.tv_nsec = tv.tv_usec * 1000;
ts_ptr = &ts;
} else {
ts_ptr = NULL;
}
ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
ts_ptr, NULL));
if (!is_error(ret)) {
if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
return -TARGET_EFAULT;
if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
return -TARGET_EFAULT;
if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
return -TARGET_EFAULT;
if (target_tv_addr) {
tv.tv_sec = ts.tv_sec;
tv.tv_usec = ts.tv_nsec / 1000;
if (copy_to_user_timeval(target_tv_addr, &tv)) {
return -TARGET_EFAULT;
}
}
}
return ret;
}
#if defined(TARGET_WANT_OLD_SYS_SELECT)
static abi_long do_old_select(abi_ulong arg1)
{
struct target_sel_arg_struct *sel;
abi_ulong inp, outp, exp, tvp;
long nsel;
if (!lock_user_struct(VERIFY_READ, sel, arg1, 1)) {
return -TARGET_EFAULT;
}
nsel = tswapal(sel->n);
inp = tswapal(sel->inp);
outp = tswapal(sel->outp);
exp = tswapal(sel->exp);
tvp = tswapal(sel->tvp);
unlock_user_struct(sel, arg1, 0);
return do_select(nsel, inp, outp, exp, tvp);
}
#endif
#endif
static abi_long do_pipe2(int host_pipe[], int flags)
{
#ifdef CONFIG_PIPE2
return pipe2(host_pipe, flags);
#else
return -ENOSYS;
#endif
}
static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
int flags, int is_pipe2)
{
int host_pipe[2];
abi_long ret;
ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
if (is_error(ret))
return get_errno(ret);
/* Several targets have special calling conventions for the original
pipe syscall, but didn't replicate this into the pipe2 syscall. */
if (!is_pipe2) {
#if defined(TARGET_ALPHA)
((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
return host_pipe[0];
#elif defined(TARGET_MIPS)
((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
return host_pipe[0];
#elif defined(TARGET_SH4)
((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
return host_pipe[0];
#elif defined(TARGET_SPARC)
((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
return host_pipe[0];
#endif
}
if (put_user_s32(host_pipe[0], pipedes)
|| put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
return -TARGET_EFAULT;
return get_errno(ret);
}
static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
abi_ulong target_addr,
socklen_t len)
{
struct target_ip_mreqn *target_smreqn;
target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
if (!target_smreqn)
return -TARGET_EFAULT;
mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
if (len == sizeof(struct target_ip_mreqn))
mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
unlock_user(target_smreqn, target_addr, 0);
return 0;
}
static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
abi_ulong target_addr,
socklen_t len)
{
const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
sa_family_t sa_family;
struct target_sockaddr *target_saddr;
if (fd_trans_target_to_host_addr(fd)) {
return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
}
target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
if (!target_saddr)
return -TARGET_EFAULT;
sa_family = tswap16(target_saddr->sa_family);
/* Oops. The caller might send a incomplete sun_path; sun_path
* must be terminated by \0 (see the manual page), but
* unfortunately it is quite common to specify sockaddr_un
* length as "strlen(x->sun_path)" while it should be
* "strlen(...) + 1". We'll fix that here if needed.
* Linux kernel has a similar feature.
*/
if (sa_family == AF_UNIX) {
if (len < unix_maxlen && len > 0) {
char *cp = (char*)target_saddr;
if ( cp[len-1] && !cp[len] )
len++;
}
if (len > unix_maxlen)
len = unix_maxlen;
}
memcpy(addr, target_saddr, len);
addr->sa_family = sa_family;
if (sa_family == AF_NETLINK) {
struct sockaddr_nl *nladdr;
nladdr = (struct sockaddr_nl *)addr;
nladdr->nl_pid = tswap32(nladdr->nl_pid);
nladdr->nl_groups = tswap32(nladdr->nl_groups);
} else if (sa_family == AF_PACKET) {
struct target_sockaddr_ll *lladdr;
lladdr = (struct target_sockaddr_ll *)addr;
lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
}
unlock_user(target_saddr, target_addr, 0);
return 0;
}
static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
struct sockaddr *addr,
socklen_t len)
{
struct target_sockaddr *target_saddr;
if (len == 0) {
return 0;
}
assert(addr);
target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
if (!target_saddr)
return -TARGET_EFAULT;
memcpy(target_saddr, addr, len);
if (len >= offsetof(struct target_sockaddr, sa_family) +
sizeof(target_saddr->sa_family)) {
target_saddr->sa_family = tswap16(addr->sa_family);
}
if (addr->sa_family == AF_NETLINK && len >= sizeof(struct sockaddr_nl)) {
struct sockaddr_nl *target_nl = (struct sockaddr_nl *)target_saddr;
target_nl->nl_pid = tswap32(target_nl->nl_pid);
target_nl->nl_groups = tswap32(target_nl->nl_groups);
} else if (addr->sa_family == AF_PACKET) {
struct sockaddr_ll *target_ll = (struct sockaddr_ll *)target_saddr;
target_ll->sll_ifindex = tswap32(target_ll->sll_ifindex);
target_ll->sll_hatype = tswap16(target_ll->sll_hatype);
} else if (addr->sa_family == AF_INET6 &&
len >= sizeof(struct target_sockaddr_in6)) {
struct target_sockaddr_in6 *target_in6 =
(struct target_sockaddr_in6 *)target_saddr;
target_in6->sin6_scope_id = tswap16(target_in6->sin6_scope_id);
}
unlock_user(target_saddr, target_addr, len);
return 0;
}
static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
struct target_msghdr *target_msgh)
{
struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
abi_long msg_controllen;
abi_ulong target_cmsg_addr;
struct target_cmsghdr *target_cmsg, *target_cmsg_start;
socklen_t space = 0;
msg_controllen = tswapal(target_msgh->msg_controllen);
if (msg_controllen < sizeof (struct target_cmsghdr))
goto the_end;
target_cmsg_addr = tswapal(target_msgh->msg_control);
target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
target_cmsg_start = target_cmsg;
if (!target_cmsg)
return -TARGET_EFAULT;
while (cmsg && target_cmsg) {
void *data = CMSG_DATA(cmsg);
void *target_data = TARGET_CMSG_DATA(target_cmsg);
int len = tswapal(target_cmsg->cmsg_len)
- sizeof(struct target_cmsghdr);
space += CMSG_SPACE(len);
if (space > msgh->msg_controllen) {
space -= CMSG_SPACE(len);
/* This is a QEMU bug, since we allocated the payload
* area ourselves (unlike overflow in host-to-target
* conversion, which is just the guest giving us a buffer
* that's too small). It can't happen for the payload types
* we currently support; if it becomes an issue in future
* we would need to improve our allocation strategy to
* something more intelligent than "twice the size of the
* target buffer we're reading from".
*/
gemu_log("Host cmsg overflow\n");
break;
}
if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
cmsg->cmsg_level = SOL_SOCKET;
} else {
cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
}
cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
cmsg->cmsg_len = CMSG_LEN(len);
if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
int *fd = (int *)data;
int *target_fd = (int *)target_data;
int i, numfds = len / sizeof(int);
for (i = 0; i < numfds; i++) {
__get_user(fd[i], target_fd + i);
}
} else if (cmsg->cmsg_level == SOL_SOCKET
&& cmsg->cmsg_type == SCM_CREDENTIALS) {
struct ucred *cred = (struct ucred *)data;
struct target_ucred *target_cred =
(struct target_ucred *)target_data;
__get_user(cred->pid, &target_cred->pid);
__get_user(cred->uid, &target_cred->uid);
__get_user(cred->gid, &target_cred->gid);
} else {
gemu_log("Unsupported ancillary data: %d/%d\n",
cmsg->cmsg_level, cmsg->cmsg_type);
memcpy(data, target_data, len);
}
cmsg = CMSG_NXTHDR(msgh, cmsg);
target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
target_cmsg_start);
}
unlock_user(target_cmsg, target_cmsg_addr, 0);
the_end:
msgh->msg_controllen = space;
return 0;
}
static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
struct msghdr *msgh)
{
struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
abi_long msg_controllen;
abi_ulong target_cmsg_addr;
struct target_cmsghdr *target_cmsg, *target_cmsg_start;
socklen_t space = 0;
msg_controllen = tswapal(target_msgh->msg_controllen);
if (msg_controllen < sizeof (struct target_cmsghdr))
goto the_end;
target_cmsg_addr = tswapal(target_msgh->msg_control);
target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
target_cmsg_start = target_cmsg;
if (!target_cmsg)
return -TARGET_EFAULT;
while (cmsg && target_cmsg) {
void *data = CMSG_DATA(cmsg);
void *target_data = TARGET_CMSG_DATA(target_cmsg);
int len = cmsg->cmsg_len - sizeof(struct cmsghdr);
int tgt_len, tgt_space;
/* We never copy a half-header but may copy half-data;
* this is Linux's behaviour in put_cmsg(). Note that
* truncation here is a guest problem (which we report
* to the guest via the CTRUNC bit), unlike truncation
* in target_to_host_cmsg, which is a QEMU bug.
*/
if (msg_controllen < sizeof(struct target_cmsghdr)) {
target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
break;
}
if (cmsg->cmsg_level == SOL_SOCKET) {
target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
} else {
target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
}
target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
/* Payload types which need a different size of payload on
* the target must adjust tgt_len here.
*/
switch (cmsg->cmsg_level) {
case SOL_SOCKET:
switch (cmsg->cmsg_type) {
case SO_TIMESTAMP:
tgt_len = sizeof(struct target_timeval);
break;
default:
break;
}
default:
tgt_len = len;
break;
}
if (msg_controllen < TARGET_CMSG_LEN(tgt_len)) {
target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
tgt_len = msg_controllen - sizeof(struct target_cmsghdr);
}
/* We must now copy-and-convert len bytes of payload
* into tgt_len bytes of destination space. Bear in mind
* that in both source and destination we may be dealing
* with a truncated value!
*/
switch (cmsg->cmsg_level) {
case SOL_SOCKET:
switch (cmsg->cmsg_type) {
case SCM_RIGHTS:
{
int *fd = (int *)data;
int *target_fd = (int *)target_data;
int i, numfds = tgt_len / sizeof(int);
for (i = 0; i < numfds; i++) {
__put_user(fd[i], target_fd + i);
}
break;
}
case SO_TIMESTAMP:
{
struct timeval *tv = (struct timeval *)data;
struct target_timeval *target_tv =
(struct target_timeval *)target_data;
if (len != sizeof(struct timeval) ||
tgt_len != sizeof(struct target_timeval)) {
goto unimplemented;
}
/* copy struct timeval to target */
__put_user(tv->tv_sec, &target_tv->tv_sec);
__put_user(tv->tv_usec, &target_tv->tv_usec);
break;
}
case SCM_CREDENTIALS:
{
struct ucred *cred = (struct ucred *)data;
struct target_ucred *target_cred =
(struct target_ucred *)target_data;
__put_user(cred->pid, &target_cred->pid);
__put_user(cred->uid, &target_cred->uid);
__put_user(cred->gid, &target_cred->gid);
break;
}
default:
goto unimplemented;
}
break;
case SOL_IP:
switch (cmsg->cmsg_type) {
case IP_TTL:
{
uint32_t *v = (uint32_t *)data;
uint32_t *t_int = (uint32_t *)target_data;
if (len != sizeof(uint32_t) ||
tgt_len != sizeof(uint32_t)) {
goto unimplemented;
}
__put_user(*v, t_int);
break;
}
case IP_RECVERR:
{
struct errhdr_t {
struct sock_extended_err ee;
struct sockaddr_in offender;
};
struct errhdr_t *errh = (struct errhdr_t *)data;
struct errhdr_t *target_errh =
(struct errhdr_t *)target_data;
if (len != sizeof(struct errhdr_t) ||
tgt_len != sizeof(struct errhdr_t)) {
goto unimplemented;
}
__put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
__put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
__put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
__put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
__put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
__put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
__put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
host_to_target_sockaddr((unsigned long) &target_errh->offender,
(void *) &errh->offender, sizeof(errh->offender));
break;
}
default:
goto unimplemented;
}
break;
case SOL_IPV6:
switch (cmsg->cmsg_type) {
case IPV6_HOPLIMIT:
{
uint32_t *v = (uint32_t *)data;
uint32_t *t_int = (uint32_t *)target_data;
if (len != sizeof(uint32_t) ||
tgt_len != sizeof(uint32_t)) {
goto unimplemented;
}
__put_user(*v, t_int);
break;
}
case IPV6_RECVERR:
{
struct errhdr6_t {
struct sock_extended_err ee;
struct sockaddr_in6 offender;
};
struct errhdr6_t *errh = (struct errhdr6_t *)data;
struct errhdr6_t *target_errh =
(struct errhdr6_t *)target_data;
if (len != sizeof(struct errhdr6_t) ||
tgt_len != sizeof(struct errhdr6_t)) {
goto unimplemented;
}
__put_user(errh->ee.ee_errno, &target_errh->ee.ee_errno);
__put_user(errh->ee.ee_origin, &target_errh->ee.ee_origin);
__put_user(errh->ee.ee_type, &target_errh->ee.ee_type);
__put_user(errh->ee.ee_code, &target_errh->ee.ee_code);
__put_user(errh->ee.ee_pad, &target_errh->ee.ee_pad);
__put_user(errh->ee.ee_info, &target_errh->ee.ee_info);
__put_user(errh->ee.ee_data, &target_errh->ee.ee_data);
host_to_target_sockaddr((unsigned long) &target_errh->offender,
(void *) &errh->offender, sizeof(errh->offender));
break;
}
default:
goto unimplemented;
}
break;
default:
unimplemented:
gemu_log("Unsupported ancillary data: %d/%d\n",
cmsg->cmsg_level, cmsg->cmsg_type);
memcpy(target_data, data, MIN(len, tgt_len));
if (tgt_len > len) {
memset(target_data + len, 0, tgt_len - len);
}
}
target_cmsg->cmsg_len = tswapal(TARGET_CMSG_LEN(tgt_len));
tgt_space = TARGET_CMSG_SPACE(tgt_len);
if (msg_controllen < tgt_space) {
tgt_space = msg_controllen;
}
msg_controllen -= tgt_space;
space += tgt_space;
cmsg = CMSG_NXTHDR(msgh, cmsg);
target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
target_cmsg_start);
}
unlock_user(target_cmsg, target_cmsg_addr, space);
the_end:
target_msgh->msg_controllen = tswapal(space);
return 0;
}
static void tswap_nlmsghdr(struct nlmsghdr *nlh)
{
nlh->nlmsg_len = tswap32(nlh->nlmsg_len);
nlh->nlmsg_type = tswap16(nlh->nlmsg_type);
nlh->nlmsg_flags = tswap16(nlh->nlmsg_flags);
nlh->nlmsg_seq = tswap32(nlh->nlmsg_seq);
nlh->nlmsg_pid = tswap32(nlh->nlmsg_pid);
}
static abi_long host_to_target_for_each_nlmsg(struct nlmsghdr *nlh,
size_t len,
abi_long (*host_to_target_nlmsg)
(struct nlmsghdr *))
{
uint32_t nlmsg_len;
abi_long ret;
while (len > sizeof(struct nlmsghdr)) {
nlmsg_len = nlh->nlmsg_len;
if (nlmsg_len < sizeof(struct nlmsghdr) ||
nlmsg_len > len) {
break;
}
switch (nlh->nlmsg_type) {
case NLMSG_DONE:
tswap_nlmsghdr(nlh);
return 0;
case NLMSG_NOOP:
break;
case NLMSG_ERROR:
{
struct nlmsgerr *e = NLMSG_DATA(nlh);
e->error = tswap32(e->error);
tswap_nlmsghdr(&e->msg);
tswap_nlmsghdr(nlh);
return 0;
}
default:
ret = host_to_target_nlmsg(nlh);
if (ret < 0) {
tswap_nlmsghdr(nlh);
return ret;
}
break;
}
tswap_nlmsghdr(nlh);
len -= NLMSG_ALIGN(nlmsg_len);
nlh = (struct nlmsghdr *)(((char*)nlh) + NLMSG_ALIGN(nlmsg_len));
}
return 0;
}
static abi_long target_to_host_for_each_nlmsg(struct nlmsghdr *nlh,
size_t len,
abi_long (*target_to_host_nlmsg)
(struct nlmsghdr *))
{
int ret;
while (len > sizeof(struct nlmsghdr)) {
if (tswap32(nlh->nlmsg_len) < sizeof(struct nlmsghdr) ||
tswap32(nlh->nlmsg_len) > len) {
break;
}
tswap_nlmsghdr(nlh);
switch (nlh->nlmsg_type) {
case NLMSG_DONE:
return 0;
case NLMSG_NOOP:
break;
case NLMSG_ERROR:
{
struct nlmsgerr *e = NLMSG_DATA(nlh);
e->error = tswap32(e->error);
tswap_nlmsghdr(&e->msg);
return 0;
}
default:
ret = target_to_host_nlmsg(nlh);
if (ret < 0) {
return ret;
}
}
len -= NLMSG_ALIGN(nlh->nlmsg_len);
nlh = (struct nlmsghdr *)(((char *)nlh) + NLMSG_ALIGN(nlh->nlmsg_len));
}
return 0;
}
#ifdef CONFIG_RTNETLINK
static abi_long host_to_target_for_each_nlattr(struct nlattr *nlattr,
size_t len, void *context,
abi_long (*host_to_target_nlattr)
(struct nlattr *,
void *context))
{
unsigned short nla_len;
abi_long ret;
while (len > sizeof(struct nlattr)) {
nla_len = nlattr->nla_len;
if (nla_len < sizeof(struct nlattr) ||
nla_len > len) {
break;
}
ret = host_to_target_nlattr(nlattr, context);
nlattr->nla_len = tswap16(nlattr->nla_len);
nlattr->nla_type = tswap16(nlattr->nla_type);
if (ret < 0) {
return ret;
}
len -= NLA_ALIGN(nla_len);
nlattr = (struct nlattr *)(((char *)nlattr) + NLA_ALIGN(nla_len));
}
return 0;
}
static abi_long host_to_target_for_each_rtattr(struct rtattr *rtattr,
size_t len,
abi_long (*host_to_target_rtattr)
(struct rtattr *))
{
unsigned short rta_len;
abi_long ret;
while (len > sizeof(struct rtattr)) {
rta_len = rtattr->rta_len;
if (rta_len < sizeof(struct rtattr) ||
rta_len > len) {
break;
}
ret = host_to_target_rtattr(rtattr);
rtattr->rta_len = tswap16(rtattr->rta_len);
rtattr->rta_type = tswap16(rtattr->rta_type);
if (ret < 0) {
return ret;
}
len -= RTA_ALIGN(rta_len);
rtattr = (struct rtattr *)(((char *)rtattr) + RTA_ALIGN(rta_len));
}
return 0;
}
#define NLA_DATA(nla) ((void *)((char *)(nla)) + NLA_HDRLEN)
static abi_long host_to_target_data_bridge_nlattr(struct nlattr *nlattr,
void *context)
{
uint16_t *u16;
uint32_t *u32;
uint64_t *u64;
switch (nlattr->nla_type) {
/* no data */
case QEMU_IFLA_BR_FDB_FLUSH:
break;
/* binary */
case QEMU_IFLA_BR_GROUP_ADDR:
break;
/* uint8_t */
case QEMU_IFLA_BR_VLAN_FILTERING:
case QEMU_IFLA_BR_TOPOLOGY_CHANGE:
case QEMU_IFLA_BR_TOPOLOGY_CHANGE_DETECTED:
case QEMU_IFLA_BR_MCAST_ROUTER:
case QEMU_IFLA_BR_MCAST_SNOOPING:
case QEMU_IFLA_BR_MCAST_QUERY_USE_IFADDR:
case QEMU_IFLA_BR_MCAST_QUERIER:
case QEMU_IFLA_BR_NF_CALL_IPTABLES:
case QEMU_IFLA_BR_NF_CALL_IP6TABLES:
case QEMU_IFLA_BR_NF_CALL_ARPTABLES:
break;
/* uint16_t */
case QEMU_IFLA_BR_PRIORITY:
case QEMU_IFLA_BR_VLAN_PROTOCOL:
case QEMU_IFLA_BR_GROUP_FWD_MASK:
case QEMU_IFLA_BR_ROOT_PORT:
case QEMU_IFLA_BR_VLAN_DEFAULT_PVID:
u16 = NLA_DATA(nlattr);
*u16 = tswap16(*u16);
break;
/* uint32_t */
case QEMU_IFLA_BR_FORWARD_DELAY:
case QEMU_IFLA_BR_HELLO_TIME:
case QEMU_IFLA_BR_MAX_AGE:
case QEMU_IFLA_BR_AGEING_TIME:
case QEMU_IFLA_BR_STP_STATE:
case QEMU_IFLA_BR_ROOT_PATH_COST:
case QEMU_IFLA_BR_MCAST_HASH_ELASTICITY:
case QEMU_IFLA_BR_MCAST_HASH_MAX:
case QEMU_IFLA_BR_MCAST_LAST_MEMBER_CNT:
case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_CNT:
u32 = NLA_DATA(nlattr);
*u32 = tswap32(*u32);
break;
/* uint64_t */
case QEMU_IFLA_BR_HELLO_TIMER:
case QEMU_IFLA_BR_TCN_TIMER:
case QEMU_IFLA_BR_GC_TIMER:
case QEMU_IFLA_BR_TOPOLOGY_CHANGE_TIMER:
case QEMU_IFLA_BR_MCAST_LAST_MEMBER_INTVL:
case QEMU_IFLA_BR_MCAST_MEMBERSHIP_INTVL:
case QEMU_IFLA_BR_MCAST_QUERIER_INTVL:
case QEMU_IFLA_BR_MCAST_QUERY_INTVL:
case QEMU_IFLA_BR_MCAST_QUERY_RESPONSE_INTVL:
case QEMU_IFLA_BR_MCAST_STARTUP_QUERY_INTVL:
u64 = NLA_DATA(nlattr);
*u64 = tswap64(*u64);
break;
/* ifla_bridge_id: uin8_t[] */
case QEMU_IFLA_BR_ROOT_ID:
case QEMU_IFLA_BR_BRIDGE_ID:
break;
default:
gemu_log("Unknown QEMU_IFLA_BR type %d\n", nlattr->nla_type);
break;
}
return 0;
}
static abi_long host_to_target_slave_data_bridge_nlattr(struct nlattr *nlattr,
void *context)
{
uint16_t *u16;
uint32_t *u32;
uint64_t *u64;
switch (nlattr->nla_type) {
/* uint8_t */
case QEMU_IFLA_BRPORT_STATE:
case QEMU_IFLA_BRPORT_MODE:
case QEMU_IFLA_BRPORT_GUARD:
case QEMU_IFLA_BRPORT_PROTECT:
case QEMU_IFLA_BRPORT_FAST_LEAVE:
case QEMU_IFLA_BRPORT_LEARNING:
case QEMU_IFLA_BRPORT_UNICAST_FLOOD:
case QEMU_IFLA_BRPORT_PROXYARP:
case QEMU_IFLA_BRPORT_LEARNING_SYNC:
case QEMU_IFLA_BRPORT_PROXYARP_WIFI:
case QEMU_IFLA_BRPORT_TOPOLOGY_CHANGE_ACK:
case QEMU_IFLA_BRPORT_CONFIG_PENDING:
case QEMU_IFLA_BRPORT_MULTICAST_ROUTER:
break;
/* uint16_t */
case QEMU_IFLA_BRPORT_PRIORITY:
case QEMU_IFLA_BRPORT_DESIGNATED_PORT:
case QEMU_IFLA_BRPORT_DESIGNATED_COST:
case QEMU_IFLA_BRPORT_ID:
case QEMU_IFLA_BRPORT_NO:
u16 = NLA_DATA(nlattr);
*u16 = tswap16(*u16);
break;
/* uin32_t */
case QEMU_IFLA_BRPORT_COST:
u32 = NLA_DATA(nlattr);
*u32 = tswap32(*u32);
break;
/* uint64_t */
case QEMU_IFLA_BRPORT_MESSAGE_AGE_TIMER:
case QEMU_IFLA_BRPORT_FORWARD_DELAY_TIMER:
case QEMU_IFLA_BRPORT_HOLD_TIMER:
u64 = NLA_DATA(nlattr);
*u64 = tswap64(*u64);
break;
/* ifla_bridge_id: uint8_t[] */
case QEMU_IFLA_BRPORT_ROOT_ID:
case QEMU_IFLA_BRPORT_BRIDGE_ID:
break;
default:
gemu_log("Unknown QEMU_IFLA_BRPORT type %d\n", nlattr->nla_type);
break;
}
return 0;
}
struct linkinfo_context {
int len;
char *name;
int slave_len;
char *slave_name;
};
static abi_long host_to_target_data_linkinfo_nlattr(struct nlattr *nlattr,
void *context)
{
struct linkinfo_context *li_context = context;
switch (nlattr->nla_type) {
/* string */
case QEMU_IFLA_INFO_KIND:
li_context->name = NLA_DATA(nlattr);
li_context->len = nlattr->nla_len - NLA_HDRLEN;
break;
case QEMU_IFLA_INFO_SLAVE_KIND:
li_context->slave_name = NLA_DATA(nlattr);
li_context->slave_len = nlattr->nla_len - NLA_HDRLEN;
break;
/* stats */
case QEMU_IFLA_INFO_XSTATS:
/* FIXME: only used by CAN */
break;
/* nested */
case QEMU_IFLA_INFO_DATA:
if (strncmp(li_context->name, "bridge",
li_context->len) == 0) {
return host_to_target_for_each_nlattr(NLA_DATA(nlattr),
nlattr->nla_len,
NULL,
host_to_target_data_bridge_nlattr);
} else {
gemu_log("Unknown QEMU_IFLA_INFO_KIND %s\n", li_context->name);
}
break;
case QEMU_IFLA_INFO_SLAVE_DATA:
if (strncmp(li_context->slave_name, "bridge",
li_context->slave_len) == 0) {
return host_to_target_for_each_nlattr(NLA_DATA(nlattr),
nlattr->nla_len,
NULL,
host_to_target_slave_data_bridge_nlattr);
} else {
gemu_log("Unknown QEMU_IFLA_INFO_SLAVE_KIND %s\n",
li_context->slave_name);
}
break;
default:
gemu_log("Unknown host QEMU_IFLA_INFO type: %d\n", nlattr->nla_type);
break;
}
return 0;
}
static abi_long host_to_target_data_inet_nlattr(struct nlattr *nlattr,
void *context)
{
uint32_t *u32;
int i;
switch (nlattr->nla_type) {
case QEMU_IFLA_INET_CONF:
u32 = NLA_DATA(nlattr);
for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32);
i++) {
u32[i] = tswap32(u32[i]);
}
break;
default:
gemu_log("Unknown host AF_INET type: %d\n", nlattr->nla_type);
}
return 0;
}
static abi_long host_to_target_data_inet6_nlattr(struct nlattr *nlattr,
void *context)
{
uint32_t *u32;
uint64_t *u64;
struct ifla_cacheinfo *ci;
int i;
switch (nlattr->nla_type) {
/* binaries */
case QEMU_IFLA_INET6_TOKEN:
break;
/* uint8_t */
case QEMU_IFLA_INET6_ADDR_GEN_MODE:
break;
/* uint32_t */
case QEMU_IFLA_INET6_FLAGS:
u32 = NLA_DATA(nlattr);
*u32 = tswap32(*u32);
break;
/* uint32_t[] */
case QEMU_IFLA_INET6_CONF:
u32 = NLA_DATA(nlattr);
for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u32);
i++) {
u32[i] = tswap32(u32[i]);
}
break;
/* ifla_cacheinfo */
case QEMU_IFLA_INET6_CACHEINFO:
ci = NLA_DATA(nlattr);
ci->max_reasm_len = tswap32(ci->max_reasm_len);
ci->tstamp = tswap32(ci->tstamp);
ci->reachable_time = tswap32(ci->reachable_time);
ci->retrans_time = tswap32(ci->retrans_time);
break;
/* uint64_t[] */
case QEMU_IFLA_INET6_STATS:
case QEMU_IFLA_INET6_ICMP6STATS:
u64 = NLA_DATA(nlattr);
for (i = 0; i < (nlattr->nla_len - NLA_HDRLEN) / sizeof(*u64);
i++) {
u64[i] = tswap64(u64[i]);
}
break;
default:
gemu_log("Unknown host AF_INET6 type: %d\n", nlattr->nla_type);
}
return 0;
}
static abi_long host_to_target_data_spec_nlattr(struct nlattr *nlattr,
void *context)
{
switch (nlattr->nla_type) {
case AF_INET:
return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len,
NULL,
host_to_target_data_inet_nlattr);
case AF_INET6:
return host_to_target_for_each_nlattr(NLA_DATA(nlattr), nlattr->nla_len,
NULL,
host_to_target_data_inet6_nlattr);
default:
gemu_log("Unknown host AF_SPEC type: %d\n", nlattr->nla_type);
break;
}
return 0;
}
static abi_long host_to_target_data_link_rtattr(struct rtattr *rtattr)
{
uint32_t *u32;
struct rtnl_link_stats *st;
struct rtnl_link_stats64 *st64;
struct rtnl_link_ifmap *map;
struct linkinfo_context li_context;
switch (rtattr->rta_type) {
/* binary stream */
case QEMU_IFLA_ADDRESS:
case QEMU_IFLA_BROADCAST:
/* string */
case QEMU_IFLA_IFNAME:
case QEMU_IFLA_QDISC:
break;
/* uin8_t */
case QEMU_IFLA_OPERSTATE:
case QEMU_IFLA_LINKMODE:
case QEMU_IFLA_CARRIER:
case QEMU_IFLA_PROTO_DOWN:
break;
/* uint32_t */
case QEMU_IFLA_MTU:
case QEMU_IFLA_LINK:
case QEMU_IFLA_WEIGHT:
case QEMU_IFLA_TXQLEN:
case QEMU_IFLA_CARRIER_CHANGES:
case QEMU_IFLA_NUM_RX_QUEUES:
case QEMU_IFLA_NUM_TX_QUEUES:
case QEMU_IFLA_PROMISCUITY:
case QEMU_IFLA_EXT_MASK:
case QEMU_IFLA_LINK_NETNSID:
case QEMU_IFLA_GROUP:
case QEMU_IFLA_MASTER:
case QEMU_IFLA_NUM_VF:
case QEMU_IFLA_GSO_MAX_SEGS:
case QEMU_IFLA_GSO_MAX_SIZE:
u32 = RTA_DATA(rtattr);
*u32 = tswap32(*u32);
break;
/* struct rtnl_link_stats */
case QEMU_IFLA_STATS:
st = RTA_DATA(rtattr);
st->rx_packets = tswap32(st->rx_packets);
st->tx_packets = tswap32(st->tx_packets);
st->rx_bytes = tswap32(st->rx_bytes);
st->tx_bytes = tswap32(st->tx_bytes);
st->rx_errors = tswap32(st->rx_errors);
st->tx_errors = tswap32(st->tx_errors);
st->rx_dropped = tswap32(st->rx_dropped);
st->tx_dropped = tswap32(st->tx_dropped);
st->multicast = tswap32(st->multicast);
st->collisions = tswap32(st->collisions);
/* detailed rx_errors: */
st->rx_length_errors = tswap32(st->rx_length_errors);
st->rx_over_errors = tswap32(st->rx_over_errors);
st->rx_crc_errors = tswap32(st->rx_crc_errors);
st->rx_frame_errors = tswap32(st->rx_frame_errors);
st->rx_fifo_errors = tswap32(st->rx_fifo_errors);
st->rx_missed_errors = tswap32(st->rx_missed_errors);
/* detailed tx_errors */
st->tx_aborted_errors = tswap32(st->tx_aborted_errors);
st->tx_carrier_errors = tswap32(st->tx_carrier_errors);
st->tx_fifo_errors = tswap32(st->tx_fifo_errors);
st->tx_heartbeat_errors = tswap32(st->tx_heartbeat_errors);
st->tx_window_errors = tswap32(st->tx_window_errors);
/* for cslip etc */
st->rx_compressed = tswap32(st->rx_compressed);
st->tx_compressed = tswap32(st->tx_compressed);
break;
/* struct rtnl_link_stats64 */
case QEMU_IFLA_STATS64:
st64 = RTA_DATA(rtattr);
st64->rx_packets = tswap64(st64->rx_packets);
st64->tx_packets = tswap64(st64->tx_packets);
st64->rx_bytes = tswap64(st64->rx_bytes);
st64->tx_bytes = tswap64(st64->tx_bytes);
st64->rx_errors = tswap64(st64->rx_errors);
st64->tx_errors = tswap64(st64->tx_errors);
st64->rx_dropped = tswap64(st64->rx_dropped);
st64->tx_dropped = tswap64(st64->tx_dropped);
st64->multicast = tswap64(st64->multicast);
st64->collisions = tswap64(st64->collisions);
/* detailed rx_errors: */
st64->rx_length_errors = tswap64(st64->rx_length_errors);
st64->rx_over_errors = tswap64(st64->rx_over_errors);
st64->rx_crc_errors = tswap64(st64->rx_crc_errors);
st64->rx_frame_errors = tswap64(st64->rx_frame_errors);
st64->rx_fifo_errors = tswap64(st64->rx_fifo_errors);
st64->rx_missed_errors = tswap64(st64->rx_missed_errors);
/* detailed tx_errors */
st64->tx_aborted_errors = tswap64(st64->tx_aborted_errors);
st64->tx_carrier_errors = tswap64(st64->tx_carrier_errors);
st64->tx_fifo_errors = tswap64(st64->tx_fifo_errors);
st64->tx_heartbeat_errors = tswap64(st64->tx_heartbeat_errors);
st64->tx_window_errors = tswap64(st64->tx_window_errors);
/* for cslip etc */
st64->rx_compressed = tswap64(st64->rx_compressed);
st64->tx_compressed = tswap64(st64->tx_compressed);
break;
/* struct rtnl_link_ifmap */
case QEMU_IFLA_MAP:
map = RTA_DATA(rtattr);
map->mem_start = tswap64(map->mem_start);
map->mem_end = tswap64(map->mem_end);
map->base_addr = tswap64(map->base_addr);
map->irq = tswap16(map->irq);
break;
/* nested */
case QEMU_IFLA_LINKINFO:
memset(&li_context, 0, sizeof(li_context));
return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len,
&li_context,
host_to_target_data_linkinfo_nlattr);
case QEMU_IFLA_AF_SPEC:
return host_to_target_for_each_nlattr(RTA_DATA(rtattr), rtattr->rta_len,
NULL,
host_to_target_data_spec_nlattr);
default:
gemu_log("Unknown host QEMU_IFLA type: %d\n", rtattr->rta_type);
break;
}
return 0;
}
static abi_long host_to_target_data_addr_rtattr(struct rtattr *rtattr)
{
uint32_t *u32;
struct ifa_cacheinfo *ci;
switch (rtattr->rta_type) {
/* binary: depends on family type */
case IFA_ADDRESS:
case IFA_LOCAL:
break;
/* string */
case IFA_LABEL:
break;
/* u32 */
case IFA_FLAGS:
case IFA_BROADCAST:
u32 = RTA_DATA(rtattr);
*u32 = tswap32(*u32);
break;
/* struct ifa_cacheinfo */
case IFA_CACHEINFO:
ci = RTA_DATA(rtattr);
ci->ifa_prefered = tswap32(ci->ifa_prefered);
ci->ifa_valid = tswap32(ci->ifa_valid);
ci->cstamp = tswap32(ci->cstamp);
ci->tstamp = tswap32(ci->tstamp);
break;
default:
gemu_log("Unknown host IFA type: %d\n", rtattr->rta_type);
break;
}
return 0;
}
static abi_long host_to_target_data_route_rtattr(struct rtattr *rtattr)
{
uint32_t *u32;
switch (rtattr->rta_type) {
/* binary: depends on family type */
case RTA_GATEWAY:
case RTA_DST:
case RTA_PREFSRC:
break;
/* u32 */
case RTA_PRIORITY:
case RTA_TABLE:
case RTA_OIF:
u32 = RTA_DATA(rtattr);
*u32 = tswap32(*u32);
break;
default:
gemu_log("Unknown host RTA type: %d\n", rtattr->rta_type);
break;
}
return 0;
}
static abi_long host_to_target_link_rtattr(struct rtattr *rtattr,
uint32_t rtattr_len)
{
return host_to_target_for_each_rtattr(rtattr, rtattr_len,
host_to_target_data_link_rtattr);
}
static abi_long host_to_target_addr_rtattr(struct rtattr *rtattr,
uint32_t rtattr_len)
{
return host_to_target_for_each_rtattr(rtattr, rtattr_len,
host_to_target_data_addr_rtattr);
}
static abi_long host_to_target_route_rtattr(struct rtattr *rtattr,
uint32_t rtattr_len)
{
return host_to_target_for_each_rtattr(rtattr, rtattr_len,
host_to_target_data_route_rtattr);
}
static abi_long host_to_target_data_route(struct nlmsghdr *nlh)
{
uint32_t nlmsg_len;
struct ifinfomsg *ifi;
struct ifaddrmsg *ifa;
struct rtmsg *rtm;
nlmsg_len = nlh->nlmsg_len;
switch (nlh->nlmsg_type) {
case RTM_NEWLINK:
case RTM_DELLINK:
case RTM_GETLINK:
if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) {
ifi = NLMSG_DATA(nlh);
ifi->ifi_type = tswap16(ifi->ifi_type);
ifi->ifi_index = tswap32(ifi->ifi_index);
ifi->ifi_flags = tswap32(ifi->ifi_flags);
ifi->ifi_change = tswap32(ifi->ifi_change);
host_to_target_link_rtattr(IFLA_RTA(ifi),
nlmsg_len - NLMSG_LENGTH(sizeof(*ifi)));
}
break;
case RTM_NEWADDR:
case RTM_DELADDR:
case RTM_GETADDR:
if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) {
ifa = NLMSG_DATA(nlh);
ifa->ifa_index = tswap32(ifa->ifa_index);
host_to_target_addr_rtattr(IFA_RTA(ifa),
nlmsg_len - NLMSG_LENGTH(sizeof(*ifa)));
}
break;
case RTM_NEWROUTE:
case RTM_DELROUTE:
case RTM_GETROUTE:
if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) {
rtm = NLMSG_DATA(nlh);
rtm->rtm_flags = tswap32(rtm->rtm_flags);
host_to_target_route_rtattr(RTM_RTA(rtm),
nlmsg_len - NLMSG_LENGTH(sizeof(*rtm)));
}
break;
default:
return -TARGET_EINVAL;
}
return 0;
}
static inline abi_long host_to_target_nlmsg_route(struct nlmsghdr *nlh,
size_t len)
{
return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_route);
}
static abi_long target_to_host_for_each_rtattr(struct rtattr *rtattr,
size_t len,
abi_long (*target_to_host_rtattr)
(struct rtattr *))
{
abi_long ret;
while (len >= sizeof(struct rtattr)) {
if (tswap16(rtattr->rta_len) < sizeof(struct rtattr) ||
tswap16(rtattr->rta_len) > len) {
break;
}
rtattr->rta_len = tswap16(rtattr->rta_len);
rtattr->rta_type = tswap16(rtattr->rta_type);
ret = target_to_host_rtattr(rtattr);
if (ret < 0) {
return ret;
}
len -= RTA_ALIGN(rtattr->rta_len);
rtattr = (struct rtattr *)(((char *)rtattr) +
RTA_ALIGN(rtattr->rta_len));
}
return 0;
}
static abi_long target_to_host_data_link_rtattr(struct rtattr *rtattr)
{
switch (rtattr->rta_type) {
default:
gemu_log("Unknown target QEMU_IFLA type: %d\n", rtattr->rta_type);
break;
}
return 0;
}
static abi_long target_to_host_data_addr_rtattr(struct rtattr *rtattr)
{
switch (rtattr->rta_type) {
/* binary: depends on family type */
case IFA_LOCAL:
case IFA_ADDRESS:
break;
default:
gemu_log("Unknown target IFA type: %d\n", rtattr->rta_type);
break;
}
return 0;
}
static abi_long target_to_host_data_route_rtattr(struct rtattr *rtattr)
{
uint32_t *u32;
switch (rtattr->rta_type) {
/* binary: depends on family type */
case RTA_DST:
case RTA_SRC:
case RTA_GATEWAY:
break;
/* u32 */
case RTA_PRIORITY:
case RTA_OIF:
u32 = RTA_DATA(rtattr);
*u32 = tswap32(*u32);
break;
default:
gemu_log("Unknown target RTA type: %d\n", rtattr->rta_type);
break;
}
return 0;
}
static void target_to_host_link_rtattr(struct rtattr *rtattr,
uint32_t rtattr_len)
{
target_to_host_for_each_rtattr(rtattr, rtattr_len,
target_to_host_data_link_rtattr);
}
static void target_to_host_addr_rtattr(struct rtattr *rtattr,
uint32_t rtattr_len)
{
target_to_host_for_each_rtattr(rtattr, rtattr_len,
target_to_host_data_addr_rtattr);
}
static void target_to_host_route_rtattr(struct rtattr *rtattr,
uint32_t rtattr_len)
{
target_to_host_for_each_rtattr(rtattr, rtattr_len,
target_to_host_data_route_rtattr);
}
static abi_long target_to_host_data_route(struct nlmsghdr *nlh)
{
struct ifinfomsg *ifi;
struct ifaddrmsg *ifa;
struct rtmsg *rtm;
switch (nlh->nlmsg_type) {
case RTM_GETLINK:
break;
case RTM_NEWLINK:
case RTM_DELLINK:
if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) {
ifi = NLMSG_DATA(nlh);
ifi->ifi_type = tswap16(ifi->ifi_type);
ifi->ifi_index = tswap32(ifi->ifi_index);
ifi->ifi_flags = tswap32(ifi->ifi_flags);
ifi->ifi_change = tswap32(ifi->ifi_change);
target_to_host_link_rtattr(IFLA_RTA(ifi), nlh->nlmsg_len -
NLMSG_LENGTH(sizeof(*ifi)));
}
break;
case RTM_GETADDR:
case RTM_NEWADDR:
case RTM_DELADDR:
if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) {
ifa = NLMSG_DATA(nlh);
ifa->ifa_index = tswap32(ifa->ifa_index);
target_to_host_addr_rtattr(IFA_RTA(ifa), nlh->nlmsg_len -
NLMSG_LENGTH(sizeof(*ifa)));
}
break;
case RTM_GETROUTE:
break;
case RTM_NEWROUTE:
case RTM_DELROUTE:
if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) {
rtm = NLMSG_DATA(nlh);
rtm->rtm_flags = tswap32(rtm->rtm_flags);
target_to_host_route_rtattr(RTM_RTA(rtm), nlh->nlmsg_len -
NLMSG_LENGTH(sizeof(*rtm)));
}
break;
default:
return -TARGET_EOPNOTSUPP;
}
return 0;
}
static abi_long target_to_host_nlmsg_route(struct nlmsghdr *nlh, size_t len)
{
return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_route);
}
#endif /* CONFIG_RTNETLINK */
static abi_long host_to_target_data_audit(struct nlmsghdr *nlh)
{
switch (nlh->nlmsg_type) {
default:
gemu_log("Unknown host audit message type %d\n",
nlh->nlmsg_type);
return -TARGET_EINVAL;
}
return 0;
}
static inline abi_long host_to_target_nlmsg_audit(struct nlmsghdr *nlh,
size_t len)
{
return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_audit);
}
static abi_long target_to_host_data_audit(struct nlmsghdr *nlh)
{
switch (nlh->nlmsg_type) {
case AUDIT_USER:
case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
break;
default:
gemu_log("Unknown target audit message type %d\n",
nlh->nlmsg_type);
return -TARGET_EINVAL;
}
return 0;
}
static abi_long target_to_host_nlmsg_audit(struct nlmsghdr *nlh, size_t len)
{
return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_audit);
}
/* do_setsockopt() Must return target values and target errnos. */
static abi_long do_setsockopt(int sockfd, int level, int optname,
abi_ulong optval_addr, socklen_t optlen)
{
abi_long ret;
int val;
struct ip_mreqn *ip_mreq;
struct ip_mreq_source *ip_mreq_source;
switch(level) {
case SOL_TCP:
/* TCP options all take an 'int' value. */
if (optlen < sizeof(uint32_t))
return -TARGET_EINVAL;
if (get_user_u32(val, optval_addr))
return -TARGET_EFAULT;
ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
break;
case SOL_IP:
switch(optname) {
case IP_TOS:
case IP_TTL:
case IP_HDRINCL:
case IP_ROUTER_ALERT:
case IP_RECVOPTS:
case IP_RETOPTS:
case IP_PKTINFO:
case IP_MTU_DISCOVER:
case IP_RECVERR:
case IP_RECVTTL:
case IP_RECVTOS:
#ifdef IP_FREEBIND
case IP_FREEBIND:
#endif
case IP_MULTICAST_TTL:
case IP_MULTICAST_LOOP:
val = 0;
if (optlen >= sizeof(uint32_t)) {
if (get_user_u32(val, optval_addr))
return -TARGET_EFAULT;
} else if (optlen >= 1) {
if (get_user_u8(val, optval_addr))
return -TARGET_EFAULT;
}
ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
break;
case IP_ADD_MEMBERSHIP:
case IP_DROP_MEMBERSHIP:
if (optlen < sizeof (struct target_ip_mreq) ||
optlen > sizeof (struct target_ip_mreqn))
return -TARGET_EINVAL;
ip_mreq = (struct ip_mreqn *) alloca(optlen);
target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
break;
case IP_BLOCK_SOURCE:
case IP_UNBLOCK_SOURCE:
case IP_ADD_SOURCE_MEMBERSHIP:
case IP_DROP_SOURCE_MEMBERSHIP:
if (optlen != sizeof (struct target_ip_mreq_source))
return -TARGET_EINVAL;
ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
unlock_user (ip_mreq_source, optval_addr, 0);
break;
default:
goto unimplemented;
}
break;
case SOL_IPV6:
switch (optname) {
case IPV6_MTU_DISCOVER:
case IPV6_MTU:
case IPV6_V6ONLY:
case IPV6_RECVPKTINFO:
case IPV6_UNICAST_HOPS:
case IPV6_RECVERR:
case IPV6_RECVHOPLIMIT:
case IPV6_2292HOPLIMIT:
case IPV6_CHECKSUM:
val = 0;
if (optlen < sizeof(uint32_t)) {
return -TARGET_EINVAL;
}
if (get_user_u32(val, optval_addr)) {
return -TARGET_EFAULT;
}
ret = get_errno(setsockopt(sockfd, level, optname,
&val, sizeof(val)));
break;
case IPV6_PKTINFO:
{
struct in6_pktinfo pki;
if (optlen < sizeof(pki)) {
return -TARGET_EINVAL;
}
if (copy_from_user(&pki, optval_addr, sizeof(pki))) {
return -TARGET_EFAULT;
}
pki.ipi6_ifindex = tswap32(pki.ipi6_ifindex);
ret = get_errno(setsockopt(sockfd, level, optname,
&pki, sizeof(pki)));
break;
}
default:
goto unimplemented;
}
break;
case SOL_ICMPV6:
switch (optname) {
case ICMPV6_FILTER:
{
struct icmp6_filter icmp6f;
if (optlen > sizeof(icmp6f)) {
optlen = sizeof(icmp6f);
}
if (copy_from_user(&icmp6f, optval_addr, optlen)) {
return -TARGET_EFAULT;
}
for (val = 0; val < 8; val++) {
icmp6f.data[val] = tswap32(icmp6f.data[val]);
}
ret = get_errno(setsockopt(sockfd, level, optname,
&icmp6f, optlen));
break;
}
default:
goto unimplemented;
}
break;
case SOL_RAW:
switch (optname) {
case ICMP_FILTER:
case IPV6_CHECKSUM:
/* those take an u32 value */
if (optlen < sizeof(uint32_t)) {
return -TARGET_EINVAL;
}
if (get_user_u32(val, optval_addr)) {
return -TARGET_EFAULT;
}
ret = get_errno(setsockopt(sockfd, level, optname,
&val, sizeof(val)));
break;
default:
goto unimplemented;
}
break;
case TARGET_SOL_SOCKET:
switch (optname) {
case TARGET_SO_RCVTIMEO:
{
struct timeval tv;
optname = SO_RCVTIMEO;
set_timeout:
if (optlen != sizeof(struct target_timeval)) {
return -TARGET_EINVAL;
}
if (copy_from_user_timeval(&tv, optval_addr)) {
return -TARGET_EFAULT;
}
ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
&tv, sizeof(tv)));
return ret;
}
case TARGET_SO_SNDTIMEO:
optname = SO_SNDTIMEO;
goto set_timeout;
case TARGET_SO_ATTACH_FILTER:
{
struct target_sock_fprog *tfprog;
struct target_sock_filter *tfilter;
struct sock_fprog fprog;
struct sock_filter *filter;
int i;
if (optlen != sizeof(*tfprog)) {
return -TARGET_EINVAL;
}
if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
return -TARGET_EFAULT;
}
if (!lock_user_struct(VERIFY_READ, tfilter,
tswapal(tfprog->filter), 0)) {
unlock_user_struct(tfprog, optval_addr, 1);
return -TARGET_EFAULT;
}
fprog.len = tswap16(tfprog->len);
filter = g_try_new(struct sock_filter, fprog.len);
if (filter == NULL) {
unlock_user_struct(tfilter, tfprog->filter, 1);
unlock_user_struct(tfprog, optval_addr, 1);
return -TARGET_ENOMEM;
}
for (i = 0; i < fprog.len; i++) {
filter[i].code = tswap16(tfilter[i].code);
filter[i].jt = tfilter[i].jt;
filter[i].jf = tfilter[i].jf;
filter[i].k = tswap32(tfilter[i].k);
}
fprog.filter = filter;
ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
g_free(filter);
unlock_user_struct(tfilter, tfprog->filter, 1);
unlock_user_struct(tfprog, optval_addr, 1);
return ret;
}
case TARGET_SO_BINDTODEVICE:
{
char *dev_ifname, *addr_ifname;
if (optlen > IFNAMSIZ - 1) {
optlen = IFNAMSIZ - 1;
}
dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
if (!dev_ifname) {
return -TARGET_EFAULT;
}
optname = SO_BINDTODEVICE;
addr_ifname = alloca(IFNAMSIZ);
memcpy(addr_ifname, dev_ifname, optlen);
addr_ifname[optlen] = 0;
ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
addr_ifname, optlen));
unlock_user (dev_ifname, optval_addr, 0);
return ret;
}
/* Options with 'int' argument. */
case TARGET_SO_DEBUG:
optname = SO_DEBUG;
break;
case TARGET_SO_REUSEADDR:
optname = SO_REUSEADDR;
break;
case TARGET_SO_TYPE:
optname = SO_TYPE;
break;
case TARGET_SO_ERROR:
optname = SO_ERROR;
break;
case TARGET_SO_DONTROUTE:
optname = SO_DONTROUTE;
break;
case TARGET_SO_BROADCAST:
optname = SO_BROADCAST;
break;
case TARGET_SO_SNDBUF:
optname = SO_SNDBUF;
break;
case TARGET_SO_SNDBUFFORCE:
optname = SO_SNDBUFFORCE;
break;
case TARGET_SO_RCVBUF:
optname = SO_RCVBUF;
break;
case TARGET_SO_RCVBUFFORCE:
optname = SO_RCVBUFFORCE;
break;
case TARGET_SO_KEEPALIVE:
optname = SO_KEEPALIVE;
break;
case TARGET_SO_OOBINLINE:
optname = SO_OOBINLINE;
break;
case TARGET_SO_NO_CHECK:
optname = SO_NO_CHECK;
break;
case TARGET_SO_PRIORITY:
optname = SO_PRIORITY;
break;
#ifdef SO_BSDCOMPAT
case TARGET_SO_BSDCOMPAT:
optname = SO_BSDCOMPAT;
break;
#endif
case TARGET_SO_PASSCRED:
optname = SO_PASSCRED;
break;
case TARGET_SO_PASSSEC:
optname = SO_PASSSEC;
break;
case TARGET_SO_TIMESTAMP:
optname = SO_TIMESTAMP;
break;
case TARGET_SO_RCVLOWAT:
optname = SO_RCVLOWAT;
break;
default:
goto unimplemented;
}
if (optlen < sizeof(uint32_t))
return -TARGET_EINVAL;
if (get_user_u32(val, optval_addr))
return -TARGET_EFAULT;
ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
break;
default:
unimplemented:
gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname);
ret = -TARGET_ENOPROTOOPT;
}
return ret;
}
/* do_getsockopt() Must return target values and target errnos. */
static abi_long do_getsockopt(int sockfd, int level, int optname,
abi_ulong optval_addr, abi_ulong optlen)
{
abi_long ret;
int len, val;
socklen_t lv;
switch(level) {
case TARGET_SOL_SOCKET:
level = SOL_SOCKET;
switch (optname) {
/* These don't just return a single integer */
case TARGET_SO_LINGER:
case TARGET_SO_RCVTIMEO:
case TARGET_SO_SNDTIMEO:
case TARGET_SO_PEERNAME:
goto unimplemented;
case TARGET_SO_PEERCRED: {
struct ucred cr;
socklen_t crlen;
struct target_ucred *tcr;
if (get_user_u32(len, optlen)) {
return -TARGET_EFAULT;
}
if (len < 0) {
return -TARGET_EINVAL;
}
crlen = sizeof(cr);
ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
&cr, &crlen));
if (ret < 0) {
return ret;
}
if (len > crlen) {
len = crlen;
}
if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
return -TARGET_EFAULT;
}
__put_user(cr.pid, &tcr->pid);
__put_user(cr.uid, &tcr->uid);
__put_user(cr.gid, &tcr->gid);
unlock_user_struct(tcr, optval_addr, 1);
if (put_user_u32(len, optlen)) {
return -TARGET_EFAULT;
}
break;
}
/* Options with 'int' argument. */
case TARGET_SO_DEBUG:
optname = SO_DEBUG;
goto int_case;
case TARGET_SO_REUSEADDR:
optname = SO_REUSEADDR;
goto int_case;
case TARGET_SO_TYPE:
optname = SO_TYPE;
goto int_case;
case TARGET_SO_ERROR:
optname = SO_ERROR;
goto int_case;
case TARGET_SO_DONTROUTE:
optname = SO_DONTROUTE;
goto int_case;
case TARGET_SO_BROADCAST:
optname = SO_BROADCAST;
goto int_case;
case TARGET_SO_SNDBUF:
optname = SO_SNDBUF;
goto int_case;
case TARGET_SO_RCVBUF:
optname = SO_RCVBUF;
goto int_case;
case TARGET_SO_KEEPALIVE:
optname = SO_KEEPALIVE;
goto int_case;
case TARGET_SO_OOBINLINE:
optname = SO_OOBINLINE;
goto int_case;
case TARGET_SO_NO_CHECK:
optname = SO_NO_CHECK;
goto int_case;
case TARGET_SO_PRIORITY:
optname = SO_PRIORITY;
goto int_case;
#ifdef SO_BSDCOMPAT
case TARGET_SO_BSDCOMPAT:
optname = SO_BSDCOMPAT;
goto int_case;
#endif
case TARGET_SO_PASSCRED:
optname = SO_PASSCRED;
goto int_case;
case TARGET_SO_TIMESTAMP:
optname = SO_TIMESTAMP;
goto int_case;
case TARGET_SO_RCVLOWAT:
optname = SO_RCVLOWAT;
goto int_case;
case TARGET_SO_ACCEPTCONN:
optname = SO_ACCEPTCONN;
goto int_case;
default:
goto int_case;
}
break;
case SOL_TCP:
/* TCP options all take an 'int' value. */
int_case:
if (get_user_u32(len, optlen))
return -TARGET_EFAULT;
if (len < 0)
return -TARGET_EINVAL;
lv = sizeof(lv);
ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
if (ret < 0)
return ret;
if (optname == SO_TYPE) {
val = host_to_target_sock_type(val);
}
if (len > lv)
len = lv;
if (len == 4) {
if (put_user_u32(val, optval_addr))
return -TARGET_EFAULT;
} else {
if (put_user_u8(val, optval_addr))
return -TARGET_EFAULT;
}
if (put_user_u32(len, optlen))
return -TARGET_EFAULT;
break;
case SOL_IP:
switch(optname) {
case IP_TOS:
case IP_TTL:
case IP_HDRINCL:
case IP_ROUTER_ALERT:
case IP_RECVOPTS:
case IP_RETOPTS:
case IP_PKTINFO:
case IP_MTU_DISCOVER:
case IP_RECVERR:
case IP_RECVTOS:
#ifdef IP_FREEBIND
case IP_FREEBIND:
#endif
case IP_MULTICAST_TTL:
case IP_MULTICAST_LOOP:
if (get_user_u32(len, optlen))
return -TARGET_EFAULT;
if (len < 0)
return -TARGET_EINVAL;
lv = sizeof(lv);
ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
if (ret < 0)
return ret;
if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
len = 1;
if (put_user_u32(len, optlen)
|| put_user_u8(val, optval_addr))
return -TARGET_EFAULT;
} else {
if (len > sizeof(int))
len = sizeof(int);
if (put_user_u32(len, optlen)
|| put_user_u32(val, optval_addr))
return -TARGET_EFAULT;
}
break;
default:
ret = -TARGET_ENOPROTOOPT;
break;
}
break;
default:
unimplemented:
gemu_log("getsockopt level=%d optname=%d not yet supported\n",
level, optname);
ret = -TARGET_EOPNOTSUPP;
break;
}
return ret;
}
static struct iovec *lock_iovec(int type, abi_ulong target_addr,
abi_ulong count, int copy)
{
struct target_iovec *target_vec;
struct iovec *vec;
abi_ulong total_len, max_len;
int i;
int err = 0;
bool bad_address = false;
if (count == 0) {
errno = 0;
return NULL;
}
if (count > IOV_MAX) {
errno = EINVAL;
return NULL;
}
vec = g_try_new0(struct iovec, count);
if (vec == NULL) {
errno = ENOMEM;
return NULL;
}
target_vec = lock_user(VERIFY_READ, target_addr,
count * sizeof(struct target_iovec), 1);
if (target_vec == NULL) {
err = EFAULT;
goto fail2;
}
/* ??? If host page size > target page size, this will result in a
value larger than what we can actually support. */
max_len = 0x7fffffff & TARGET_PAGE_MASK;
total_len = 0;
for (i = 0; i < count; i++) {
abi_ulong base = tswapal(target_vec[i].iov_base);
abi_long len = tswapal(target_vec[i].iov_len);
if (len < 0) {
err = EINVAL;
goto fail;
} else if (len == 0) {
/* Zero length pointer is ignored. */
vec[i].iov_base = 0;
} else {
vec[i].iov_base = lock_user(type, base, len, copy);
/* If the first buffer pointer is bad, this is a fault. But
* subsequent bad buffers will result in a partial write; this
* is realized by filling the vector with null pointers and
* zero lengths. */
if (!vec[i].iov_base) {
if (i == 0) {
err = EFAULT;
goto fail;
} else {
bad_address = true;
}
}
if (bad_address) {
len = 0;
}
if (len > max_len - total_len) {
len = max_len - total_len;
}
}
vec[i].iov_len = len;
total_len += len;
}
unlock_user(target_vec, target_addr, 0);
return vec;
fail:
while (--i >= 0) {
if (tswapal(target_vec[i].iov_len) > 0) {
unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
}
}
unlock_user(target_vec, target_addr, 0);
fail2:
g_free(vec);
errno = err;
return NULL;
}
static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
abi_ulong count, int copy)
{
struct target_iovec *target_vec;
int i;
target_vec = lock_user(VERIFY_READ, target_addr,
count * sizeof(struct target_iovec), 1);
if (target_vec) {
for (i = 0; i < count; i++) {
abi_ulong base = tswapal(target_vec[i].iov_base);
abi_long len = tswapal(target_vec[i].iov_len);
if (len < 0) {
break;
}
unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
}
unlock_user(target_vec, target_addr, 0);
}
g_free(vec);
}
static inline int target_to_host_sock_type(int *type)
{
int host_type = 0;
int target_type = *type;
switch (target_type & TARGET_SOCK_TYPE_MASK) {
case TARGET_SOCK_DGRAM:
host_type = SOCK_DGRAM;
break;
case TARGET_SOCK_STREAM:
host_type = SOCK_STREAM;
break;
default:
host_type = target_type & TARGET_SOCK_TYPE_MASK;
break;
}
if (target_type & TARGET_SOCK_CLOEXEC) {
#if defined(SOCK_CLOEXEC)
host_type |= SOCK_CLOEXEC;
#else
return -TARGET_EINVAL;
#endif
}
if (target_type & TARGET_SOCK_NONBLOCK) {
#if defined(SOCK_NONBLOCK)
host_type |= SOCK_NONBLOCK;
#elif !defined(O_NONBLOCK)
return -TARGET_EINVAL;
#endif
}
*type = host_type;
return 0;
}
/* Try to emulate socket type flags after socket creation. */
static int sock_flags_fixup(int fd, int target_type)
{
#if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
if (target_type & TARGET_SOCK_NONBLOCK) {
int flags = fcntl(fd, F_GETFL);
if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
close(fd);
return -TARGET_EINVAL;
}
}
#endif
return fd;
}
static abi_long packet_target_to_host_sockaddr(void *host_addr,
abi_ulong target_addr,
socklen_t len)
{
struct sockaddr *addr = host_addr;
struct target_sockaddr *target_saddr;
target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
if (!target_saddr) {
return -TARGET_EFAULT;
}
memcpy(addr, target_saddr, len);
addr->sa_family = tswap16(target_saddr->sa_family);
/* spkt_protocol is big-endian */
unlock_user(target_saddr, target_addr, 0);
return 0;
}
static TargetFdTrans target_packet_trans = {
.target_to_host_addr = packet_target_to_host_sockaddr,
};
#ifdef CONFIG_RTNETLINK
static abi_long netlink_route_target_to_host(void *buf, size_t len)
{
abi_long ret;
ret = target_to_host_nlmsg_route(buf, len);
if (ret < 0) {
return ret;
}
return len;
}
static abi_long netlink_route_host_to_target(void *buf, size_t len)
{
abi_long ret;
ret = host_to_target_nlmsg_route(buf, len);
if (ret < 0) {
return ret;
}
return len;
}
static TargetFdTrans target_netlink_route_trans = {
.target_to_host_data = netlink_route_target_to_host,
.host_to_target_data = netlink_route_host_to_target,
};
#endif /* CONFIG_RTNETLINK */
static abi_long netlink_audit_target_to_host(void *buf, size_t len)
{
abi_long ret;
ret = target_to_host_nlmsg_audit(buf, len);
if (ret < 0) {
return ret;
}
return len;
}
static abi_long netlink_audit_host_to_target(void *buf, size_t len)
{
abi_long ret;
ret = host_to_target_nlmsg_audit(buf, len);
if (ret < 0) {
return ret;
}
return len;
}
static TargetFdTrans target_netlink_audit_trans = {
.target_to_host_data = netlink_audit_target_to_host,
.host_to_target_data = netlink_audit_host_to_target,
};
/* do_socket() Must return target values and target errnos. */
static abi_long do_socket(int domain, int type, int protocol)
{
int target_type = type;
int ret;
ret = target_to_host_sock_type(&type);
if (ret) {
return ret;
}
if (domain == PF_NETLINK && !(
#ifdef CONFIG_RTNETLINK
protocol == NETLINK_ROUTE ||
#endif
protocol == NETLINK_KOBJECT_UEVENT ||
protocol == NETLINK_AUDIT)) {
return -EPFNOSUPPORT;
}
if (domain == AF_PACKET ||
(domain == AF_INET && type == SOCK_PACKET)) {
protocol = tswap16(protocol);
}
ret = get_errno(socket(domain, type, protocol));
if (ret >= 0) {
ret = sock_flags_fixup(ret, target_type);
if (type == SOCK_PACKET) {
/* Manage an obsolete case :
* if socket type is SOCK_PACKET, bind by name
*/
fd_trans_register(ret, &target_packet_trans);
} else if (domain == PF_NETLINK) {
switch (protocol) {
#ifdef CONFIG_RTNETLINK
case NETLINK_ROUTE:
fd_trans_register(ret, &target_netlink_route_trans);
break;
#endif
case NETLINK_KOBJECT_UEVENT:
/* nothing to do: messages are strings */
break;
case NETLINK_AUDIT:
fd_trans_register(ret, &target_netlink_audit_trans);
break;
default:
g_assert_not_reached();
}
}
}
return ret;
}
/* do_bind() Must return target values and target errnos. */
static abi_long do_bind(int sockfd, abi_ulong target_addr,
socklen_t addrlen)
{
void *addr;
abi_long ret;
if ((int)addrlen < 0) {
return -TARGET_EINVAL;
}
addr = alloca(addrlen+1);
ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
if (ret)
return ret;
return get_errno(bind(sockfd, addr, addrlen));
}
/* do_connect() Must return target values and target errnos. */
static abi_long do_connect(int sockfd, abi_ulong target_addr,
socklen_t addrlen)
{
void *addr;
abi_long ret;
if ((int)addrlen < 0) {
return -TARGET_EINVAL;
}
addr = alloca(addrlen+1);
ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
if (ret)
return ret;
return get_errno(safe_connect(sockfd, addr, addrlen));
}
/* do_sendrecvmsg_locked() Must return target values and target errnos. */
static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
int flags, int send)
{
abi_long ret, len;
struct msghdr msg;
abi_ulong count;
struct iovec *vec;
abi_ulong target_vec;
if (msgp->msg_name) {
msg.msg_namelen = tswap32(msgp->msg_namelen);
msg.msg_name = alloca(msg.msg_namelen+1);
ret = target_to_host_sockaddr(fd, msg.msg_name,
tswapal(msgp->msg_name),
msg.msg_namelen);
if (ret == -TARGET_EFAULT) {
/* For connected sockets msg_name and msg_namelen must
* be ignored, so returning EFAULT immediately is wrong.
* Instead, pass a bad msg_name to the host kernel, and
* let it decide whether to return EFAULT or not.
*/
msg.msg_name = (void *)-1;
} else if (ret) {
goto out2;
}
} else {
msg.msg_name = NULL;
msg.msg_namelen = 0;
}
msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
msg.msg_control = alloca(msg.msg_controllen);
msg.msg_flags = tswap32(msgp->msg_flags);
count = tswapal(msgp->msg_iovlen);
target_vec = tswapal(msgp->msg_iov);
if (count > IOV_MAX) {
/* sendrcvmsg returns a different errno for this condition than
* readv/writev, so we must catch it here before lock_iovec() does.
*/
ret = -TARGET_EMSGSIZE;
goto out2;
}
vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
target_vec, count, send);
if (vec == NULL) {
ret = -host_to_target_errno(errno);
goto out2;
}
msg.msg_iovlen = count;
msg.msg_iov = vec;
if (send) {
if (fd_trans_target_to_host_data(fd)) {
void *host_msg;
host_msg = g_malloc(msg.msg_iov->iov_len);
memcpy(host_msg, msg.msg_iov->iov_base, msg.msg_iov->iov_len);
ret = fd_trans_target_to_host_data(fd)(host_msg,
msg.msg_iov->iov_len);
if (ret >= 0) {
msg.msg_iov->iov_base = host_msg;
ret = get_errno(safe_sendmsg(fd, &msg, flags));
}
g_free(host_msg);
} else {
ret = target_to_host_cmsg(&msg, msgp);
if (ret == 0) {
ret = get_errno(safe_sendmsg(fd, &msg, flags));
}
}
} else {
ret = get_errno(safe_recvmsg(fd, &msg, flags));
if (!is_error(ret)) {
len = ret;
if (fd_trans_host_to_target_data(fd)) {
ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
len);
} else {
ret = host_to_target_cmsg(msgp, &msg);
}
if (!is_error(ret)) {
msgp->msg_namelen = tswap32(msg.msg_namelen);
if (msg.msg_name != NULL && msg.msg_name != (void *)-1) {
ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
msg.msg_name, msg.msg_namelen);
if (ret) {
goto out;
}
}
ret = len;
}
}
}
out:
unlock_iovec(vec, target_vec, count, !send);
out2:
return ret;
}
static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
int flags, int send)
{
abi_long ret;
struct target_msghdr *msgp;
if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
msgp,
target_msg,
send ? 1 : 0)) {
return -TARGET_EFAULT;
}
ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
unlock_user_struct(msgp, target_msg, send ? 0 : 1);
return ret;
}
/* We don't rely on the C library to have sendmmsg/recvmmsg support,
* so it might not have this *mmsg-specific flag either.
*/
#ifndef MSG_WAITFORONE
#define MSG_WAITFORONE 0x10000
#endif
static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
unsigned int vlen, unsigned int flags,
int send)
{
struct target_mmsghdr *mmsgp;
abi_long ret = 0;
int i;
if (vlen > UIO_MAXIOV) {
vlen = UIO_MAXIOV;
}
mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
if (!mmsgp) {
return -TARGET_EFAULT;
}
for (i = 0; i < vlen; i++) {
ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
if (is_error(ret)) {
break;
}
mmsgp[i].msg_len = tswap32(ret);
/* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
if (flags & MSG_WAITFORONE) {
flags |= MSG_DONTWAIT;
}
}
unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
/* Return number of datagrams sent if we sent any at all;
* otherwise return the error.
*/
if (i) {
return i;
}
return ret;
}
/* do_accept4() Must return target values and target errnos. */
static abi_long do_accept4(int fd, abi_ulong target_addr,
abi_ulong target_addrlen_addr, int flags)
{
socklen_t addrlen;
void *addr;
abi_long ret;
int host_flags;
host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
if (target_addr == 0) {
return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
}
/* linux returns EINVAL if addrlen pointer is invalid */
if (get_user_u32(addrlen, target_addrlen_addr))
return -TARGET_EINVAL;
if ((int)addrlen < 0) {
return -TARGET_EINVAL;
}
if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
return -TARGET_EINVAL;
addr = alloca(addrlen);
ret = get_errno(safe_accept4(fd, addr, &addrlen, host_flags));
if (!is_error(ret)) {
host_to_target_sockaddr(target_addr, addr, addrlen);
if (put_user_u32(addrlen, target_addrlen_addr))
ret = -TARGET_EFAULT;
}
return ret;
}
/* do_getpeername() Must return target values and target errnos. */
static abi_long do_getpeername(int fd, abi_ulong target_addr,
abi_ulong target_addrlen_addr)
{
socklen_t addrlen;
void *addr;
abi_long ret;
if (get_user_u32(addrlen, target_addrlen_addr))
return -TARGET_EFAULT;
if ((int)addrlen < 0) {
return -TARGET_EINVAL;
}
if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
return -TARGET_EFAULT;
addr = alloca(addrlen);
ret = get_errno(getpeername(fd, addr, &addrlen));
if (!is_error(ret)) {
host_to_target_sockaddr(target_addr, addr, addrlen);
if (put_user_u32(addrlen, target_addrlen_addr))
ret = -TARGET_EFAULT;
}
return ret;
}
/* do_getsockname() Must return target values and target errnos. */
static abi_long do_getsockname(int fd, abi_ulong target_addr,
abi_ulong target_addrlen_addr)
{
socklen_t addrlen;
void *addr;
abi_long ret;
if (get_user_u32(addrlen, target_addrlen_addr))
return -TARGET_EFAULT;
if ((int)addrlen < 0) {
return -TARGET_EINVAL;
}
if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
return -TARGET_EFAULT;
addr = alloca(addrlen);
ret = get_errno(getsockname(fd, addr, &addrlen));
if (!is_error(ret)) {
host_to_target_sockaddr(target_addr, addr, addrlen);
if (put_user_u32(addrlen, target_addrlen_addr))
ret = -TARGET_EFAULT;
}
return ret;
}
/* do_socketpair() Must return target values and target errnos. */
static abi_long do_socketpair(int domain, int type, int protocol,
abi_ulong target_tab_addr)
{
int tab[2];
abi_long ret;
target_to_host_sock_type(&type);
ret = get_errno(socketpair(domain, type, protocol, tab));
if (!is_error(ret)) {
if (put_user_s32(tab[0], target_tab_addr)
|| put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
ret = -TARGET_EFAULT;
}
return ret;
}
/* do_sendto() Must return target values and target errnos. */
static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
abi_ulong target_addr, socklen_t addrlen)
{
void *addr;
void *host_msg;
void *copy_msg = NULL;
abi_long ret;
if ((int)addrlen < 0) {
return -TARGET_EINVAL;
}
host_msg = lock_user(VERIFY_READ, msg, len, 1);
if (!host_msg)
return -TARGET_EFAULT;
if (fd_trans_target_to_host_data(fd)) {
copy_msg = host_msg;
host_msg = g_malloc(len);
memcpy(host_msg, copy_msg, len);
ret = fd_trans_target_to_host_data(fd)(host_msg, len);
if (ret < 0) {
goto fail;
}
}
if (target_addr) {
addr = alloca(addrlen+1);
ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
if (ret) {
goto fail;
}
ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
} else {
ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
}
fail:
if (copy_msg) {
g_free(host_msg);
host_msg = copy_msg;
}
unlock_user(host_msg, msg, 0);
return ret;
}
/* do_recvfrom() Must return target values and target errnos. */
static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
abi_ulong target_addr,
abi_ulong target_addrlen)
{
socklen_t addrlen;
void *addr;
void *host_msg;
abi_long ret;
host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
if (!host_msg)
return -TARGET_EFAULT;
if (target_addr) {
if (get_user_u32(addrlen, target_addrlen)) {
ret = -TARGET_EFAULT;
goto fail;
}
if ((int)addrlen < 0) {
ret = -TARGET_EINVAL;
goto fail;
}
addr = alloca(addrlen);
ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
addr, &addrlen));
} else {
addr = NULL; /* To keep compiler quiet. */
ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
}
if (!is_error(ret)) {
if (fd_trans_host_to_target_data(fd)) {
ret = fd_trans_host_to_target_data(fd)(host_msg, ret);
}
if (target_addr) {
host_to_target_sockaddr(target_addr, addr, addrlen);
if (put_user_u32(addrlen, target_addrlen)) {
ret = -TARGET_EFAULT;
goto fail;
}
}
unlock_user(host_msg, msg, len);
} else {
fail:
unlock_user(host_msg, msg, 0);
}
return ret;
}
#ifdef TARGET_NR_socketcall
/* do_socketcall() must return target values and target errnos. */
static abi_long do_socketcall(int num, abi_ulong vptr)
{
static const unsigned nargs[] = { /* number of arguments per operation */
[TARGET_SYS_SOCKET] = 3, /* domain, type, protocol */
[TARGET_SYS_BIND] = 3, /* fd, addr, addrlen */
[TARGET_SYS_CONNECT] = 3, /* fd, addr, addrlen */
[TARGET_SYS_LISTEN] = 2, /* fd, backlog */
[TARGET_SYS_ACCEPT] = 3, /* fd, addr, addrlen */
[TARGET_SYS_GETSOCKNAME] = 3, /* fd, addr, addrlen */
[TARGET_SYS_GETPEERNAME] = 3, /* fd, addr, addrlen */
[TARGET_SYS_SOCKETPAIR] = 4, /* domain, type, protocol, tab */
[TARGET_SYS_SEND] = 4, /* fd, msg, len, flags */
[TARGET_SYS_RECV] = 4, /* fd, msg, len, flags */
[TARGET_SYS_SENDTO] = 6, /* fd, msg, len, flags, addr, addrlen */
[TARGET_SYS_RECVFROM] = 6, /* fd, msg, len, flags, addr, addrlen */
[TARGET_SYS_SHUTDOWN] = 2, /* fd, how */
[TARGET_SYS_SETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
[TARGET_SYS_GETSOCKOPT] = 5, /* fd, level, optname, optval, optlen */
[TARGET_SYS_SENDMSG] = 3, /* fd, msg, flags */
[TARGET_SYS_RECVMSG] = 3, /* fd, msg, flags */
[TARGET_SYS_ACCEPT4] = 4, /* fd, addr, addrlen, flags */
[TARGET_SYS_RECVMMSG] = 4, /* fd, msgvec, vlen, flags */
[TARGET_SYS_SENDMMSG] = 4, /* fd, msgvec, vlen, flags */
};
abi_long a[6]; /* max 6 args */
unsigned i;
/* check the range of the first argument num */
/* (TARGET_SYS_SENDMMSG is the highest among TARGET_SYS_xxx) */
if (num < 1 || num > TARGET_SYS_SENDMMSG) {
return -TARGET_EINVAL;
}
/* ensure we have space for args */
if (nargs[num] > ARRAY_SIZE(a)) {
return -TARGET_EINVAL;
}
/* collect the arguments in a[] according to nargs[] */
for (i = 0; i < nargs[num]; ++i) {
if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
return -TARGET_EFAULT;
}
}
/* now when we have the args, invoke the appropriate underlying function */
switch (num) {
case TARGET_SYS_SOCKET: /* domain, type, protocol */
return do_socket(a[0], a[1], a[2]);
case TARGET_SYS_BIND: /* sockfd, addr, addrlen */
return do_bind(a[0], a[1], a[2]);
case TARGET_SYS_CONNECT: /* sockfd, addr, addrlen */
return do_connect(a[0], a[1], a[2]);
case TARGET_SYS_LISTEN: /* sockfd, backlog */
return get_errno(listen(a[0], a[1]));
case TARGET_SYS_ACCEPT: /* sockfd, addr, addrlen */
return do_accept4(a[0], a[1], a[2], 0);
case TARGET_SYS_GETSOCKNAME: /* sockfd, addr, addrlen */
return do_getsockname(a[0], a[1], a[2]);
case TARGET_SYS_GETPEERNAME: /* sockfd, addr, addrlen */
return do_getpeername(a[0], a[1], a[2]);
case TARGET_SYS_SOCKETPAIR: /* domain, type, protocol, tab */
return do_socketpair(a[0], a[1], a[2], a[3]);
case TARGET_SYS_SEND: /* sockfd, msg, len, flags */
return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
case TARGET_SYS_RECV: /* sockfd, msg, len, flags */
return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
case TARGET_SYS_SENDTO: /* sockfd, msg, len, flags, addr, addrlen */
return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
case TARGET_SYS_RECVFROM: /* sockfd, msg, len, flags, addr, addrlen */
return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
case TARGET_SYS_SHUTDOWN: /* sockfd, how */
return get_errno(shutdown(a[0], a[1]));
case TARGET_SYS_SETSOCKOPT: /* sockfd, level, optname, optval, optlen */
return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
case TARGET_SYS_GETSOCKOPT: /* sockfd, level, optname, optval, optlen */
return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
case TARGET_SYS_SENDMSG: /* sockfd, msg, flags */
return do_sendrecvmsg(a[0], a[1], a[2], 1);
case TARGET_SYS_RECVMSG: /* sockfd, msg, flags */
return do_sendrecvmsg(a[0], a[1], a[2], 0);
case TARGET_SYS_ACCEPT4: /* sockfd, addr, addrlen, flags */
return do_accept4(a[0], a[1], a[2], a[3]);
case TARGET_SYS_RECVMMSG: /* sockfd, msgvec, vlen, flags */
return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
case TARGET_SYS_SENDMMSG: /* sockfd, msgvec, vlen, flags */
return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
default:
gemu_log("Unsupported socketcall: %d\n", num);
return -TARGET_EINVAL;
}
}
#endif
#define N_SHM_REGIONS 32
static struct shm_region {
abi_ulong start;
abi_ulong size;
bool in_use;
} shm_regions[N_SHM_REGIONS];
#ifndef TARGET_SEMID64_DS
/* asm-generic version of this struct */
struct target_semid64_ds
{
struct target_ipc_perm sem_perm;
abi_ulong sem_otime;
#if TARGET_ABI_BITS == 32
abi_ulong __unused1;
#endif
abi_ulong sem_ctime;
#if TARGET_ABI_BITS == 32
abi_ulong __unused2;
#endif
abi_ulong sem_nsems;
abi_ulong __unused3;
abi_ulong __unused4;
};
#endif
static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
abi_ulong target_addr)
{
struct target_ipc_perm *target_ip;
struct target_semid64_ds *target_sd;
if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
return -TARGET_EFAULT;
target_ip = &(target_sd->sem_perm);
host_ip->__key = tswap32(target_ip->__key);
host_ip->uid = tswap32(target_ip->uid);
host_ip->gid = tswap32(target_ip->gid);
host_ip->cuid = tswap32(target_ip->cuid);
host_ip->cgid = tswap32(target_ip->cgid);
#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
host_ip->mode = tswap32(target_ip->mode);
#else
host_ip->mode = tswap16(target_ip->mode);
#endif
#if defined(TARGET_PPC)
host_ip->__seq = tswap32(target_ip->__seq);
#else
host_ip->__seq = tswap16(target_ip->__seq);
#endif
unlock_user_struct(target_sd, target_addr, 0);
return 0;
}
static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
struct ipc_perm *host_ip)
{
struct target_ipc_perm *target_ip;
struct target_semid64_ds *target_sd;
if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
return -TARGET_EFAULT;
target_ip = &(target_sd->sem_perm);
target_ip->__key = tswap32(host_ip->__key);
target_ip->uid = tswap32(host_ip->uid);
target_ip->gid = tswap32(host_ip->gid);
target_ip->cuid = tswap32(host_ip->cuid);
target_ip->cgid = tswap32(host_ip->cgid);
#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
target_ip->mode = tswap32(host_ip->mode);
#else
target_ip->mode = tswap16(host_ip->mode);
#endif
#if defined(TARGET_PPC)
target_ip->__seq = tswap32(host_ip->__seq);
#else
target_ip->__seq = tswap16(host_ip->__seq);
#endif
unlock_user_struct(target_sd, target_addr, 1);
return 0;
}
static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
abi_ulong target_addr)
{
struct target_semid64_ds *target_sd;
if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
return -TARGET_EFAULT;
if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
return -TARGET_EFAULT;
host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
host_sd->sem_otime = tswapal(target_sd->sem_otime);
host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
unlock_user_struct(target_sd, target_addr, 0);
return 0;
}
static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
struct semid_ds *host_sd)
{
struct target_semid64_ds *target_sd;
if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
return -TARGET_EFAULT;
if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
return -TARGET_EFAULT;
target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
target_sd->sem_otime = tswapal(host_sd->sem_otime);
target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
unlock_user_struct(target_sd, target_addr, 1);
return 0;
}
struct target_seminfo {
int semmap;
int semmni;
int semmns;
int semmnu;
int semmsl;
int semopm;
int semume;
int semusz;
int semvmx;
int semaem;
};
static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
struct seminfo *host_seminfo)
{
struct target_seminfo *target_seminfo;
if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
return -TARGET_EFAULT;
__put_user(host_seminfo->semmap, &target_seminfo->semmap);
__put_user(host_seminfo->semmni, &target_seminfo->semmni);
__put_user(host_seminfo->semmns, &target_seminfo->semmns);
__put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
__put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
__put_user(host_seminfo->semopm, &target_seminfo->semopm);
__put_user(host_seminfo->semume, &target_seminfo->semume);
__put_user(host_seminfo->semusz, &target_seminfo->semusz);
__put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
__put_user(host_seminfo->semaem, &target_seminfo->semaem);
unlock_user_struct(target_seminfo, target_addr, 1);
return 0;
}
union semun {
int val;
struct semid_ds *buf;
unsigned short *array;
struct seminfo *__buf;
};
union target_semun {
int val;
abi_ulong buf;
abi_ulong array;
abi_ulong __buf;
};
static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
abi_ulong target_addr)
{
int nsems;
unsigned short *array;
union semun semun;
struct semid_ds semid_ds;
int i, ret;
semun.buf = &semid_ds;
ret = semctl(semid, 0, IPC_STAT, semun);
if (ret == -1)
return get_errno(ret);
nsems = semid_ds.sem_nsems;
*host_array = g_try_new(unsigned short, nsems);
if (!*host_array) {
return -TARGET_ENOMEM;
}
array = lock_user(VERIFY_READ, target_addr,
nsems*sizeof(unsigned short), 1);
if (!array) {
g_free(*host_array);
return -TARGET_EFAULT;
}
for(i=0; imsg_perm),target_addr))
return -TARGET_EFAULT;
host_md->msg_stime = tswapal(target_md->msg_stime);
host_md->msg_rtime = tswapal(target_md->msg_rtime);
host_md->msg_ctime = tswapal(target_md->msg_ctime);
host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
host_md->msg_qnum = tswapal(target_md->msg_qnum);
host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
host_md->msg_lspid = tswapal(target_md->msg_lspid);
host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
unlock_user_struct(target_md, target_addr, 0);
return 0;
}
static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
struct msqid_ds *host_md)
{
struct target_msqid_ds *target_md;
if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
return -TARGET_EFAULT;
if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
return -TARGET_EFAULT;
target_md->msg_stime = tswapal(host_md->msg_stime);
target_md->msg_rtime = tswapal(host_md->msg_rtime);
target_md->msg_ctime = tswapal(host_md->msg_ctime);
target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
target_md->msg_qnum = tswapal(host_md->msg_qnum);
target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
target_md->msg_lspid = tswapal(host_md->msg_lspid);
target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
unlock_user_struct(target_md, target_addr, 1);
return 0;
}
struct target_msginfo {
int msgpool;
int msgmap;
int msgmax;
int msgmnb;
int msgmni;
int msgssz;
int msgtql;
unsigned short int msgseg;
};
static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
struct msginfo *host_msginfo)
{
struct target_msginfo *target_msginfo;
if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
return -TARGET_EFAULT;
__put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
__put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
__put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
__put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
__put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
__put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
__put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
__put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
unlock_user_struct(target_msginfo, target_addr, 1);
return 0;
}
static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
{
struct msqid_ds dsarg;
struct msginfo msginfo;
abi_long ret = -TARGET_EINVAL;
cmd &= 0xff;
switch (cmd) {
case IPC_STAT:
case IPC_SET:
case MSG_STAT:
if (target_to_host_msqid_ds(&dsarg,ptr))
return -TARGET_EFAULT;
ret = get_errno(msgctl(msgid, cmd, &dsarg));
if (host_to_target_msqid_ds(ptr,&dsarg))
return -TARGET_EFAULT;
break;
case IPC_RMID:
ret = get_errno(msgctl(msgid, cmd, NULL));
break;
case IPC_INFO:
case MSG_INFO:
ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
if (host_to_target_msginfo(ptr, &msginfo))
return -TARGET_EFAULT;
break;
}
return ret;
}
struct target_msgbuf {
abi_long mtype;
char mtext[1];
};
static inline abi_long do_msgsnd(int msqid, abi_long msgp,
ssize_t msgsz, int msgflg)
{
struct target_msgbuf *target_mb;
struct msgbuf *host_mb;
abi_long ret = 0;
if (msgsz < 0) {
return -TARGET_EINVAL;
}
if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
return -TARGET_EFAULT;
host_mb = g_try_malloc(msgsz + sizeof(long));
if (!host_mb) {
unlock_user_struct(target_mb, msgp, 0);
return -TARGET_ENOMEM;
}
host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
memcpy(host_mb->mtext, target_mb->mtext, msgsz);
ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
g_free(host_mb);
unlock_user_struct(target_mb, msgp, 0);
return ret;
}
static inline abi_long do_msgrcv(int msqid, abi_long msgp,
ssize_t msgsz, abi_long msgtyp,
int msgflg)
{
struct target_msgbuf *target_mb;
char *target_mtext;
struct msgbuf *host_mb;
abi_long ret = 0;
if (msgsz < 0) {
return -TARGET_EINVAL;
}
if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
return -TARGET_EFAULT;
host_mb = g_try_malloc(msgsz + sizeof(long));
if (!host_mb) {
ret = -TARGET_ENOMEM;
goto end;
}
ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
if (ret > 0) {
abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
if (!target_mtext) {
ret = -TARGET_EFAULT;
goto end;
}
memcpy(target_mb->mtext, host_mb->mtext, ret);
unlock_user(target_mtext, target_mtext_addr, ret);
}
target_mb->mtype = tswapal(host_mb->mtype);
end:
if (target_mb)
unlock_user_struct(target_mb, msgp, 1);
g_free(host_mb);
return ret;
}
static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
abi_ulong target_addr)
{
struct target_shmid_ds *target_sd;
if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
return -TARGET_EFAULT;
if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
return -TARGET_EFAULT;
__get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
__get_user(host_sd->shm_atime, &target_sd->shm_atime);
__get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
__get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
__get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
__get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
__get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
unlock_user_struct(target_sd, target_addr, 0);
return 0;
}
static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
struct shmid_ds *host_sd)
{
struct target_shmid_ds *target_sd;
if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
return -TARGET_EFAULT;
if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
return -TARGET_EFAULT;
__put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
__put_user(host_sd->shm_atime, &target_sd->shm_atime);
__put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
__put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
__put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
__put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
__put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
unlock_user_struct(target_sd, target_addr, 1);
return 0;
}
struct target_shminfo {
abi_ulong shmmax;
abi_ulong shmmin;
abi_ulong shmmni;
abi_ulong shmseg;
abi_ulong shmall;
};
static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
struct shminfo *host_shminfo)
{
struct target_shminfo *target_shminfo;
if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
return -TARGET_EFAULT;
__put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
__put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
__put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
__put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
__put_user(host_shminfo->shmall, &target_shminfo->shmall);
unlock_user_struct(target_shminfo, target_addr, 1);
return 0;
}
struct target_shm_info {
int used_ids;
abi_ulong shm_tot;
abi_ulong shm_rss;
abi_ulong shm_swp;
abi_ulong swap_attempts;
abi_ulong swap_successes;
};
static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
struct shm_info *host_shm_info)
{
struct target_shm_info *target_shm_info;
if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
return -TARGET_EFAULT;
__put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
__put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
__put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
__put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
__put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
__put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
unlock_user_struct(target_shm_info, target_addr, 1);
return 0;
}
static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
{
struct shmid_ds dsarg;
struct shminfo shminfo;
struct shm_info shm_info;
abi_long ret = -TARGET_EINVAL;
cmd &= 0xff;
switch(cmd) {
case IPC_STAT:
case IPC_SET:
case SHM_STAT:
if (target_to_host_shmid_ds(&dsarg, buf))
return -TARGET_EFAULT;
ret = get_errno(shmctl(shmid, cmd, &dsarg));
if (host_to_target_shmid_ds(buf, &dsarg))
return -TARGET_EFAULT;
break;
case IPC_INFO:
ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
if (host_to_target_shminfo(buf, &shminfo))
return -TARGET_EFAULT;
break;
case SHM_INFO:
ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
if (host_to_target_shm_info(buf, &shm_info))
return -TARGET_EFAULT;
break;
case IPC_RMID:
case SHM_LOCK:
case SHM_UNLOCK:
ret = get_errno(shmctl(shmid, cmd, NULL));
break;
}
return ret;
}
#ifndef TARGET_FORCE_SHMLBA
/* For most architectures, SHMLBA is the same as the page size;
* some architectures have larger values, in which case they should
* define TARGET_FORCE_SHMLBA and provide a target_shmlba() function.
* This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA
* and defining its own value for SHMLBA.
*
* The kernel also permits SHMLBA to be set by the architecture to a
* value larger than the page size without setting __ARCH_FORCE_SHMLBA;
* this means that addresses are rounded to the large size if
* SHM_RND is set but addresses not aligned to that size are not rejected
* as long as they are at least page-aligned. Since the only architecture
* which uses this is ia64 this code doesn't provide for that oddity.
*/
static inline abi_ulong target_shmlba(CPUArchState *cpu_env)
{
return TARGET_PAGE_SIZE;
}
#endif
static inline abi_ulong do_shmat(CPUArchState *cpu_env,
int shmid, abi_ulong shmaddr, int shmflg)
{
abi_long raddr;
void *host_raddr;
struct shmid_ds shm_info;
int i,ret;
abi_ulong shmlba;
/* find out the length of the shared memory segment */
ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
if (is_error(ret)) {
/* can't get length, bail out */
return ret;
}
shmlba = target_shmlba(cpu_env);
if (shmaddr & (shmlba - 1)) {
if (shmflg & SHM_RND) {
shmaddr &= ~(shmlba - 1);
} else {
return -TARGET_EINVAL;
}
}
mmap_lock();
if (shmaddr)
host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg);
else {
abi_ulong mmap_start;
mmap_start = mmap_find_vma(0, shm_info.shm_segsz);
if (mmap_start == -1) {
errno = ENOMEM;
host_raddr = (void *)-1;
} else
host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP);
}
if (host_raddr == (void *)-1) {
mmap_unlock();
return get_errno((long)host_raddr);
}
raddr=h2g((unsigned long)host_raddr);
page_set_flags(raddr, raddr + shm_info.shm_segsz,
PAGE_VALID | PAGE_READ |
((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE));
for (i = 0; i < N_SHM_REGIONS; i++) {
if (!shm_regions[i].in_use) {
shm_regions[i].in_use = true;
shm_regions[i].start = raddr;
shm_regions[i].size = shm_info.shm_segsz;
break;
}
}
mmap_unlock();
return raddr;
}
static inline abi_long do_shmdt(abi_ulong shmaddr)
{
int i;
for (i = 0; i < N_SHM_REGIONS; ++i) {
if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
shm_regions[i].in_use = false;
page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
break;
}
}
return get_errno(shmdt(g2h(shmaddr)));
}
#ifdef TARGET_NR_ipc
/* ??? This only works with linear mappings. */
/* do_ipc() must return target values and target errnos. */
static abi_long do_ipc(CPUArchState *cpu_env,
unsigned int call, abi_long first,
abi_long second, abi_long third,
abi_long ptr, abi_long fifth)
{
int version;
abi_long ret = 0;
version = call >> 16;
call &= 0xffff;
switch (call) {
case IPCOP_semop:
ret = do_semop(first, ptr, second);
break;
case IPCOP_semget:
ret = get_errno(semget(first, second, third));
break;
case IPCOP_semctl: {
/* The semun argument to semctl is passed by value, so dereference the
* ptr argument. */
abi_ulong atptr;
get_user_ual(atptr, ptr);
ret = do_semctl(first, second, third, atptr);
break;
}
case IPCOP_msgget:
ret = get_errno(msgget(first, second));
break;
case IPCOP_msgsnd:
ret = do_msgsnd(first, ptr, second, third);
break;
case IPCOP_msgctl:
ret = do_msgctl(first, second, ptr);
break;
case IPCOP_msgrcv:
switch (version) {
case 0:
{
struct target_ipc_kludge {
abi_long msgp;
abi_long msgtyp;
} *tmp;
if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
ret = -TARGET_EFAULT;
break;
}
ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
unlock_user_struct(tmp, ptr, 0);
break;
}
default:
ret = do_msgrcv(first, ptr, second, fifth, third);
}
break;
case IPCOP_shmat:
switch (version) {
default:
{
abi_ulong raddr;
raddr = do_shmat(cpu_env, first, ptr, second);
if (is_error(raddr))
return get_errno(raddr);
if (put_user_ual(raddr, third))
return -TARGET_EFAULT;
break;
}
case 1:
ret = -TARGET_EINVAL;
break;
}
break;
case IPCOP_shmdt:
ret = do_shmdt(ptr);
break;
case IPCOP_shmget:
/* IPC_* flag values are the same on all linux platforms */
ret = get_errno(shmget(first, second, third));
break;
/* IPC_* and SHM_* command values are the same on all linux platforms */
case IPCOP_shmctl:
ret = do_shmctl(first, second, ptr);
break;
default:
gemu_log("Unsupported ipc call: %d (version %d)\n", call, version);
ret = -TARGET_ENOSYS;
break;
}
return ret;
}
#endif
/* kernel structure types definitions */
#define STRUCT(name, ...) STRUCT_ ## name,
#define STRUCT_SPECIAL(name) STRUCT_ ## name,
enum {
#include "syscall_types.h"
STRUCT_MAX
};
#undef STRUCT
#undef STRUCT_SPECIAL
#define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
#define STRUCT_SPECIAL(name)
#include "syscall_types.h"
#undef STRUCT
#undef STRUCT_SPECIAL
typedef struct IOCTLEntry IOCTLEntry;
typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
int fd, int cmd, abi_long arg);
struct IOCTLEntry {
int target_cmd;
unsigned int host_cmd;
const char *name;
int access;
do_ioctl_fn *do_ioctl;
const argtype arg_type[5];
};
#define IOC_R 0x0001
#define IOC_W 0x0002
#define IOC_RW (IOC_R | IOC_W)
#define MAX_STRUCT_SIZE 4096
#ifdef CONFIG_FIEMAP
/* So fiemap access checks don't overflow on 32 bit systems.
* This is very slightly smaller than the limit imposed by
* the underlying kernel.
*/
#define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
/ sizeof(struct fiemap_extent))
static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
int fd, int cmd, abi_long arg)
{
/* The parameter for this ioctl is a struct fiemap followed
* by an array of struct fiemap_extent whose size is set
* in fiemap->fm_extent_count. The array is filled in by the
* ioctl.
*/
int target_size_in, target_size_out;
struct fiemap *fm;
const argtype *arg_type = ie->arg_type;
const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
void *argptr, *p;
abi_long ret;
int i, extent_size = thunk_type_size(extent_arg_type, 0);
uint32_t outbufsz;
int free_fm = 0;
assert(arg_type[0] == TYPE_PTR);
assert(ie->access == IOC_RW);
arg_type++;
target_size_in = thunk_type_size(arg_type, 0);
argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
if (!argptr) {
return -TARGET_EFAULT;
}
thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
unlock_user(argptr, arg, 0);
fm = (struct fiemap *)buf_temp;
if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
return -TARGET_EINVAL;
}
outbufsz = sizeof (*fm) +
(sizeof(struct fiemap_extent) * fm->fm_extent_count);
if (outbufsz > MAX_STRUCT_SIZE) {
/* We can't fit all the extents into the fixed size buffer.
* Allocate one that is large enough and use it instead.
*/
fm = g_try_malloc(outbufsz);
if (!fm) {
return -TARGET_ENOMEM;
}
memcpy(fm, buf_temp, sizeof(struct fiemap));
free_fm = 1;
}
ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
if (!is_error(ret)) {
target_size_out = target_size_in;
/* An extent_count of 0 means we were only counting the extents
* so there are no structs to copy
*/
if (fm->fm_extent_count != 0) {
target_size_out += fm->fm_mapped_extents * extent_size;
}
argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
if (!argptr) {
ret = -TARGET_EFAULT;
} else {
/* Convert the struct fiemap */
thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
if (fm->fm_extent_count != 0) {
p = argptr + target_size_in;
/* ...and then all the struct fiemap_extents */
for (i = 0; i < fm->fm_mapped_extents; i++) {
thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
THUNK_TARGET);
p += extent_size;
}
}
unlock_user(argptr, arg, target_size_out);
}
}
if (free_fm) {
g_free(fm);
}
return ret;
}
#endif
static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
int fd, int cmd, abi_long arg)
{
const argtype *arg_type = ie->arg_type;
int target_size;
void *argptr;
int ret;
struct ifconf *host_ifconf;
uint32_t outbufsz;
const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
int target_ifreq_size;
int nb_ifreq;
int free_buf = 0;
int i;
int target_ifc_len;
abi_long target_ifc_buf;
int host_ifc_len;
char *host_ifc_buf;
assert(arg_type[0] == TYPE_PTR);
assert(ie->access == IOC_RW);
arg_type++;
target_size = thunk_type_size(arg_type, 0);
argptr = lock_user(VERIFY_READ, arg, target_size, 1);
if (!argptr)
return -TARGET_EFAULT;
thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
unlock_user(argptr, arg, 0);
host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
target_ifc_len = host_ifconf->ifc_len;
target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
target_ifreq_size = thunk_type_size(ifreq_arg_type, 0);
nb_ifreq = target_ifc_len / target_ifreq_size;
host_ifc_len = nb_ifreq * sizeof(struct ifreq);
outbufsz = sizeof(*host_ifconf) + host_ifc_len;
if (outbufsz > MAX_STRUCT_SIZE) {
/* We can't fit all the extents into the fixed size buffer.
* Allocate one that is large enough and use it instead.
*/
host_ifconf = malloc(outbufsz);
if (!host_ifconf) {
return -TARGET_ENOMEM;
}
memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
free_buf = 1;
}
host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf);
host_ifconf->ifc_len = host_ifc_len;
host_ifconf->ifc_buf = host_ifc_buf;
ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
if (!is_error(ret)) {
/* convert host ifc_len to target ifc_len */
nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
target_ifc_len = nb_ifreq * target_ifreq_size;
host_ifconf->ifc_len = target_ifc_len;
/* restore target ifc_buf */
host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
/* copy struct ifconf to target user */
argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
if (!argptr)
return -TARGET_EFAULT;
thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
unlock_user(argptr, arg, target_size);
/* copy ifreq[] to target user */
argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
for (i = 0; i < nb_ifreq ; i++) {
thunk_convert(argptr + i * target_ifreq_size,
host_ifc_buf + i * sizeof(struct ifreq),
ifreq_arg_type, THUNK_TARGET);
}
unlock_user(argptr, target_ifc_buf, target_ifc_len);
}
if (free_buf) {
free(host_ifconf);
}
return ret;
}
static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
int cmd, abi_long arg)
{
void *argptr;
struct dm_ioctl *host_dm;
abi_long guest_data;
uint32_t guest_data_size;
int target_size;
const argtype *arg_type = ie->arg_type;
abi_long ret;
void *big_buf = NULL;
char *host_data;
arg_type++;
target_size = thunk_type_size(arg_type, 0);
argptr = lock_user(VERIFY_READ, arg, target_size, 1);
if (!argptr) {
ret = -TARGET_EFAULT;
goto out;
}
thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
unlock_user(argptr, arg, 0);
/* buf_temp is too small, so fetch things into a bigger buffer */
big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
memcpy(big_buf, buf_temp, target_size);
buf_temp = big_buf;
host_dm = big_buf;
guest_data = arg + host_dm->data_start;
if ((guest_data - arg) < 0) {
ret = -TARGET_EINVAL;
goto out;
}
guest_data_size = host_dm->data_size - host_dm->data_start;
host_data = (char*)host_dm + host_dm->data_start;
argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
if (!argptr) {
ret = -TARGET_EFAULT;
goto out;
}
switch (ie->host_cmd) {
case DM_REMOVE_ALL:
case DM_LIST_DEVICES:
case DM_DEV_CREATE:
case DM_DEV_REMOVE:
case DM_DEV_SUSPEND:
case DM_DEV_STATUS:
case DM_DEV_WAIT:
case DM_TABLE_STATUS:
case DM_TABLE_CLEAR:
case DM_TABLE_DEPS:
case DM_LIST_VERSIONS:
/* no input data */
break;
case DM_DEV_RENAME:
case DM_DEV_SET_GEOMETRY:
/* data contains only strings */
memcpy(host_data, argptr, guest_data_size);
break;
case DM_TARGET_MSG:
memcpy(host_data, argptr, guest_data_size);
*(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
break;
case DM_TABLE_LOAD:
{
void *gspec = argptr;
void *cur_data = host_data;
const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
int spec_size = thunk_type_size(arg_type, 0);
int i;
for (i = 0; i < host_dm->target_count; i++) {
struct dm_target_spec *spec = cur_data;
uint32_t next;
int slen;
thunk_convert(spec, gspec, arg_type, THUNK_HOST);
slen = strlen((char*)gspec + spec_size) + 1;
next = spec->next;
spec->next = sizeof(*spec) + slen;
strcpy((char*)&spec[1], gspec + spec_size);
gspec += next;
cur_data += spec->next;
}
break;
}
default:
ret = -TARGET_EINVAL;
unlock_user(argptr, guest_data, 0);
goto out;
}
unlock_user(argptr, guest_data, 0);
ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
if (!is_error(ret)) {
guest_data = arg + host_dm->data_start;
guest_data_size = host_dm->data_size - host_dm->data_start;
argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
switch (ie->host_cmd) {
case DM_REMOVE_ALL:
case DM_DEV_CREATE:
case DM_DEV_REMOVE:
case DM_DEV_RENAME:
case DM_DEV_SUSPEND:
case DM_DEV_STATUS:
case DM_TABLE_LOAD:
case DM_TABLE_CLEAR:
case DM_TARGET_MSG:
case DM_DEV_SET_GEOMETRY:
/* no return data */
break;
case DM_LIST_DEVICES:
{
struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
uint32_t remaining_data = guest_data_size;
void *cur_data = argptr;
const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
int nl_size = 12; /* can't use thunk_size due to alignment */
while (1) {
uint32_t next = nl->next;
if (next) {
nl->next = nl_size + (strlen(nl->name) + 1);
}
if (remaining_data < nl->next) {
host_dm->flags |= DM_BUFFER_FULL_FLAG;
break;
}
thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
strcpy(cur_data + nl_size, nl->name);
cur_data += nl->next;
remaining_data -= nl->next;
if (!next) {
break;
}
nl = (void*)nl + next;
}
break;
}
case DM_DEV_WAIT:
case DM_TABLE_STATUS:
{
struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
void *cur_data = argptr;
const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
int spec_size = thunk_type_size(arg_type, 0);
int i;
for (i = 0; i < host_dm->target_count; i++) {
uint32_t next = spec->next;
int slen = strlen((char*)&spec[1]) + 1;
spec->next = (cur_data - argptr) + spec_size + slen;
if (guest_data_size < spec->next) {
host_dm->flags |= DM_BUFFER_FULL_FLAG;
break;
}
thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
strcpy(cur_data + spec_size, (char*)&spec[1]);
cur_data = argptr + spec->next;
spec = (void*)host_dm + host_dm->data_start + next;
}
break;
}
case DM_TABLE_DEPS:
{
void *hdata = (void*)host_dm + host_dm->data_start;
int count = *(uint32_t*)hdata;
uint64_t *hdev = hdata + 8;
uint64_t *gdev = argptr + 8;
int i;
*(uint32_t*)argptr = tswap32(count);
for (i = 0; i < count; i++) {
*gdev = tswap64(*hdev);
gdev++;
hdev++;
}
break;
}
case DM_LIST_VERSIONS:
{
struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
uint32_t remaining_data = guest_data_size;
void *cur_data = argptr;
const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
int vers_size = thunk_type_size(arg_type, 0);
while (1) {
uint32_t next = vers->next;
if (next) {
vers->next = vers_size + (strlen(vers->name) + 1);
}
if (remaining_data < vers->next) {
host_dm->flags |= DM_BUFFER_FULL_FLAG;
break;
}
thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
strcpy(cur_data + vers_size, vers->name);
cur_data += vers->next;
remaining_data -= vers->next;
if (!next) {
break;
}
vers = (void*)vers + next;
}
break;
}
default:
unlock_user(argptr, guest_data, 0);
ret = -TARGET_EINVAL;
goto out;
}
unlock_user(argptr, guest_data, guest_data_size);
argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
if (!argptr) {
ret = -TARGET_EFAULT;
goto out;
}
thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
unlock_user(argptr, arg, target_size);
}
out:
g_free(big_buf);
return ret;
}
static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
int cmd, abi_long arg)
{
void *argptr;
int target_size;
const argtype *arg_type = ie->arg_type;
const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
abi_long ret;
struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
struct blkpg_partition host_part;
/* Read and convert blkpg */
arg_type++;
target_size = thunk_type_size(arg_type, 0);
argptr = lock_user(VERIFY_READ, arg, target_size, 1);
if (!argptr) {
ret = -TARGET_EFAULT;
goto out;
}
thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
unlock_user(argptr, arg, 0);
switch (host_blkpg->op) {
case BLKPG_ADD_PARTITION:
case BLKPG_DEL_PARTITION:
/* payload is struct blkpg_partition */
break;
default:
/* Unknown opcode */
ret = -TARGET_EINVAL;
goto out;
}
/* Read and convert blkpg->data */
arg = (abi_long)(uintptr_t)host_blkpg->data;
target_size = thunk_type_size(part_arg_type, 0);
argptr = lock_user(VERIFY_READ, arg, target_size, 1);
if (!argptr) {
ret = -TARGET_EFAULT;
goto out;
}
thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
unlock_user(argptr, arg, 0);
/* Swizzle the data pointer to our local copy and call! */
host_blkpg->data = &host_part;
ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
out:
return ret;
}
static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
int fd, int cmd, abi_long arg)
{
const argtype *arg_type = ie->arg_type;
const StructEntry *se;
const argtype *field_types;
const int *dst_offsets, *src_offsets;
int target_size;
void *argptr;
abi_ulong *target_rt_dev_ptr;
unsigned long *host_rt_dev_ptr;
abi_long ret;
int i;
assert(ie->access == IOC_W);
assert(*arg_type == TYPE_PTR);
arg_type++;
assert(*arg_type == TYPE_STRUCT);
target_size = thunk_type_size(arg_type, 0);
argptr = lock_user(VERIFY_READ, arg, target_size, 1);
if (!argptr) {
return -TARGET_EFAULT;
}
arg_type++;
assert(*arg_type == (int)STRUCT_rtentry);
se = struct_entries + *arg_type++;
assert(se->convert[0] == NULL);
/* convert struct here to be able to catch rt_dev string */
field_types = se->field_types;
dst_offsets = se->field_offsets[THUNK_HOST];
src_offsets = se->field_offsets[THUNK_TARGET];
for (i = 0; i < se->nb_fields; i++) {
if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
assert(*field_types == TYPE_PTRVOID);
target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
if (*target_rt_dev_ptr != 0) {
*host_rt_dev_ptr = (unsigned long)lock_user_string(
tswapal(*target_rt_dev_ptr));
if (!*host_rt_dev_ptr) {
unlock_user(argptr, arg, 0);
return -TARGET_EFAULT;
}
} else {
*host_rt_dev_ptr = 0;
}
field_types++;
continue;
}
field_types = thunk_convert(buf_temp + dst_offsets[i],
argptr + src_offsets[i],
field_types, THUNK_HOST);
}
unlock_user(argptr, arg, 0);
ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
if (*host_rt_dev_ptr != 0) {
unlock_user((void *)*host_rt_dev_ptr,
*target_rt_dev_ptr, 0);
}
return ret;
}
static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
int fd, int cmd, abi_long arg)
{
int sig = target_to_host_signal(arg);
return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
}
static IOCTLEntry ioctl_entries[] = {
#define IOCTL(cmd, access, ...) \
{ TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
#define IOCTL_SPECIAL(cmd, access, dofn, ...) \
{ TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
#define IOCTL_IGNORE(cmd) \
{ TARGET_ ## cmd, 0, #cmd },
#include "ioctls.h"
{ 0, 0, },
};
/* ??? Implement proper locking for ioctls. */
/* do_ioctl() Must return target values and target errnos. */
static abi_long do_ioctl(int fd, int cmd, abi_long arg)
{
const IOCTLEntry *ie;
const argtype *arg_type;
abi_long ret;
uint8_t buf_temp[MAX_STRUCT_SIZE];
int target_size;
void *argptr;
ie = ioctl_entries;
for(;;) {
if (ie->target_cmd == 0) {
gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
return -TARGET_ENOSYS;
}
if (ie->target_cmd == cmd)
break;
ie++;
}
arg_type = ie->arg_type;
#if defined(DEBUG)
gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name);
#endif
if (ie->do_ioctl) {
return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
} else if (!ie->host_cmd) {
/* Some architectures define BSD ioctls in their headers
that are not implemented in Linux. */
return -TARGET_ENOSYS;
}
switch(arg_type[0]) {
case TYPE_NULL:
/* no argument */
ret = get_errno(safe_ioctl(fd, ie->host_cmd));
break;
case TYPE_PTRVOID:
case TYPE_INT:
ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
break;
case TYPE_PTR:
arg_type++;
target_size = thunk_type_size(arg_type, 0);
switch(ie->access) {
case IOC_R:
ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
if (!is_error(ret)) {
argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
if (!argptr)
return -TARGET_EFAULT;
thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
unlock_user(argptr, arg, target_size);
}
break;
case IOC_W:
argptr = lock_user(VERIFY_READ, arg, target_size, 1);
if (!argptr)
return -TARGET_EFAULT;
thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
unlock_user(argptr, arg, 0);
ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
break;
default:
case IOC_RW:
argptr = lock_user(VERIFY_READ, arg, target_size, 1);
if (!argptr)
return -TARGET_EFAULT;
thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
unlock_user(argptr, arg, 0);
ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
if (!is_error(ret)) {
argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
if (!argptr)
return -TARGET_EFAULT;
thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
unlock_user(argptr, arg, target_size);
}
break;
}
break;
default:
gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n",
(long)cmd, arg_type[0]);
ret = -TARGET_ENOSYS;
break;
}
return ret;
}
static const bitmask_transtbl iflag_tbl[] = {
{ TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
{ TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
{ TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
{ TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
{ TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
{ TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
{ TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
{ TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
{ TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
{ TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
{ TARGET_IXON, TARGET_IXON, IXON, IXON },
{ TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
{ TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
{ TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
{ 0, 0, 0, 0 }
};
static const bitmask_transtbl oflag_tbl[] = {
{ TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
{ TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
{ TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
{ TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
{ TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
{ TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
{ TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
{ TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
{ TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
{ TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
{ TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
{ TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
{ TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
{ TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
{ TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
{ TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
{ TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
{ TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
{ TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
{ TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
{ TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
{ TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
{ TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
{ TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
{ 0, 0, 0, 0 }
};
static const bitmask_transtbl cflag_tbl[] = {
{ TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
{ TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
{ TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
{ TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
{ TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
{ TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
{ TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
{ TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
{ TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
{ TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
{ TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
{ TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
{ TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
{ TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
{ TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
{ TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
{ TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
{ TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
{ TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
{ TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
{ TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
{ TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
{ TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
{ TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
{ TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
{ TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
{ TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
{ TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
{ TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
{ TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
{ TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
{ 0, 0, 0, 0 }
};
static const bitmask_transtbl lflag_tbl[] = {
{ TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
{ TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
{ TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
{ TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
{ TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
{ TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
{ TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
{ TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
{ TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
{ TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
{ TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
{ TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
{ TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
{ TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
{ TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
{ 0, 0, 0, 0 }
};
static void target_to_host_termios (void *dst, const void *src)
{
struct host_termios *host = dst;
const struct target_termios *target = src;
host->c_iflag =
target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
host->c_oflag =
target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
host->c_cflag =
target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
host->c_lflag =
target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
host->c_line = target->c_line;
memset(host->c_cc, 0, sizeof(host->c_cc));
host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
}
static void host_to_target_termios (void *dst, const void *src)
{
struct target_termios *target = dst;
const struct host_termios *host = src;
target->c_iflag =
tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
target->c_oflag =
tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
target->c_cflag =
tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
target->c_lflag =
tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
target->c_line = host->c_line;
memset(target->c_cc, 0, sizeof(target->c_cc));
target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
}
static const StructEntry struct_termios_def = {
.convert = { host_to_target_termios, target_to_host_termios },
.size = { sizeof(struct target_termios), sizeof(struct host_termios) },
.align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
};
static bitmask_transtbl mmap_flags_tbl[] = {
{ TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
{ TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
{ TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
{ TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS,
MAP_ANONYMOUS, MAP_ANONYMOUS },
{ TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN,
MAP_GROWSDOWN, MAP_GROWSDOWN },
{ TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE,
MAP_DENYWRITE, MAP_DENYWRITE },
{ TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE,
MAP_EXECUTABLE, MAP_EXECUTABLE },
{ TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
{ TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE,
MAP_NORESERVE, MAP_NORESERVE },
{ TARGET_MAP_HUGETLB, TARGET_MAP_HUGETLB, MAP_HUGETLB, MAP_HUGETLB },
/* MAP_STACK had been ignored by the kernel for quite some time.
Recognize it for the target insofar as we do not want to pass
it through to the host. */
{ TARGET_MAP_STACK, TARGET_MAP_STACK, 0, 0 },
{ 0, 0, 0, 0 }
};
#if defined(TARGET_I386)
/* NOTE: there is really one LDT for all the threads */
static uint8_t *ldt_table;
static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
{
int size;
void *p;
if (!ldt_table)
return 0;
size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
if (size > bytecount)
size = bytecount;
p = lock_user(VERIFY_WRITE, ptr, size, 0);
if (!p)
return -TARGET_EFAULT;
/* ??? Should this by byteswapped? */
memcpy(p, ldt_table, size);
unlock_user(p, ptr, size);
return size;
}
/* XXX: add locking support */
static abi_long write_ldt(CPUX86State *env,
abi_ulong ptr, unsigned long bytecount, int oldmode)
{
struct target_modify_ldt_ldt_s ldt_info;
struct target_modify_ldt_ldt_s *target_ldt_info;
int seg_32bit, contents, read_exec_only, limit_in_pages;
int seg_not_present, useable, lm;
uint32_t *lp, entry_1, entry_2;
if (bytecount != sizeof(ldt_info))
return -TARGET_EINVAL;
if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
return -TARGET_EFAULT;
ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
ldt_info.limit = tswap32(target_ldt_info->limit);
ldt_info.flags = tswap32(target_ldt_info->flags);
unlock_user_struct(target_ldt_info, ptr, 0);
if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
return -TARGET_EINVAL;
seg_32bit = ldt_info.flags & 1;
contents = (ldt_info.flags >> 1) & 3;
read_exec_only = (ldt_info.flags >> 3) & 1;
limit_in_pages = (ldt_info.flags >> 4) & 1;
seg_not_present = (ldt_info.flags >> 5) & 1;
useable = (ldt_info.flags >> 6) & 1;
#ifdef TARGET_ABI32
lm = 0;
#else
lm = (ldt_info.flags >> 7) & 1;
#endif
if (contents == 3) {
if (oldmode)
return -TARGET_EINVAL;
if (seg_not_present == 0)
return -TARGET_EINVAL;
}
/* allocate the LDT */
if (!ldt_table) {
env->ldt.base = target_mmap(0,
TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
if (env->ldt.base == -1)
return -TARGET_ENOMEM;
memset(g2h(env->ldt.base), 0,
TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
env->ldt.limit = 0xffff;
ldt_table = g2h(env->ldt.base);
}
/* NOTE: same code as Linux kernel */
/* Allow LDTs to be cleared by the user. */
if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
if (oldmode ||
(contents == 0 &&
read_exec_only == 1 &&
seg_32bit == 0 &&
limit_in_pages == 0 &&
seg_not_present == 1 &&
useable == 0 )) {
entry_1 = 0;
entry_2 = 0;
goto install;
}
}
entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
(ldt_info.limit & 0x0ffff);
entry_2 = (ldt_info.base_addr & 0xff000000) |
((ldt_info.base_addr & 0x00ff0000) >> 16) |
(ldt_info.limit & 0xf0000) |
((read_exec_only ^ 1) << 9) |
(contents << 10) |
((seg_not_present ^ 1) << 15) |
(seg_32bit << 22) |
(limit_in_pages << 23) |
(lm << 21) |
0x7000;
if (!oldmode)
entry_2 |= (useable << 20);
/* Install the new entry ... */
install:
lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
lp[0] = tswap32(entry_1);
lp[1] = tswap32(entry_2);
return 0;
}
/* specific and weird i386 syscalls */
static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
unsigned long bytecount)
{
abi_long ret;
switch (func) {
case 0:
ret = read_ldt(ptr, bytecount);
break;
case 1:
ret = write_ldt(env, ptr, bytecount, 1);
break;
case 0x11:
ret = write_ldt(env, ptr, bytecount, 0);
break;
default:
ret = -TARGET_ENOSYS;
break;
}
return ret;
}
#if defined(TARGET_I386) && defined(TARGET_ABI32)
abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
{
uint64_t *gdt_table = g2h(env->gdt.base);
struct target_modify_ldt_ldt_s ldt_info;
struct target_modify_ldt_ldt_s *target_ldt_info;
int seg_32bit, contents, read_exec_only, limit_in_pages;
int seg_not_present, useable, lm;
uint32_t *lp, entry_1, entry_2;
int i;
lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
if (!target_ldt_info)
return -TARGET_EFAULT;
ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
ldt_info.limit = tswap32(target_ldt_info->limit);
ldt_info.flags = tswap32(target_ldt_info->flags);
if (ldt_info.entry_number == -1) {
for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
if (gdt_table[i] == 0) {
ldt_info.entry_number = i;
target_ldt_info->entry_number = tswap32(i);
break;
}
}
}
unlock_user_struct(target_ldt_info, ptr, 1);
if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
return -TARGET_EINVAL;
seg_32bit = ldt_info.flags & 1;
contents = (ldt_info.flags >> 1) & 3;
read_exec_only = (ldt_info.flags >> 3) & 1;
limit_in_pages = (ldt_info.flags >> 4) & 1;
seg_not_present = (ldt_info.flags >> 5) & 1;
useable = (ldt_info.flags >> 6) & 1;
#ifdef TARGET_ABI32
lm = 0;
#else
lm = (ldt_info.flags >> 7) & 1;
#endif
if (contents == 3) {
if (seg_not_present == 0)
return -TARGET_EINVAL;
}
/* NOTE: same code as Linux kernel */
/* Allow LDTs to be cleared by the user. */
if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
if ((contents == 0 &&
read_exec_only == 1 &&
seg_32bit == 0 &&
limit_in_pages == 0 &&
seg_not_present == 1 &&
useable == 0 )) {
entry_1 = 0;
entry_2 = 0;
goto install;
}
}
entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
(ldt_info.limit & 0x0ffff);
entry_2 = (ldt_info.base_addr & 0xff000000) |
((ldt_info.base_addr & 0x00ff0000) >> 16) |
(ldt_info.limit & 0xf0000) |
((read_exec_only ^ 1) << 9) |
(contents << 10) |
((seg_not_present ^ 1) << 15) |
(seg_32bit << 22) |
(limit_in_pages << 23) |
(useable << 20) |
(lm << 21) |
0x7000;
/* Install the new entry ... */
install:
lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
lp[0] = tswap32(entry_1);
lp[1] = tswap32(entry_2);
return 0;
}
static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
{
struct target_modify_ldt_ldt_s *target_ldt_info;
uint64_t *gdt_table = g2h(env->gdt.base);
uint32_t base_addr, limit, flags;
int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
int seg_not_present, useable, lm;
uint32_t *lp, entry_1, entry_2;
lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
if (!target_ldt_info)
return -TARGET_EFAULT;
idx = tswap32(target_ldt_info->entry_number);
if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
idx > TARGET_GDT_ENTRY_TLS_MAX) {
unlock_user_struct(target_ldt_info, ptr, 1);
return -TARGET_EINVAL;
}
lp = (uint32_t *)(gdt_table + idx);
entry_1 = tswap32(lp[0]);
entry_2 = tswap32(lp[1]);
read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
contents = (entry_2 >> 10) & 3;
seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
seg_32bit = (entry_2 >> 22) & 1;
limit_in_pages = (entry_2 >> 23) & 1;
useable = (entry_2 >> 20) & 1;
#ifdef TARGET_ABI32
lm = 0;
#else
lm = (entry_2 >> 21) & 1;
#endif
flags = (seg_32bit << 0) | (contents << 1) |
(read_exec_only << 3) | (limit_in_pages << 4) |
(seg_not_present << 5) | (useable << 6) | (lm << 7);
limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000);
base_addr = (entry_1 >> 16) |
(entry_2 & 0xff000000) |
((entry_2 & 0xff) << 16);
target_ldt_info->base_addr = tswapal(base_addr);
target_ldt_info->limit = tswap32(limit);
target_ldt_info->flags = tswap32(flags);
unlock_user_struct(target_ldt_info, ptr, 1);
return 0;
}
#endif /* TARGET_I386 && TARGET_ABI32 */
#ifndef TARGET_ABI32
abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
{
abi_long ret = 0;
abi_ulong val;
int idx;
switch(code) {
case TARGET_ARCH_SET_GS:
case TARGET_ARCH_SET_FS:
if (code == TARGET_ARCH_SET_GS)
idx = R_GS;
else
idx = R_FS;
cpu_x86_load_seg(env, idx, 0);
env->segs[idx].base = addr;
break;
case TARGET_ARCH_GET_GS:
case TARGET_ARCH_GET_FS:
if (code == TARGET_ARCH_GET_GS)
idx = R_GS;
else
idx = R_FS;
val = env->segs[idx].base;
if (put_user(val, addr, abi_ulong))
ret = -TARGET_EFAULT;
break;
default:
ret = -TARGET_EINVAL;
break;
}
return ret;
}
#endif
#endif /* defined(TARGET_I386) */
#define NEW_STACK_SIZE 0x40000
static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
typedef struct {
CPUArchState *env;
pthread_mutex_t mutex;
pthread_cond_t cond;
pthread_t thread;
uint32_t tid;
abi_ulong child_tidptr;
abi_ulong parent_tidptr;
sigset_t sigmask;
} new_thread_info;
static void *clone_func(void *arg)
{
new_thread_info *info = arg;
CPUArchState *env;
CPUState *cpu;
TaskState *ts;
rcu_register_thread();
tcg_register_thread();
env = info->env;
cpu = ENV_GET_CPU(env);
thread_cpu = cpu;
ts = (TaskState *)cpu->opaque;
info->tid = gettid();
task_settid(ts);
if (info->child_tidptr)
put_user_u32(info->tid, info->child_tidptr);
if (info->parent_tidptr)
put_user_u32(info->tid, info->parent_tidptr);
/* Enable signals. */
sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
/* Signal to the parent that we're ready. */
pthread_mutex_lock(&info->mutex);
pthread_cond_broadcast(&info->cond);
pthread_mutex_unlock(&info->mutex);
/* Wait until the parent has finished initializing the tls state. */
pthread_mutex_lock(&clone_lock);
pthread_mutex_unlock(&clone_lock);
cpu_loop(env);
/* never exits */
return NULL;
}
/* do_fork() Must return host values and target errnos (unlike most
do_*() functions). */
static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
abi_ulong parent_tidptr, target_ulong newtls,
abi_ulong child_tidptr)
{
CPUState *cpu = ENV_GET_CPU(env);
int ret;
TaskState *ts;
CPUState *new_cpu;
CPUArchState *new_env;
sigset_t sigmask;
flags &= ~CLONE_IGNORED_FLAGS;
/* Emulate vfork() with fork() */
if (flags & CLONE_VFORK)
flags &= ~(CLONE_VFORK | CLONE_VM);
if (flags & CLONE_VM) {
TaskState *parent_ts = (TaskState *)cpu->opaque;
new_thread_info info;
pthread_attr_t attr;
if (((flags & CLONE_THREAD_FLAGS) != CLONE_THREAD_FLAGS) ||
(flags & CLONE_INVALID_THREAD_FLAGS)) {
return -TARGET_EINVAL;
}
ts = g_new0(TaskState, 1);
init_task_state(ts);
/* we create a new CPU instance. */
new_env = cpu_copy(env);
/* Init regs that differ from the parent. */
cpu_clone_regs(new_env, newsp);
new_cpu = ENV_GET_CPU(new_env);
new_cpu->opaque = ts;
ts->bprm = parent_ts->bprm;
ts->info = parent_ts->info;
ts->signal_mask = parent_ts->signal_mask;
if (flags & CLONE_CHILD_CLEARTID) {
ts->child_tidptr = child_tidptr;
}
if (flags & CLONE_SETTLS) {
cpu_set_tls (new_env, newtls);
}
/* Grab a mutex so that thread setup appears atomic. */
pthread_mutex_lock(&clone_lock);
memset(&info, 0, sizeof(info));
pthread_mutex_init(&info.mutex, NULL);
pthread_mutex_lock(&info.mutex);
pthread_cond_init(&info.cond, NULL);
info.env = new_env;
if (flags & CLONE_CHILD_SETTID) {
info.child_tidptr = child_tidptr;
}
if (flags & CLONE_PARENT_SETTID) {
info.parent_tidptr = parent_tidptr;
}
ret = pthread_attr_init(&attr);
ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
/* It is not safe to deliver signals until the child has finished
initializing, so temporarily block all signals. */
sigfillset(&sigmask);
sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
/* If this is our first additional thread, we need to ensure we
* generate code for parallel execution and flush old translations.
*/
if (!parallel_cpus) {
parallel_cpus = true;
tb_flush(cpu);
}
ret = pthread_create(&info.thread, &attr, clone_func, &info);
/* TODO: Free new CPU state if thread creation failed. */
sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
pthread_attr_destroy(&attr);
if (ret == 0) {
/* Wait for the child to initialize. */
pthread_cond_wait(&info.cond, &info.mutex);
ret = info.tid;
} else {
ret = -1;
}
pthread_mutex_unlock(&info.mutex);
pthread_cond_destroy(&info.cond);
pthread_mutex_destroy(&info.mutex);
pthread_mutex_unlock(&clone_lock);
} else {
/* if no CLONE_VM, we consider it is a fork */
if (flags & CLONE_INVALID_FORK_FLAGS) {
return -TARGET_EINVAL;
}
/* We can't support custom termination signals */
if ((flags & CSIGNAL) != TARGET_SIGCHLD) {
return -TARGET_EINVAL;
}
if (block_signals()) {
return -TARGET_ERESTARTSYS;
}
fork_start();
ret = fork();
if (ret == 0) {
/* Child Process. */
cpu_clone_regs(env, newsp);
fork_end(1);
/* There is a race condition here. The parent process could
theoretically read the TID in the child process before the child
tid is set. This would require using either ptrace
(not implemented) or having *_tidptr to point at a shared memory
mapping. We can't repeat the spinlock hack used above because
the child process gets its own copy of the lock. */
if (flags & CLONE_CHILD_SETTID)
put_user_u32(gettid(), child_tidptr);
if (flags & CLONE_PARENT_SETTID)
put_user_u32(gettid(), parent_tidptr);
ts = (TaskState *)cpu->opaque;
if (flags & CLONE_SETTLS)
cpu_set_tls (env, newtls);
if (flags & CLONE_CHILD_CLEARTID)
ts->child_tidptr = child_tidptr;
} else {
fork_end(0);
}
}
return ret;
}
/* warning : doesn't handle linux specific flags... */
static int target_to_host_fcntl_cmd(int cmd)
{
switch(cmd) {
case TARGET_F_DUPFD:
case TARGET_F_GETFD:
case TARGET_F_SETFD:
case TARGET_F_GETFL:
case TARGET_F_SETFL:
return cmd;
case TARGET_F_GETLK:
return F_GETLK64;
case TARGET_F_SETLK:
return F_SETLK64;
case TARGET_F_SETLKW:
return F_SETLKW64;
case TARGET_F_GETOWN:
return F_GETOWN;
case TARGET_F_SETOWN:
return F_SETOWN;
case TARGET_F_GETSIG:
return F_GETSIG;
case TARGET_F_SETSIG:
return F_SETSIG;
#if TARGET_ABI_BITS == 32
case TARGET_F_GETLK64:
return F_GETLK64;
case TARGET_F_SETLK64:
return F_SETLK64;
case TARGET_F_SETLKW64:
return F_SETLKW64;
#endif
case TARGET_F_SETLEASE:
return F_SETLEASE;
case TARGET_F_GETLEASE:
return F_GETLEASE;
#ifdef F_DUPFD_CLOEXEC
case TARGET_F_DUPFD_CLOEXEC:
return F_DUPFD_CLOEXEC;
#endif
case TARGET_F_NOTIFY:
return F_NOTIFY;
#ifdef F_GETOWN_EX
case TARGET_F_GETOWN_EX:
return F_GETOWN_EX;
#endif
#ifdef F_SETOWN_EX
case TARGET_F_SETOWN_EX:
return F_SETOWN_EX;
#endif
#ifdef F_SETPIPE_SZ
case TARGET_F_SETPIPE_SZ:
return F_SETPIPE_SZ;
case TARGET_F_GETPIPE_SZ:
return F_GETPIPE_SZ;
#endif
default:
return -TARGET_EINVAL;
}
return -TARGET_EINVAL;
}
#define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a }
static const bitmask_transtbl flock_tbl[] = {
TRANSTBL_CONVERT(F_RDLCK),
TRANSTBL_CONVERT(F_WRLCK),
TRANSTBL_CONVERT(F_UNLCK),
TRANSTBL_CONVERT(F_EXLCK),
TRANSTBL_CONVERT(F_SHLCK),
{ 0, 0, 0, 0 }
};
static inline abi_long copy_from_user_flock(struct flock64 *fl,
abi_ulong target_flock_addr)
{
struct target_flock *target_fl;
short l_type;
if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
return -TARGET_EFAULT;
}
__get_user(l_type, &target_fl->l_type);
fl->l_type = target_to_host_bitmask(l_type, flock_tbl);
__get_user(fl->l_whence, &target_fl->l_whence);
__get_user(fl->l_start, &target_fl->l_start);
__get_user(fl->l_len, &target_fl->l_len);
__get_user(fl->l_pid, &target_fl->l_pid);
unlock_user_struct(target_fl, target_flock_addr, 0);
return 0;
}
static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
const struct flock64 *fl)
{
struct target_flock *target_fl;
short l_type;
if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
return -TARGET_EFAULT;
}
l_type = host_to_target_bitmask(fl->l_type, flock_tbl);
__put_user(l_type, &target_fl->l_type);
__put_user(fl->l_whence, &target_fl->l_whence);
__put_user(fl->l_start, &target_fl->l_start);
__put_user(fl->l_len, &target_fl->l_len);
__put_user(fl->l_pid, &target_fl->l_pid);
unlock_user_struct(target_fl, target_flock_addr, 1);
return 0;
}
typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
#if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
static inline abi_long copy_from_user_eabi_flock64(struct flock64 *fl,
abi_ulong target_flock_addr)
{
struct target_eabi_flock64 *target_fl;
short l_type;
if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
return -TARGET_EFAULT;
}
__get_user(l_type, &target_fl->l_type);
fl->l_type = target_to_host_bitmask(l_type, flock_tbl);
__get_user(fl->l_whence, &target_fl->l_whence);
__get_user(fl->l_start, &target_fl->l_start);
__get_user(fl->l_len, &target_fl->l_len);
__get_user(fl->l_pid, &target_fl->l_pid);
unlock_user_struct(target_fl, target_flock_addr, 0);
return 0;
}
static inline abi_long copy_to_user_eabi_flock64(abi_ulong target_flock_addr,
const struct flock64 *fl)
{
struct target_eabi_flock64 *target_fl;
short l_type;
if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
return -TARGET_EFAULT;
}
l_type = host_to_target_bitmask(fl->l_type, flock_tbl);
__put_user(l_type, &target_fl->l_type);
__put_user(fl->l_whence, &target_fl->l_whence);
__put_user(fl->l_start, &target_fl->l_start);
__put_user(fl->l_len, &target_fl->l_len);
__put_user(fl->l_pid, &target_fl->l_pid);
unlock_user_struct(target_fl, target_flock_addr, 1);
return 0;
}
#endif
static inline abi_long copy_from_user_flock64(struct flock64 *fl,
abi_ulong target_flock_addr)
{
struct target_flock64 *target_fl;
short l_type;
if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
return -TARGET_EFAULT;
}
__get_user(l_type, &target_fl->l_type);
fl->l_type = target_to_host_bitmask(l_type, flock_tbl);
__get_user(fl->l_whence, &target_fl->l_whence);
__get_user(fl->l_start, &target_fl->l_start);
__get_user(fl->l_len, &target_fl->l_len);
__get_user(fl->l_pid, &target_fl->l_pid);
unlock_user_struct(target_fl, target_flock_addr, 0);
return 0;
}
static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
const struct flock64 *fl)
{
struct target_flock64 *target_fl;
short l_type;
if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
return -TARGET_EFAULT;
}
l_type = host_to_target_bitmask(fl->l_type, flock_tbl);
__put_user(l_type, &target_fl->l_type);
__put_user(fl->l_whence, &target_fl->l_whence);
__put_user(fl->l_start, &target_fl->l_start);
__put_user(fl->l_len, &target_fl->l_len);
__put_user(fl->l_pid, &target_fl->l_pid);
unlock_user_struct(target_fl, target_flock_addr, 1);
return 0;
}
static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
{
struct flock64 fl64;
#ifdef F_GETOWN_EX
struct f_owner_ex fox;
struct target_f_owner_ex *target_fox;
#endif
abi_long ret;
int host_cmd = target_to_host_fcntl_cmd(cmd);
if (host_cmd == -TARGET_EINVAL)
return host_cmd;
switch(cmd) {
case TARGET_F_GETLK:
ret = copy_from_user_flock(&fl64, arg);
if (ret) {
return ret;
}
ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
if (ret == 0) {
ret = copy_to_user_flock(arg, &fl64);
}
break;
case TARGET_F_SETLK:
case TARGET_F_SETLKW:
ret = copy_from_user_flock(&fl64, arg);
if (ret) {
return ret;
}
ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
break;
case TARGET_F_GETLK64:
ret = copy_from_user_flock64(&fl64, arg);
if (ret) {
return ret;
}
ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
if (ret == 0) {
ret = copy_to_user_flock64(arg, &fl64);
}
break;
case TARGET_F_SETLK64:
case TARGET_F_SETLKW64:
ret = copy_from_user_flock64(&fl64, arg);
if (ret) {
return ret;
}
ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
break;
case TARGET_F_GETFL:
ret = get_errno(safe_fcntl(fd, host_cmd, arg));
if (ret >= 0) {
ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
}
break;
case TARGET_F_SETFL:
ret = get_errno(safe_fcntl(fd, host_cmd,
target_to_host_bitmask(arg,
fcntl_flags_tbl)));
break;
#ifdef F_GETOWN_EX
case TARGET_F_GETOWN_EX:
ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
if (ret >= 0) {
if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
return -TARGET_EFAULT;
target_fox->type = tswap32(fox.type);
target_fox->pid = tswap32(fox.pid);
unlock_user_struct(target_fox, arg, 1);
}
break;
#endif
#ifdef F_SETOWN_EX
case TARGET_F_SETOWN_EX:
if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
return -TARGET_EFAULT;
fox.type = tswap32(target_fox->type);
fox.pid = tswap32(target_fox->pid);
unlock_user_struct(target_fox, arg, 0);
ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
break;
#endif
case TARGET_F_SETOWN:
case TARGET_F_GETOWN:
case TARGET_F_SETSIG:
case TARGET_F_GETSIG:
case TARGET_F_SETLEASE:
case TARGET_F_GETLEASE:
case TARGET_F_SETPIPE_SZ:
case TARGET_F_GETPIPE_SZ:
ret = get_errno(safe_fcntl(fd, host_cmd, arg));
break;
default:
ret = get_errno(safe_fcntl(fd, cmd, arg));
break;
}
return ret;
}
#ifdef USE_UID16
static inline int high2lowuid(int uid)
{
if (uid > 65535)
return 65534;
else
return uid;
}
static inline int high2lowgid(int gid)
{
if (gid > 65535)
return 65534;
else
return gid;
}
static inline int low2highuid(int uid)
{
if ((int16_t)uid == -1)
return -1;
else
return uid;
}
static inline int low2highgid(int gid)
{
if ((int16_t)gid == -1)
return -1;
else
return gid;
}
static inline int tswapid(int id)
{
return tswap16(id);
}
#define put_user_id(x, gaddr) put_user_u16(x, gaddr)
#else /* !USE_UID16 */
static inline int high2lowuid(int uid)
{
return uid;
}
static inline int high2lowgid(int gid)
{
return gid;
}
static inline int low2highuid(int uid)
{
return uid;
}
static inline int low2highgid(int gid)
{
return gid;
}
static inline int tswapid(int id)
{
return tswap32(id);
}
#define put_user_id(x, gaddr) put_user_u32(x, gaddr)
#endif /* USE_UID16 */
/* We must do direct syscalls for setting UID/GID, because we want to
* implement the Linux system call semantics of "change only for this thread",
* not the libc/POSIX semantics of "change for all threads in process".
* (See http://ewontfix.com/17/ for more details.)
* We use the 32-bit version of the syscalls if present; if it is not
* then either the host architecture supports 32-bit UIDs natively with
* the standard syscall, or the 16-bit UID is the best we can do.
*/
#ifdef __NR_setuid32
#define __NR_sys_setuid __NR_setuid32
#else
#define __NR_sys_setuid __NR_setuid
#endif
#ifdef __NR_setgid32
#define __NR_sys_setgid __NR_setgid32
#else
#define __NR_sys_setgid __NR_setgid
#endif
#ifdef __NR_setresuid32
#define __NR_sys_setresuid __NR_setresuid32
#else
#define __NR_sys_setresuid __NR_setresuid
#endif
#ifdef __NR_setresgid32
#define __NR_sys_setresgid __NR_setresgid32
#else
#define __NR_sys_setresgid __NR_setresgid
#endif
_syscall1(int, sys_setuid, uid_t, uid)
_syscall1(int, sys_setgid, gid_t, gid)
_syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
_syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
void syscall_init(void)
{
IOCTLEntry *ie;
const argtype *arg_type;
int size;
int i;
thunk_init(STRUCT_MAX);
#define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
#define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
#include "syscall_types.h"
#undef STRUCT
#undef STRUCT_SPECIAL
/* Build target_to_host_errno_table[] table from
* host_to_target_errno_table[]. */
for (i = 0; i < ERRNO_TABLE_SIZE; i++) {
target_to_host_errno_table[host_to_target_errno_table[i]] = i;
}
/* we patch the ioctl size if necessary. We rely on the fact that
no ioctl has all the bits at '1' in the size field */
ie = ioctl_entries;
while (ie->target_cmd != 0) {
if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
TARGET_IOC_SIZEMASK) {
arg_type = ie->arg_type;
if (arg_type[0] != TYPE_PTR) {
fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
ie->target_cmd);
exit(1);
}
arg_type++;
size = thunk_type_size(arg_type, 0);
ie->target_cmd = (ie->target_cmd &
~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
(size << TARGET_IOC_SIZESHIFT);
}
/* automatic consistency check if same arch */
#if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
(defined(__x86_64__) && defined(TARGET_X86_64))
if (unlikely(ie->target_cmd != ie->host_cmd)) {
fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
ie->name, ie->target_cmd, ie->host_cmd);
}
#endif
ie++;
}
}
#if TARGET_ABI_BITS == 32
static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
{
#ifdef TARGET_WORDS_BIGENDIAN
return ((uint64_t)word0 << 32) | word1;
#else
return ((uint64_t)word1 << 32) | word0;
#endif
}
#else /* TARGET_ABI_BITS == 32 */
static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
{
return word0;
}
#endif /* TARGET_ABI_BITS != 32 */
#ifdef TARGET_NR_truncate64
static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
abi_long arg2,
abi_long arg3,
abi_long arg4)
{
if (regpairs_aligned(cpu_env, TARGET_NR_truncate64)) {
arg2 = arg3;
arg3 = arg4;
}
return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
}
#endif
#ifdef TARGET_NR_ftruncate64
static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
abi_long arg2,
abi_long arg3,
abi_long arg4)
{
if (regpairs_aligned(cpu_env, TARGET_NR_ftruncate64)) {
arg2 = arg3;
arg3 = arg4;
}
return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
}
#endif
static inline abi_long target_to_host_timespec(struct timespec *host_ts,
abi_ulong target_addr)
{
struct target_timespec *target_ts;
if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1))
return -TARGET_EFAULT;
__get_user(host_ts->tv_sec, &target_ts->tv_sec);
__get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
unlock_user_struct(target_ts, target_addr, 0);
return 0;
}
static inline abi_long host_to_target_timespec(abi_ulong target_addr,
struct timespec *host_ts)
{
struct target_timespec *target_ts;
if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0))
return -TARGET_EFAULT;
__put_user(host_ts->tv_sec, &target_ts->tv_sec);
__put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
unlock_user_struct(target_ts, target_addr, 1);
return 0;
}
static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec,
abi_ulong target_addr)
{
struct target_itimerspec *target_itspec;
if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) {
return -TARGET_EFAULT;
}
host_itspec->it_interval.tv_sec =
tswapal(target_itspec->it_interval.tv_sec);
host_itspec->it_interval.tv_nsec =
tswapal(target_itspec->it_interval.tv_nsec);
host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec);
host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec);
unlock_user_struct(target_itspec, target_addr, 1);
return 0;
}
static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
struct itimerspec *host_its)
{
struct target_itimerspec *target_itspec;
if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) {
return -TARGET_EFAULT;
}
target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec);
target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec);
target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec);
target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec);
unlock_user_struct(target_itspec, target_addr, 0);
return 0;
}
static inline abi_long target_to_host_timex(struct timex *host_tx,
abi_long target_addr)
{
struct target_timex *target_tx;
if (!lock_user_struct(VERIFY_READ, target_tx, target_addr, 1)) {
return -TARGET_EFAULT;
}
__get_user(host_tx->modes, &target_tx->modes);
__get_user(host_tx->offset, &target_tx->offset);
__get_user(host_tx->freq, &target_tx->freq);
__get_user(host_tx->maxerror, &target_tx->maxerror);
__get_user(host_tx->esterror, &target_tx->esterror);
__get_user(host_tx->status, &target_tx->status);
__get_user(host_tx->constant, &target_tx->constant);
__get_user(host_tx->precision, &target_tx->precision);
__get_user(host_tx->tolerance, &target_tx->tolerance);
__get_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
__get_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
__get_user(host_tx->tick, &target_tx->tick);
__get_user(host_tx->ppsfreq, &target_tx->ppsfreq);
__get_user(host_tx->jitter, &target_tx->jitter);
__get_user(host_tx->shift, &target_tx->shift);
__get_user(host_tx->stabil, &target_tx->stabil);
__get_user(host_tx->jitcnt, &target_tx->jitcnt);
__get_user(host_tx->calcnt, &target_tx->calcnt);
__get_user(host_tx->errcnt, &target_tx->errcnt);
__get_user(host_tx->stbcnt, &target_tx->stbcnt);
__get_user(host_tx->tai, &target_tx->tai);
unlock_user_struct(target_tx, target_addr, 0);
return 0;
}
static inline abi_long host_to_target_timex(abi_long target_addr,
struct timex *host_tx)
{
struct target_timex *target_tx;
if (!lock_user_struct(VERIFY_WRITE, target_tx, target_addr, 0)) {
return -TARGET_EFAULT;
}
__put_user(host_tx->modes, &target_tx->modes);
__put_user(host_tx->offset, &target_tx->offset);
__put_user(host_tx->freq, &target_tx->freq);
__put_user(host_tx->maxerror, &target_tx->maxerror);
__put_user(host_tx->esterror, &target_tx->esterror);
__put_user(host_tx->status, &target_tx->status);
__put_user(host_tx->constant, &target_tx->constant);
__put_user(host_tx->precision, &target_tx->precision);
__put_user(host_tx->tolerance, &target_tx->tolerance);
__put_user(host_tx->time.tv_sec, &target_tx->time.tv_sec);
__put_user(host_tx->time.tv_usec, &target_tx->time.tv_usec);
__put_user(host_tx->tick, &target_tx->tick);
__put_user(host_tx->ppsfreq, &target_tx->ppsfreq);
__put_user(host_tx->jitter, &target_tx->jitter);
__put_user(host_tx->shift, &target_tx->shift);
__put_user(host_tx->stabil, &target_tx->stabil);
__put_user(host_tx->jitcnt, &target_tx->jitcnt);
__put_user(host_tx->calcnt, &target_tx->calcnt);
__put_user(host_tx->errcnt, &target_tx->errcnt);
__put_user(host_tx->stbcnt, &target_tx->stbcnt);
__put_user(host_tx->tai, &target_tx->tai);
unlock_user_struct(target_tx, target_addr, 1);
return 0;
}
static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
abi_ulong target_addr)
{
struct target_sigevent *target_sevp;
if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
return -TARGET_EFAULT;
}
/* This union is awkward on 64 bit systems because it has a 32 bit
* integer and a pointer in it; we follow the conversion approach
* used for handling sigval types in signal.c so the guest should get
* the correct value back even if we did a 64 bit byteswap and it's
* using the 32 bit integer.
*/
host_sevp->sigev_value.sival_ptr =
(void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
host_sevp->sigev_signo =
target_to_host_signal(tswap32(target_sevp->sigev_signo));
host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid);
unlock_user_struct(target_sevp, target_addr, 1);
return 0;
}
#if defined(TARGET_NR_mlockall)
static inline int target_to_host_mlockall_arg(int arg)
{
int result = 0;
if (arg & TARGET_MLOCKALL_MCL_CURRENT) {
result |= MCL_CURRENT;
}
if (arg & TARGET_MLOCKALL_MCL_FUTURE) {
result |= MCL_FUTURE;
}
return result;
}
#endif
static inline abi_long host_to_target_stat64(void *cpu_env,
abi_ulong target_addr,
struct stat *host_st)
{
#if defined(TARGET_ARM) && defined(TARGET_ABI32)
if (((CPUARMState *)cpu_env)->eabi) {
struct target_eabi_stat64 *target_st;
if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
return -TARGET_EFAULT;
memset(target_st, 0, sizeof(struct target_eabi_stat64));
__put_user(host_st->st_dev, &target_st->st_dev);
__put_user(host_st->st_ino, &target_st->st_ino);
#ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
__put_user(host_st->st_ino, &target_st->__st_ino);
#endif
__put_user(host_st->st_mode, &target_st->st_mode);
__put_user(host_st->st_nlink, &target_st->st_nlink);
__put_user(host_st->st_uid, &target_st->st_uid);
__put_user(host_st->st_gid, &target_st->st_gid);
__put_user(host_st->st_rdev, &target_st->st_rdev);
__put_user(host_st->st_size, &target_st->st_size);
__put_user(host_st->st_blksize, &target_st->st_blksize);
__put_user(host_st->st_blocks, &target_st->st_blocks);
__put_user(host_st->st_atime, &target_st->target_st_atime);
__put_user(host_st->st_mtime, &target_st->target_st_mtime);
__put_user(host_st->st_ctime, &target_st->target_st_ctime);
unlock_user_struct(target_st, target_addr, 1);
} else
#endif
{
#if defined(TARGET_HAS_STRUCT_STAT64)
struct target_stat64 *target_st;
#else
struct target_stat *target_st;
#endif
if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
return -TARGET_EFAULT;
memset(target_st, 0, sizeof(*target_st));
__put_user(host_st->st_dev, &target_st->st_dev);
__put_user(host_st->st_ino, &target_st->st_ino);
#ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
__put_user(host_st->st_ino, &target_st->__st_ino);
#endif
__put_user(host_st->st_mode, &target_st->st_mode);
__put_user(host_st->st_nlink, &target_st->st_nlink);
__put_user(host_st->st_uid, &target_st->st_uid);
__put_user(host_st->st_gid, &target_st->st_gid);
__put_user(host_st->st_rdev, &target_st->st_rdev);
/* XXX: better use of kernel struct */
__put_user(host_st->st_size, &target_st->st_size);
__put_user(host_st->st_blksize, &target_st->st_blksize);
__put_user(host_st->st_blocks, &target_st->st_blocks);
__put_user(host_st->st_atime, &target_st->target_st_atime);
__put_user(host_st->st_mtime, &target_st->target_st_mtime);
__put_user(host_st->st_ctime, &target_st->target_st_ctime);
unlock_user_struct(target_st, target_addr, 1);
}
return 0;
}
/* ??? Using host futex calls even when target atomic operations
are not really atomic probably breaks things. However implementing
futexes locally would make futexes shared between multiple processes
tricky. However they're probably useless because guest atomic
operations won't work either. */
static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout,
target_ulong uaddr2, int val3)
{
struct timespec ts, *pts;
int base_op;
/* ??? We assume FUTEX_* constants are the same on both host
and target. */
#ifdef FUTEX_CMD_MASK
base_op = op & FUTEX_CMD_MASK;
#else
base_op = op;
#endif
switch (base_op) {
case FUTEX_WAIT:
case FUTEX_WAIT_BITSET:
if (timeout) {
pts = &ts;
target_to_host_timespec(pts, timeout);
} else {
pts = NULL;
}
return get_errno(safe_futex(g2h(uaddr), op, tswap32(val),
pts, NULL, val3));
case FUTEX_WAKE:
return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0));
case FUTEX_FD:
return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0));
case FUTEX_REQUEUE:
case FUTEX_CMP_REQUEUE:
case FUTEX_WAKE_OP:
/* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
TIMEOUT parameter is interpreted as a uint32_t by the kernel.
But the prototype takes a `struct timespec *'; insert casts
to satisfy the compiler. We do not need to tswap TIMEOUT
since it's not compared to guest memory. */
pts = (struct timespec *)(uintptr_t) timeout;
return get_errno(safe_futex(g2h(uaddr), op, val, pts,
g2h(uaddr2),
(base_op == FUTEX_CMP_REQUEUE
? tswap32(val3)
: val3)));
default:
return -TARGET_ENOSYS;
}
}
#if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
abi_long handle, abi_long mount_id,
abi_long flags)
{
struct file_handle *target_fh;
struct file_handle *fh;
int mid = 0;
abi_long ret;
char *name;
unsigned int size, total_size;
if (get_user_s32(size, handle)) {
return -TARGET_EFAULT;
}
name = lock_user_string(pathname);
if (!name) {
return -TARGET_EFAULT;
}
total_size = sizeof(struct file_handle) + size;
target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
if (!target_fh) {
unlock_user(name, pathname, 0);
return -TARGET_EFAULT;
}
fh = g_malloc0(total_size);
fh->handle_bytes = size;
ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
unlock_user(name, pathname, 0);
/* man name_to_handle_at(2):
* Other than the use of the handle_bytes field, the caller should treat
* the file_handle structure as an opaque data type
*/
memcpy(target_fh, fh, total_size);
target_fh->handle_bytes = tswap32(fh->handle_bytes);
target_fh->handle_type = tswap32(fh->handle_type);
g_free(fh);
unlock_user(target_fh, handle, total_size);
if (put_user_s32(mid, mount_id)) {
return -TARGET_EFAULT;
}
return ret;
}
#endif
#if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
abi_long flags)
{
struct file_handle *target_fh;
struct file_handle *fh;
unsigned int size, total_size;
abi_long ret;
if (get_user_s32(size, handle)) {
return -TARGET_EFAULT;
}
total_size = sizeof(struct file_handle) + size;
target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
if (!target_fh) {
return -TARGET_EFAULT;
}
fh = g_memdup(target_fh, total_size);
fh->handle_bytes = size;
fh->handle_type = tswap32(target_fh->handle_type);
ret = get_errno(open_by_handle_at(mount_fd, fh,
target_to_host_bitmask(flags, fcntl_flags_tbl)));
g_free(fh);
unlock_user(target_fh, handle, total_size);
return ret;
}
#endif
#if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
/* signalfd siginfo conversion */
static void
host_to_target_signalfd_siginfo(struct signalfd_siginfo *tinfo,
const struct signalfd_siginfo *info)
{
int sig = host_to_target_signal(info->ssi_signo);
/* linux/signalfd.h defines a ssi_addr_lsb
* not defined in sys/signalfd.h but used by some kernels
*/
#ifdef BUS_MCEERR_AO
if (tinfo->ssi_signo == SIGBUS &&
(tinfo->ssi_code == BUS_MCEERR_AR ||
tinfo->ssi_code == BUS_MCEERR_AO)) {
uint16_t *ssi_addr_lsb = (uint16_t *)(&info->ssi_addr + 1);
uint16_t *tssi_addr_lsb = (uint16_t *)(&tinfo->ssi_addr + 1);
*tssi_addr_lsb = tswap16(*ssi_addr_lsb);
}
#endif
tinfo->ssi_signo = tswap32(sig);
tinfo->ssi_errno = tswap32(tinfo->ssi_errno);
tinfo->ssi_code = tswap32(info->ssi_code);
tinfo->ssi_pid = tswap32(info->ssi_pid);
tinfo->ssi_uid = tswap32(info->ssi_uid);
tinfo->ssi_fd = tswap32(info->ssi_fd);
tinfo->ssi_tid = tswap32(info->ssi_tid);
tinfo->ssi_band = tswap32(info->ssi_band);
tinfo->ssi_overrun = tswap32(info->ssi_overrun);
tinfo->ssi_trapno = tswap32(info->ssi_trapno);
tinfo->ssi_status = tswap32(info->ssi_status);
tinfo->ssi_int = tswap32(info->ssi_int);
tinfo->ssi_ptr = tswap64(info->ssi_ptr);
tinfo->ssi_utime = tswap64(info->ssi_utime);
tinfo->ssi_stime = tswap64(info->ssi_stime);
tinfo->ssi_addr = tswap64(info->ssi_addr);
}
static abi_long host_to_target_data_signalfd(void *buf, size_t len)
{
int i;
for (i = 0; i < len; i += sizeof(struct signalfd_siginfo)) {
host_to_target_signalfd_siginfo(buf + i, buf + i);
}
return len;
}
static TargetFdTrans target_signalfd_trans = {
.host_to_target_data = host_to_target_data_signalfd,
};
static abi_long do_signalfd4(int fd, abi_long mask, int flags)
{
int host_flags;
target_sigset_t *target_mask;
sigset_t host_mask;
abi_long ret;
if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) {
return -TARGET_EINVAL;
}
if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
return -TARGET_EFAULT;
}
target_to_host_sigset(&host_mask, target_mask);
host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
ret = get_errno(signalfd(fd, &host_mask, host_flags));
if (ret >= 0) {
fd_trans_register(ret, &target_signalfd_trans);
}
unlock_user_struct(target_mask, mask, 0);
return ret;
}
#endif
/* Map host to target signal numbers for the wait family of syscalls.
Assume all other status bits are the same. */
int host_to_target_waitstatus(int status)
{
if (WIFSIGNALED(status)) {
return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
}
if (WIFSTOPPED(status)) {
return (host_to_target_signal(WSTOPSIG(status)) << 8)
| (status & 0xff);
}
return status;
}
static int open_self_cmdline(void *cpu_env, int fd)
{
CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
struct linux_binprm *bprm = ((TaskState *)cpu->opaque)->bprm;
int i;
for (i = 0; i < bprm->argc; i++) {
size_t len = strlen(bprm->argv[i]) + 1;
if (write(fd, bprm->argv[i], len) != len) {
return -1;
}
}
return 0;
}
static int open_self_maps(void *cpu_env, int fd)
{
CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
TaskState *ts = cpu->opaque;
FILE *fp;
char *line = NULL;
size_t len = 0;
ssize_t read;
fp = fopen("/proc/self/maps", "r");
if (fp == NULL) {
return -1;
}
while ((read = getline(&line, &len, fp)) != -1) {
int fields, dev_maj, dev_min, inode;
uint64_t min, max, offset;
char flag_r, flag_w, flag_x, flag_p;
char path[512] = "";
fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d"
" %512s", &min, &max, &flag_r, &flag_w, &flag_x,
&flag_p, &offset, &dev_maj, &dev_min, &inode, path);
if ((fields < 10) || (fields > 11)) {
continue;
}
if (h2g_valid(min)) {
int flags = page_get_flags(h2g(min));
max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX);
if (page_check_range(h2g(min), max - min, flags) == -1) {
continue;
}
if (h2g(min) == ts->info->stack_limit) {
pstrcpy(path, sizeof(path), " [stack]");
}
dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx
" %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n",
h2g(min), h2g(max - 1) + 1, flag_r, flag_w,
flag_x, flag_p, offset, dev_maj, dev_min, inode,
path[0] ? " " : "", path);
}
}
free(line);
fclose(fp);
return 0;
}
static int open_self_stat(void *cpu_env, int fd)
{
CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
TaskState *ts = cpu->opaque;
abi_ulong start_stack = ts->info->start_stack;
int i;
for (i = 0; i < 44; i++) {
char buf[128];
int len;
uint64_t val = 0;
if (i == 0) {
/* pid */
val = getpid();
snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
} else if (i == 1) {
/* app name */
snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]);
} else if (i == 27) {
/* stack bottom */
val = start_stack;
snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
} else {
/* for the rest, there is MasterCard */
snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' ');
}
len = strlen(buf);
if (write(fd, buf, len) != len) {
return -1;
}
}
return 0;
}
static int open_self_auxv(void *cpu_env, int fd)
{
CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
TaskState *ts = cpu->opaque;
abi_ulong auxv = ts->info->saved_auxv;
abi_ulong len = ts->info->auxv_len;
char *ptr;
/*
* Auxiliary vector is stored in target process stack.
* read in whole auxv vector and copy it to file
*/
ptr = lock_user(VERIFY_READ, auxv, len, 0);
if (ptr != NULL) {
while (len > 0) {
ssize_t r;
r = write(fd, ptr, len);
if (r <= 0) {
break;
}
len -= r;
ptr += r;
}
lseek(fd, 0, SEEK_SET);
unlock_user(ptr, auxv, len);
}
return 0;
}
static int is_proc_myself(const char *filename, const char *entry)
{
if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
filename += strlen("/proc/");
if (!strncmp(filename, "self/", strlen("self/"))) {
filename += strlen("self/");
} else if (*filename >= '1' && *filename <= '9') {
char myself[80];
snprintf(myself, sizeof(myself), "%d/", getpid());
if (!strncmp(filename, myself, strlen(myself))) {
filename += strlen(myself);
} else {
return 0;
}
} else {
return 0;
}
if (!strcmp(filename, entry)) {
return 1;
}
}
return 0;
}
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
static int is_proc(const char *filename, const char *entry)
{
return strcmp(filename, entry) == 0;
}
static int open_net_route(void *cpu_env, int fd)
{
FILE *fp;
char *line = NULL;
size_t len = 0;
ssize_t read;
fp = fopen("/proc/net/route", "r");
if (fp == NULL) {
return -1;
}
/* read header */
read = getline(&line, &len, fp);
dprintf(fd, "%s", line);
/* read routes */
while ((read = getline(&line, &len, fp)) != -1) {
char iface[16];
uint32_t dest, gw, mask;
unsigned int flags, refcnt, use, metric, mtu, window, irtt;
sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
iface, &dest, &gw, &flags, &refcnt, &use, &metric,
&mask, &mtu, &window, &irtt);
dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
metric, tswap32(mask), mtu, window, irtt);
}
free(line);
fclose(fp);
return 0;
}
#endif
static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
{
struct fake_open {
const char *filename;
int (*fill)(void *cpu_env, int fd);
int (*cmp)(const char *s1, const char *s2);
};
const struct fake_open *fake_open;
static const struct fake_open fakes[] = {
{ "maps", open_self_maps, is_proc_myself },
{ "stat", open_self_stat, is_proc_myself },
{ "auxv", open_self_auxv, is_proc_myself },
{ "cmdline", open_self_cmdline, is_proc_myself },
#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
{ "/proc/net/route", open_net_route, is_proc },
#endif
{ NULL, NULL, NULL }
};
if (is_proc_myself(pathname, "exe")) {
int execfd = qemu_getauxval(AT_EXECFD);
return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
}
for (fake_open = fakes; fake_open->filename; fake_open++) {
if (fake_open->cmp(pathname, fake_open->filename)) {
break;
}
}
if (fake_open->filename) {
const char *tmpdir;
char filename[PATH_MAX];
int fd, r;
/* create temporary file to map stat to */
tmpdir = getenv("TMPDIR");
if (!tmpdir)
tmpdir = "/tmp";
snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
fd = mkstemp(filename);
if (fd < 0) {
return fd;
}
unlink(filename);
if ((r = fake_open->fill(cpu_env, fd))) {
int e = errno;
close(fd);
errno = e;
return r;
}
lseek(fd, 0, SEEK_SET);
return fd;
}
return safe_openat(dirfd, path(pathname), flags, mode);
}
#define TIMER_MAGIC 0x0caf0000
#define TIMER_MAGIC_MASK 0xffff0000
/* Convert QEMU provided timer ID back to internal 16bit index format */
static target_timer_t get_timer_id(abi_long arg)
{
target_timer_t timerid = arg;
if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
return -TARGET_EINVAL;
}
timerid &= 0xffff;
if (timerid >= ARRAY_SIZE(g_posix_timers)) {
return -TARGET_EINVAL;
}
return timerid;
}
static abi_long swap_data_eventfd(void *buf, size_t len)
{
uint64_t *counter = buf;
int i;
if (len < sizeof(uint64_t)) {
return -EINVAL;
}
for (i = 0; i < len; i += sizeof(uint64_t)) {
*counter = tswap64(*counter);
counter++;
}
return len;
}
static TargetFdTrans target_eventfd_trans = {
.host_to_target_data = swap_data_eventfd,
.target_to_host_data = swap_data_eventfd,
};
#if (defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)) || \
(defined(CONFIG_INOTIFY1) && defined(TARGET_NR_inotify_init1) && \
defined(__NR_inotify_init1))
static abi_long host_to_target_data_inotify(void *buf, size_t len)
{
struct inotify_event *ev;
int i;
uint32_t name_len;
for (i = 0; i < len; i += sizeof(struct inotify_event) + name_len) {
ev = (struct inotify_event *)((char *)buf + i);
name_len = ev->len;
ev->wd = tswap32(ev->wd);
ev->mask = tswap32(ev->mask);
ev->cookie = tswap32(ev->cookie);
ev->len = tswap32(name_len);
}
return len;
}
static TargetFdTrans target_inotify_trans = {
.host_to_target_data = host_to_target_data_inotify,
};
#endif
static int target_to_host_cpu_mask(unsigned long *host_mask,
size_t host_size,
abi_ulong target_addr,
size_t target_size)
{
unsigned target_bits = sizeof(abi_ulong) * 8;
unsigned host_bits = sizeof(*host_mask) * 8;
abi_ulong *target_mask;
unsigned i, j;
assert(host_size >= target_size);
target_mask = lock_user(VERIFY_READ, target_addr, target_size, 1);
if (!target_mask) {
return -TARGET_EFAULT;
}
memset(host_mask, 0, host_size);
for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
unsigned bit = i * target_bits;
abi_ulong val;
__get_user(val, &target_mask[i]);
for (j = 0; j < target_bits; j++, bit++) {
if (val & (1UL << j)) {
host_mask[bit / host_bits] |= 1UL << (bit % host_bits);
}
}
}
unlock_user(target_mask, target_addr, 0);
return 0;
}
static int host_to_target_cpu_mask(const unsigned long *host_mask,
size_t host_size,
abi_ulong target_addr,
size_t target_size)
{
unsigned target_bits = sizeof(abi_ulong) * 8;
unsigned host_bits = sizeof(*host_mask) * 8;
abi_ulong *target_mask;
unsigned i, j;
assert(host_size >= target_size);
target_mask = lock_user(VERIFY_WRITE, target_addr, target_size, 0);
if (!target_mask) {
return -TARGET_EFAULT;
}
for (i = 0 ; i < target_size / sizeof(abi_ulong); i++) {
unsigned bit = i * target_bits;
abi_ulong val = 0;
for (j = 0; j < target_bits; j++, bit++) {
if (host_mask[bit / host_bits] & (1UL << (bit % host_bits))) {
val |= 1UL << j;
}
}
__put_user(val, &target_mask[i]);
}
unlock_user(target_mask, target_addr, target_size);
return 0;
}
/* do_syscall() should always have a single exit point at the end so
that actions, such as logging of syscall results, can be performed.
All errnos that do_syscall() returns must be -TARGET_. */
abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
abi_long arg2, abi_long arg3, abi_long arg4,
abi_long arg5, abi_long arg6, abi_long arg7,
abi_long arg8)
{
CPUState *cpu = ENV_GET_CPU(cpu_env);
abi_long ret;
struct stat st;
struct statfs stfs;
void *p;
#if defined(DEBUG_ERESTARTSYS)
/* Debug-only code for exercising the syscall-restart code paths
* in the per-architecture cpu main loops: restart every syscall
* the guest makes once before letting it through.
*/
{
static int flag;
flag = !flag;
if (flag) {
return -TARGET_ERESTARTSYS;
}
}
#endif
#ifdef DEBUG
gemu_log("syscall %d", num);
#endif
trace_guest_user_syscall(cpu, num, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8);
if(do_strace)
print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6);
switch(num) {
case TARGET_NR_exit:
/* In old applications this may be used to implement _exit(2).
However in threaded applictions it is used for thread termination,
and _exit_group is used for application termination.
Do thread termination if we have more then one thread. */
if (block_signals()) {
ret = -TARGET_ERESTARTSYS;
break;
}
cpu_list_lock();
if (CPU_NEXT(first_cpu)) {
TaskState *ts;
/* Remove the CPU from the list. */
QTAILQ_REMOVE(&cpus, cpu, node);
cpu_list_unlock();
ts = cpu->opaque;
if (ts->child_tidptr) {
put_user_u32(0, ts->child_tidptr);
sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX,
NULL, NULL, 0);
}
thread_cpu = NULL;
object_unref(OBJECT(cpu));
g_free(ts);
rcu_unregister_thread();
pthread_exit(NULL);
}
cpu_list_unlock();
#ifdef TARGET_GPROF
_mcleanup();
#endif
gdb_exit(cpu_env, arg1);
_exit(arg1);
ret = 0; /* avoid warning */
break;
case TARGET_NR_read:
if (arg3 == 0)
ret = 0;
else {
if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
goto efault;
ret = get_errno(safe_read(arg1, p, arg3));
if (ret >= 0 &&
fd_trans_host_to_target_data(arg1)) {
ret = fd_trans_host_to_target_data(arg1)(p, ret);
}
unlock_user(p, arg2, ret);
}
break;
case TARGET_NR_write:
if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
goto efault;
if (fd_trans_target_to_host_data(arg1)) {
void *copy = g_malloc(arg3);
memcpy(copy, p, arg3);
ret = fd_trans_target_to_host_data(arg1)(copy, arg3);
if (ret >= 0) {
ret = get_errno(safe_write(arg1, copy, ret));
}
g_free(copy);
} else {
ret = get_errno(safe_write(arg1, p, arg3));
}
unlock_user(p, arg2, 0);
break;
#ifdef TARGET_NR_open
case TARGET_NR_open:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
target_to_host_bitmask(arg2, fcntl_flags_tbl),
arg3));
fd_trans_unregister(ret);
unlock_user(p, arg1, 0);
break;
#endif
case TARGET_NR_openat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(do_openat(cpu_env, arg1, p,
target_to_host_bitmask(arg3, fcntl_flags_tbl),
arg4));
fd_trans_unregister(ret);
unlock_user(p, arg2, 0);
break;
#if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
case TARGET_NR_name_to_handle_at:
ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
break;
#endif
#if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
case TARGET_NR_open_by_handle_at:
ret = do_open_by_handle_at(arg1, arg2, arg3);
fd_trans_unregister(ret);
break;
#endif
case TARGET_NR_close:
fd_trans_unregister(arg1);
ret = get_errno(close(arg1));
break;
case TARGET_NR_brk:
ret = do_brk(arg1);
break;
#ifdef TARGET_NR_fork
case TARGET_NR_fork:
ret = get_errno(do_fork(cpu_env, TARGET_SIGCHLD, 0, 0, 0, 0));
break;
#endif
#ifdef TARGET_NR_waitpid
case TARGET_NR_waitpid:
{
int status;
ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
if (!is_error(ret) && arg2 && ret
&& put_user_s32(host_to_target_waitstatus(status), arg2))
goto efault;
}
break;
#endif
#ifdef TARGET_NR_waitid
case TARGET_NR_waitid:
{
siginfo_t info;
info.si_pid = 0;
ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
if (!is_error(ret) && arg3 && info.si_pid != 0) {
if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
goto efault;
host_to_target_siginfo(p, &info);
unlock_user(p, arg3, sizeof(target_siginfo_t));
}
}
break;
#endif
#ifdef TARGET_NR_creat /* not on alpha */
case TARGET_NR_creat:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(creat(p, arg2));
fd_trans_unregister(ret);
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_link
case TARGET_NR_link:
{
void * p2;
p = lock_user_string(arg1);
p2 = lock_user_string(arg2);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(link(p, p2));
unlock_user(p2, arg2, 0);
unlock_user(p, arg1, 0);
}
break;
#endif
#if defined(TARGET_NR_linkat)
case TARGET_NR_linkat:
{
void * p2 = NULL;
if (!arg2 || !arg4)
goto efault;
p = lock_user_string(arg2);
p2 = lock_user_string(arg4);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
unlock_user(p, arg2, 0);
unlock_user(p2, arg4, 0);
}
break;
#endif
#ifdef TARGET_NR_unlink
case TARGET_NR_unlink:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(unlink(p));
unlock_user(p, arg1, 0);
break;
#endif
#if defined(TARGET_NR_unlinkat)
case TARGET_NR_unlinkat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(unlinkat(arg1, p, arg3));
unlock_user(p, arg2, 0);
break;
#endif
case TARGET_NR_execve:
{
char **argp, **envp;
int argc, envc;
abi_ulong gp;
abi_ulong guest_argp;
abi_ulong guest_envp;
abi_ulong addr;
char **q;
int total_size = 0;
argc = 0;
guest_argp = arg2;
for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
if (get_user_ual(addr, gp))
goto efault;
if (!addr)
break;
argc++;
}
envc = 0;
guest_envp = arg3;
for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
if (get_user_ual(addr, gp))
goto efault;
if (!addr)
break;
envc++;
}
argp = g_new0(char *, argc + 1);
envp = g_new0(char *, envc + 1);
for (gp = guest_argp, q = argp; gp;
gp += sizeof(abi_ulong), q++) {
if (get_user_ual(addr, gp))
goto execve_efault;
if (!addr)
break;
if (!(*q = lock_user_string(addr)))
goto execve_efault;
total_size += strlen(*q) + 1;
}
*q = NULL;
for (gp = guest_envp, q = envp; gp;
gp += sizeof(abi_ulong), q++) {
if (get_user_ual(addr, gp))
goto execve_efault;
if (!addr)
break;
if (!(*q = lock_user_string(addr)))
goto execve_efault;
total_size += strlen(*q) + 1;
}
*q = NULL;
if (!(p = lock_user_string(arg1)))
goto execve_efault;
/* Although execve() is not an interruptible syscall it is
* a special case where we must use the safe_syscall wrapper:
* if we allow a signal to happen before we make the host
* syscall then we will 'lose' it, because at the point of
* execve the process leaves QEMU's control. So we use the
* safe syscall wrapper to ensure that we either take the
* signal as a guest signal, or else it does not happen
* before the execve completes and makes it the other
* program's problem.
*/
ret = get_errno(safe_execve(p, argp, envp));
unlock_user(p, arg1, 0);
goto execve_end;
execve_efault:
ret = -TARGET_EFAULT;
execve_end:
for (gp = guest_argp, q = argp; *q;
gp += sizeof(abi_ulong), q++) {
if (get_user_ual(addr, gp)
|| !addr)
break;
unlock_user(*q, addr, 0);
}
for (gp = guest_envp, q = envp; *q;
gp += sizeof(abi_ulong), q++) {
if (get_user_ual(addr, gp)
|| !addr)
break;
unlock_user(*q, addr, 0);
}
g_free(argp);
g_free(envp);
}
break;
case TARGET_NR_chdir:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(chdir(p));
unlock_user(p, arg1, 0);
break;
#ifdef TARGET_NR_time
case TARGET_NR_time:
{
time_t host_time;
ret = get_errno(time(&host_time));
if (!is_error(ret)
&& arg1
&& put_user_sal(host_time, arg1))
goto efault;
}
break;
#endif
#ifdef TARGET_NR_mknod
case TARGET_NR_mknod:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(mknod(p, arg2, arg3));
unlock_user(p, arg1, 0);
break;
#endif
#if defined(TARGET_NR_mknodat)
case TARGET_NR_mknodat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(mknodat(arg1, p, arg3, arg4));
unlock_user(p, arg2, 0);
break;
#endif
#ifdef TARGET_NR_chmod
case TARGET_NR_chmod:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(chmod(p, arg2));
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_break
case TARGET_NR_break:
goto unimplemented;
#endif
#ifdef TARGET_NR_oldstat
case TARGET_NR_oldstat:
goto unimplemented;
#endif
case TARGET_NR_lseek:
ret = get_errno(lseek(arg1, arg2, arg3));
break;
#if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
/* Alpha specific */
case TARGET_NR_getxpid:
((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
ret = get_errno(getpid());
break;
#endif
#ifdef TARGET_NR_getpid
case TARGET_NR_getpid:
ret = get_errno(getpid());
break;
#endif
case TARGET_NR_mount:
{
/* need to look at the data field */
void *p2, *p3;
if (arg1) {
p = lock_user_string(arg1);
if (!p) {
goto efault;
}
} else {
p = NULL;
}
p2 = lock_user_string(arg2);
if (!p2) {
if (arg1) {
unlock_user(p, arg1, 0);
}
goto efault;
}
if (arg3) {
p3 = lock_user_string(arg3);
if (!p3) {
if (arg1) {
unlock_user(p, arg1, 0);
}
unlock_user(p2, arg2, 0);
goto efault;
}
} else {
p3 = NULL;
}
/* FIXME - arg5 should be locked, but it isn't clear how to
* do that since it's not guaranteed to be a NULL-terminated
* string.
*/
if (!arg5) {
ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
} else {
ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5));
}
ret = get_errno(ret);
if (arg1) {
unlock_user(p, arg1, 0);
}
unlock_user(p2, arg2, 0);
if (arg3) {
unlock_user(p3, arg3, 0);
}
}
break;
#ifdef TARGET_NR_umount
case TARGET_NR_umount:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(umount(p));
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_stime /* not on alpha */
case TARGET_NR_stime:
{
time_t host_time;
if (get_user_sal(host_time, arg1))
goto efault;
ret = get_errno(stime(&host_time));
}
break;
#endif
case TARGET_NR_ptrace:
goto unimplemented;
#ifdef TARGET_NR_alarm /* not on alpha */
case TARGET_NR_alarm:
ret = alarm(arg1);
break;
#endif
#ifdef TARGET_NR_oldfstat
case TARGET_NR_oldfstat:
goto unimplemented;
#endif
#ifdef TARGET_NR_pause /* not on alpha */
case TARGET_NR_pause:
if (!block_signals()) {
sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
}
ret = -TARGET_EINTR;
break;
#endif
#ifdef TARGET_NR_utime
case TARGET_NR_utime:
{
struct utimbuf tbuf, *host_tbuf;
struct target_utimbuf *target_tbuf;
if (arg2) {
if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
goto efault;
tbuf.actime = tswapal(target_tbuf->actime);
tbuf.modtime = tswapal(target_tbuf->modtime);
unlock_user_struct(target_tbuf, arg2, 0);
host_tbuf = &tbuf;
} else {
host_tbuf = NULL;
}
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(utime(p, host_tbuf));
unlock_user(p, arg1, 0);
}
break;
#endif
#ifdef TARGET_NR_utimes
case TARGET_NR_utimes:
{
struct timeval *tvp, tv[2];
if (arg2) {
if (copy_from_user_timeval(&tv[0], arg2)
|| copy_from_user_timeval(&tv[1],
arg2 + sizeof(struct target_timeval)))
goto efault;
tvp = tv;
} else {
tvp = NULL;
}
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(utimes(p, tvp));
unlock_user(p, arg1, 0);
}
break;
#endif
#if defined(TARGET_NR_futimesat)
case TARGET_NR_futimesat:
{
struct timeval *tvp, tv[2];
if (arg3) {
if (copy_from_user_timeval(&tv[0], arg3)
|| copy_from_user_timeval(&tv[1],
arg3 + sizeof(struct target_timeval)))
goto efault;
tvp = tv;
} else {
tvp = NULL;
}
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(futimesat(arg1, path(p), tvp));
unlock_user(p, arg2, 0);
}
break;
#endif
#ifdef TARGET_NR_stty
case TARGET_NR_stty:
goto unimplemented;
#endif
#ifdef TARGET_NR_gtty
case TARGET_NR_gtty:
goto unimplemented;
#endif
#ifdef TARGET_NR_access
case TARGET_NR_access:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(access(path(p), arg2));
unlock_user(p, arg1, 0);
break;
#endif
#if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
case TARGET_NR_faccessat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(faccessat(arg1, p, arg3, 0));
unlock_user(p, arg2, 0);
break;
#endif
#ifdef TARGET_NR_nice /* not on alpha */
case TARGET_NR_nice:
ret = get_errno(nice(arg1));
break;
#endif
#ifdef TARGET_NR_ftime
case TARGET_NR_ftime:
goto unimplemented;
#endif
case TARGET_NR_sync:
sync();
ret = 0;
break;
#if defined(TARGET_NR_syncfs) && defined(CONFIG_SYNCFS)
case TARGET_NR_syncfs:
ret = get_errno(syncfs(arg1));
break;
#endif
case TARGET_NR_kill:
ret = get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
break;
#ifdef TARGET_NR_rename
case TARGET_NR_rename:
{
void *p2;
p = lock_user_string(arg1);
p2 = lock_user_string(arg2);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(rename(p, p2));
unlock_user(p2, arg2, 0);
unlock_user(p, arg1, 0);
}
break;
#endif
#if defined(TARGET_NR_renameat)
case TARGET_NR_renameat:
{
void *p2;
p = lock_user_string(arg2);
p2 = lock_user_string(arg4);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(renameat(arg1, p, arg3, p2));
unlock_user(p2, arg4, 0);
unlock_user(p, arg2, 0);
}
break;
#endif
#if defined(TARGET_NR_renameat2)
case TARGET_NR_renameat2:
{
void *p2;
p = lock_user_string(arg2);
p2 = lock_user_string(arg4);
if (!p || !p2) {
ret = -TARGET_EFAULT;
} else {
ret = get_errno(sys_renameat2(arg1, p, arg3, p2, arg5));
}
unlock_user(p2, arg4, 0);
unlock_user(p, arg2, 0);
}
break;
#endif
#ifdef TARGET_NR_mkdir
case TARGET_NR_mkdir:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(mkdir(p, arg2));
unlock_user(p, arg1, 0);
break;
#endif
#if defined(TARGET_NR_mkdirat)
case TARGET_NR_mkdirat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(mkdirat(arg1, p, arg3));
unlock_user(p, arg2, 0);
break;
#endif
#ifdef TARGET_NR_rmdir
case TARGET_NR_rmdir:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(rmdir(p));
unlock_user(p, arg1, 0);
break;
#endif
case TARGET_NR_dup:
ret = get_errno(dup(arg1));
if (ret >= 0) {
fd_trans_dup(arg1, ret);
}
break;
#ifdef TARGET_NR_pipe
case TARGET_NR_pipe:
ret = do_pipe(cpu_env, arg1, 0, 0);
break;
#endif
#ifdef TARGET_NR_pipe2
case TARGET_NR_pipe2:
ret = do_pipe(cpu_env, arg1,
target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
break;
#endif
case TARGET_NR_times:
{
struct target_tms *tmsp;
struct tms tms;
ret = get_errno(times(&tms));
if (arg1) {
tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
if (!tmsp)
goto efault;
tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
}
if (!is_error(ret))
ret = host_to_target_clock_t(ret);
}
break;
#ifdef TARGET_NR_prof
case TARGET_NR_prof:
goto unimplemented;
#endif
#ifdef TARGET_NR_signal
case TARGET_NR_signal:
goto unimplemented;
#endif
case TARGET_NR_acct:
if (arg1 == 0) {
ret = get_errno(acct(NULL));
} else {
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(acct(path(p)));
unlock_user(p, arg1, 0);
}
break;
#ifdef TARGET_NR_umount2
case TARGET_NR_umount2:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(umount2(p, arg2));
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_lock
case TARGET_NR_lock:
goto unimplemented;
#endif
case TARGET_NR_ioctl:
ret = do_ioctl(arg1, arg2, arg3);
break;
case TARGET_NR_fcntl:
ret = do_fcntl(arg1, arg2, arg3);
break;
#ifdef TARGET_NR_mpx
case TARGET_NR_mpx:
goto unimplemented;
#endif
case TARGET_NR_setpgid:
ret = get_errno(setpgid(arg1, arg2));
break;
#ifdef TARGET_NR_ulimit
case TARGET_NR_ulimit:
goto unimplemented;
#endif
#ifdef TARGET_NR_oldolduname
case TARGET_NR_oldolduname:
goto unimplemented;
#endif
case TARGET_NR_umask:
ret = get_errno(umask(arg1));
break;
case TARGET_NR_chroot:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(chroot(p));
unlock_user(p, arg1, 0);
break;
#ifdef TARGET_NR_ustat
case TARGET_NR_ustat:
goto unimplemented;
#endif
#ifdef TARGET_NR_dup2
case TARGET_NR_dup2:
ret = get_errno(dup2(arg1, arg2));
if (ret >= 0) {
fd_trans_dup(arg1, arg2);
}
break;
#endif
#if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
case TARGET_NR_dup3:
{
int host_flags;
if ((arg3 & ~TARGET_O_CLOEXEC) != 0) {
return -EINVAL;
}
host_flags = target_to_host_bitmask(arg3, fcntl_flags_tbl);
ret = get_errno(dup3(arg1, arg2, host_flags));
if (ret >= 0) {
fd_trans_dup(arg1, arg2);
}
break;
}
#endif
#ifdef TARGET_NR_getppid /* not on alpha */
case TARGET_NR_getppid:
ret = get_errno(getppid());
break;
#endif
#ifdef TARGET_NR_getpgrp
case TARGET_NR_getpgrp:
ret = get_errno(getpgrp());
break;
#endif
case TARGET_NR_setsid:
ret = get_errno(setsid());
break;
#ifdef TARGET_NR_sigaction
case TARGET_NR_sigaction:
{
#if defined(TARGET_ALPHA)
struct target_sigaction act, oact, *pact = 0;
struct target_old_sigaction *old_act;
if (arg2) {
if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
goto efault;
act._sa_handler = old_act->_sa_handler;
target_siginitset(&act.sa_mask, old_act->sa_mask);
act.sa_flags = old_act->sa_flags;
act.sa_restorer = 0;
unlock_user_struct(old_act, arg2, 0);
pact = &act;
}
ret = get_errno(do_sigaction(arg1, pact, &oact));
if (!is_error(ret) && arg3) {
if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
goto efault;
old_act->_sa_handler = oact._sa_handler;
old_act->sa_mask = oact.sa_mask.sig[0];
old_act->sa_flags = oact.sa_flags;
unlock_user_struct(old_act, arg3, 1);
}
#elif defined(TARGET_MIPS)
struct target_sigaction act, oact, *pact, *old_act;
if (arg2) {
if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
goto efault;
act._sa_handler = old_act->_sa_handler;
target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
act.sa_flags = old_act->sa_flags;
unlock_user_struct(old_act, arg2, 0);
pact = &act;
} else {
pact = NULL;
}
ret = get_errno(do_sigaction(arg1, pact, &oact));
if (!is_error(ret) && arg3) {
if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
goto efault;
old_act->_sa_handler = oact._sa_handler;
old_act->sa_flags = oact.sa_flags;
old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
old_act->sa_mask.sig[1] = 0;
old_act->sa_mask.sig[2] = 0;
old_act->sa_mask.sig[3] = 0;
unlock_user_struct(old_act, arg3, 1);
}
#else
struct target_old_sigaction *old_act;
struct target_sigaction act, oact, *pact;
if (arg2) {
if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
goto efault;
act._sa_handler = old_act->_sa_handler;
target_siginitset(&act.sa_mask, old_act->sa_mask);
act.sa_flags = old_act->sa_flags;
act.sa_restorer = old_act->sa_restorer;
unlock_user_struct(old_act, arg2, 0);
pact = &act;
} else {
pact = NULL;
}
ret = get_errno(do_sigaction(arg1, pact, &oact));
if (!is_error(ret) && arg3) {
if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
goto efault;
old_act->_sa_handler = oact._sa_handler;
old_act->sa_mask = oact.sa_mask.sig[0];
old_act->sa_flags = oact.sa_flags;
old_act->sa_restorer = oact.sa_restorer;
unlock_user_struct(old_act, arg3, 1);
}
#endif
}
break;
#endif
case TARGET_NR_rt_sigaction:
{
#if defined(TARGET_ALPHA)
/* For Alpha and SPARC this is a 5 argument syscall, with
* a 'restorer' parameter which must be copied into the
* sa_restorer field of the sigaction struct.
* For Alpha that 'restorer' is arg5; for SPARC it is arg4,
* and arg5 is the sigsetsize.
* Alpha also has a separate rt_sigaction struct that it uses
* here; SPARC uses the usual sigaction struct.
*/
struct target_rt_sigaction *rt_act;
struct target_sigaction act, oact, *pact = 0;
if (arg4 != sizeof(target_sigset_t)) {
ret = -TARGET_EINVAL;
break;
}
if (arg2) {
if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1))
goto efault;
act._sa_handler = rt_act->_sa_handler;
act.sa_mask = rt_act->sa_mask;
act.sa_flags = rt_act->sa_flags;
act.sa_restorer = arg5;
unlock_user_struct(rt_act, arg2, 0);
pact = &act;
}
ret = get_errno(do_sigaction(arg1, pact, &oact));
if (!is_error(ret) && arg3) {
if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0))
goto efault;
rt_act->_sa_handler = oact._sa_handler;
rt_act->sa_mask = oact.sa_mask;
rt_act->sa_flags = oact.sa_flags;
unlock_user_struct(rt_act, arg3, 1);
}
#else
#ifdef TARGET_SPARC
target_ulong restorer = arg4;
target_ulong sigsetsize = arg5;
#else
target_ulong sigsetsize = arg4;
#endif
struct target_sigaction *act;
struct target_sigaction *oact;
if (sigsetsize != sizeof(target_sigset_t)) {
ret = -TARGET_EINVAL;
break;
}
if (arg2) {
if (!lock_user_struct(VERIFY_READ, act, arg2, 1)) {
goto efault;
}
#ifdef TARGET_SPARC
act->sa_restorer = restorer;
#endif
} else {
act = NULL;
}
if (arg3) {
if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
ret = -TARGET_EFAULT;
goto rt_sigaction_fail;
}
} else
oact = NULL;
ret = get_errno(do_sigaction(arg1, act, oact));
rt_sigaction_fail:
if (act)
unlock_user_struct(act, arg2, 0);
if (oact)
unlock_user_struct(oact, arg3, 1);
#endif
}
break;
#ifdef TARGET_NR_sgetmask /* not on alpha */
case TARGET_NR_sgetmask:
{
sigset_t cur_set;
abi_ulong target_set;
ret = do_sigprocmask(0, NULL, &cur_set);
if (!ret) {
host_to_target_old_sigset(&target_set, &cur_set);
ret = target_set;
}
}
break;
#endif
#ifdef TARGET_NR_ssetmask /* not on alpha */
case TARGET_NR_ssetmask:
{
sigset_t set, oset;
abi_ulong target_set = arg1;
target_to_host_old_sigset(&set, &target_set);
ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
if (!ret) {
host_to_target_old_sigset(&target_set, &oset);
ret = target_set;
}
}
break;
#endif
#ifdef TARGET_NR_sigprocmask
case TARGET_NR_sigprocmask:
{
#if defined(TARGET_ALPHA)
sigset_t set, oldset;
abi_ulong mask;
int how;
switch (arg1) {
case TARGET_SIG_BLOCK:
how = SIG_BLOCK;
break;
case TARGET_SIG_UNBLOCK:
how = SIG_UNBLOCK;
break;
case TARGET_SIG_SETMASK:
how = SIG_SETMASK;
break;
default:
ret = -TARGET_EINVAL;
goto fail;
}
mask = arg2;
target_to_host_old_sigset(&set, &mask);
ret = do_sigprocmask(how, &set, &oldset);
if (!is_error(ret)) {
host_to_target_old_sigset(&mask, &oldset);
ret = mask;
((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
}
#else
sigset_t set, oldset, *set_ptr;
int how;
if (arg2) {
switch (arg1) {
case TARGET_SIG_BLOCK:
how = SIG_BLOCK;
break;
case TARGET_SIG_UNBLOCK:
how = SIG_UNBLOCK;
break;
case TARGET_SIG_SETMASK:
how = SIG_SETMASK;
break;
default:
ret = -TARGET_EINVAL;
goto fail;
}
if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_old_sigset(&set, p);
unlock_user(p, arg2, 0);
set_ptr = &set;
} else {
how = 0;
set_ptr = NULL;
}
ret = do_sigprocmask(how, set_ptr, &oldset);
if (!is_error(ret) && arg3) {
if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
goto efault;
host_to_target_old_sigset(p, &oldset);
unlock_user(p, arg3, sizeof(target_sigset_t));
}
#endif
}
break;
#endif
case TARGET_NR_rt_sigprocmask:
{
int how = arg1;
sigset_t set, oldset, *set_ptr;
if (arg4 != sizeof(target_sigset_t)) {
ret = -TARGET_EINVAL;
break;
}
if (arg2) {
switch(how) {
case TARGET_SIG_BLOCK:
how = SIG_BLOCK;
break;
case TARGET_SIG_UNBLOCK:
how = SIG_UNBLOCK;
break;
case TARGET_SIG_SETMASK:
how = SIG_SETMASK;
break;
default:
ret = -TARGET_EINVAL;
goto fail;
}
if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_sigset(&set, p);
unlock_user(p, arg2, 0);
set_ptr = &set;
} else {
how = 0;
set_ptr = NULL;
}
ret = do_sigprocmask(how, set_ptr, &oldset);
if (!is_error(ret) && arg3) {
if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
goto efault;
host_to_target_sigset(p, &oldset);
unlock_user(p, arg3, sizeof(target_sigset_t));
}
}
break;
#ifdef TARGET_NR_sigpending
case TARGET_NR_sigpending:
{
sigset_t set;
ret = get_errno(sigpending(&set));
if (!is_error(ret)) {
if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
goto efault;
host_to_target_old_sigset(p, &set);
unlock_user(p, arg1, sizeof(target_sigset_t));
}
}
break;
#endif
case TARGET_NR_rt_sigpending:
{
sigset_t set;
/* Yes, this check is >, not != like most. We follow the kernel's
* logic and it does it like this because it implements
* NR_sigpending through the same code path, and in that case
* the old_sigset_t is smaller in size.
*/
if (arg2 > sizeof(target_sigset_t)) {
ret = -TARGET_EINVAL;
break;
}
ret = get_errno(sigpending(&set));
if (!is_error(ret)) {
if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
goto efault;
host_to_target_sigset(p, &set);
unlock_user(p, arg1, sizeof(target_sigset_t));
}
}
break;
#ifdef TARGET_NR_sigsuspend
case TARGET_NR_sigsuspend:
{
TaskState *ts = cpu->opaque;
#if defined(TARGET_ALPHA)
abi_ulong mask = arg1;
target_to_host_old_sigset(&ts->sigsuspend_mask, &mask);
#else
if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_old_sigset(&ts->sigsuspend_mask, p);
unlock_user(p, arg1, 0);
#endif
ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
SIGSET_T_SIZE));
if (ret != -TARGET_ERESTARTSYS) {
ts->in_sigsuspend = 1;
}
}
break;
#endif
case TARGET_NR_rt_sigsuspend:
{
TaskState *ts = cpu->opaque;
if (arg2 != sizeof(target_sigset_t)) {
ret = -TARGET_EINVAL;
break;
}
if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_sigset(&ts->sigsuspend_mask, p);
unlock_user(p, arg1, 0);
ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
SIGSET_T_SIZE));
if (ret != -TARGET_ERESTARTSYS) {
ts->in_sigsuspend = 1;
}
}
break;
case TARGET_NR_rt_sigtimedwait:
{
sigset_t set;
struct timespec uts, *puts;
siginfo_t uinfo;
if (arg4 != sizeof(target_sigset_t)) {
ret = -TARGET_EINVAL;
break;
}
if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
goto efault;
target_to_host_sigset(&set, p);
unlock_user(p, arg1, 0);
if (arg3) {
puts = &uts;
target_to_host_timespec(puts, arg3);
} else {
puts = NULL;
}
ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
SIGSET_T_SIZE));
if (!is_error(ret)) {
if (arg2) {
p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
0);
if (!p) {
goto efault;
}
host_to_target_siginfo(p, &uinfo);
unlock_user(p, arg2, sizeof(target_siginfo_t));
}
ret = host_to_target_signal(ret);
}
}
break;
case TARGET_NR_rt_sigqueueinfo:
{
siginfo_t uinfo;
p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
if (!p) {
goto efault;
}
target_to_host_siginfo(&uinfo, p);
unlock_user(p, arg3, 0);
ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
}
break;
case TARGET_NR_rt_tgsigqueueinfo:
{
siginfo_t uinfo;
p = lock_user(VERIFY_READ, arg4, sizeof(target_siginfo_t), 1);
if (!p) {
goto efault;
}
target_to_host_siginfo(&uinfo, p);
unlock_user(p, arg4, 0);
ret = get_errno(sys_rt_tgsigqueueinfo(arg1, arg2, arg3, &uinfo));
}
break;
#ifdef TARGET_NR_sigreturn
case TARGET_NR_sigreturn:
if (block_signals()) {
ret = -TARGET_ERESTARTSYS;
} else {
ret = do_sigreturn(cpu_env);
}
break;
#endif
case TARGET_NR_rt_sigreturn:
if (block_signals()) {
ret = -TARGET_ERESTARTSYS;
} else {
ret = do_rt_sigreturn(cpu_env);
}
break;
case TARGET_NR_sethostname:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(sethostname(p, arg2));
unlock_user(p, arg1, 0);
break;
case TARGET_NR_setrlimit:
{
int resource = target_to_host_resource(arg1);
struct target_rlimit *target_rlim;
struct rlimit rlim;
if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
goto efault;
rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
unlock_user_struct(target_rlim, arg2, 0);
ret = get_errno(setrlimit(resource, &rlim));
}
break;
case TARGET_NR_getrlimit:
{
int resource = target_to_host_resource(arg1);
struct target_rlimit *target_rlim;
struct rlimit rlim;
ret = get_errno(getrlimit(resource, &rlim));
if (!is_error(ret)) {
if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
goto efault;
target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
unlock_user_struct(target_rlim, arg2, 1);
}
}
break;
case TARGET_NR_getrusage:
{
struct rusage rusage;
ret = get_errno(getrusage(arg1, &rusage));
if (!is_error(ret)) {
ret = host_to_target_rusage(arg2, &rusage);
}
}
break;
case TARGET_NR_gettimeofday:
{
struct timeval tv;
ret = get_errno(gettimeofday(&tv, NULL));
if (!is_error(ret)) {
if (copy_to_user_timeval(arg1, &tv))
goto efault;
}
}
break;
case TARGET_NR_settimeofday:
{
struct timeval tv, *ptv = NULL;
struct timezone tz, *ptz = NULL;
if (arg1) {
if (copy_from_user_timeval(&tv, arg1)) {
goto efault;
}
ptv = &tv;
}
if (arg2) {
if (copy_from_user_timezone(&tz, arg2)) {
goto efault;
}
ptz = &tz;
}
ret = get_errno(settimeofday(ptv, ptz));
}
break;
#if defined(TARGET_NR_select)
case TARGET_NR_select:
#if defined(TARGET_WANT_NI_OLD_SELECT)
/* some architectures used to have old_select here
* but now ENOSYS it.
*/
ret = -TARGET_ENOSYS;
#elif defined(TARGET_WANT_OLD_SYS_SELECT)
ret = do_old_select(arg1);
#else
ret = do_select(arg1, arg2, arg3, arg4, arg5);
#endif
break;
#endif
#ifdef TARGET_NR_pselect6
case TARGET_NR_pselect6:
{
abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
fd_set rfds, wfds, efds;
fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
struct timespec ts, *ts_ptr;
/*
* The 6th arg is actually two args smashed together,
* so we cannot use the C library.
*/
sigset_t set;
struct {
sigset_t *set;
size_t size;
} sig, *sig_ptr;
abi_ulong arg_sigset, arg_sigsize, *arg7;
target_sigset_t *target_sigset;
n = arg1;
rfd_addr = arg2;
wfd_addr = arg3;
efd_addr = arg4;
ts_addr = arg5;
ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
if (ret) {
goto fail;
}
ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
if (ret) {
goto fail;
}
ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
if (ret) {
goto fail;
}
/*
* This takes a timespec, and not a timeval, so we cannot
* use the do_select() helper ...
*/
if (ts_addr) {
if (target_to_host_timespec(&ts, ts_addr)) {
goto efault;
}
ts_ptr = &ts;
} else {
ts_ptr = NULL;
}
/* Extract the two packed args for the sigset */
if (arg6) {
sig_ptr = &sig;
sig.size = SIGSET_T_SIZE;
arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
if (!arg7) {
goto efault;
}
arg_sigset = tswapal(arg7[0]);
arg_sigsize = tswapal(arg7[1]);
unlock_user(arg7, arg6, 0);
if (arg_sigset) {
sig.set = &set;
if (arg_sigsize != sizeof(*target_sigset)) {
/* Like the kernel, we enforce correct size sigsets */
ret = -TARGET_EINVAL;
goto fail;
}
target_sigset = lock_user(VERIFY_READ, arg_sigset,
sizeof(*target_sigset), 1);
if (!target_sigset) {
goto efault;
}
target_to_host_sigset(&set, target_sigset);
unlock_user(target_sigset, arg_sigset, 0);
} else {
sig.set = NULL;
}
} else {
sig_ptr = NULL;
}
ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
ts_ptr, sig_ptr));
if (!is_error(ret)) {
if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
goto efault;
if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
goto efault;
if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
goto efault;
if (ts_addr && host_to_target_timespec(ts_addr, &ts))
goto efault;
}
}
break;
#endif
#ifdef TARGET_NR_symlink
case TARGET_NR_symlink:
{
void *p2;
p = lock_user_string(arg1);
p2 = lock_user_string(arg2);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(symlink(p, p2));
unlock_user(p2, arg2, 0);
unlock_user(p, arg1, 0);
}
break;
#endif
#if defined(TARGET_NR_symlinkat)
case TARGET_NR_symlinkat:
{
void *p2;
p = lock_user_string(arg1);
p2 = lock_user_string(arg3);
if (!p || !p2)
ret = -TARGET_EFAULT;
else
ret = get_errno(symlinkat(p, arg2, p2));
unlock_user(p2, arg3, 0);
unlock_user(p, arg1, 0);
}
break;
#endif
#ifdef TARGET_NR_oldlstat
case TARGET_NR_oldlstat:
goto unimplemented;
#endif
#ifdef TARGET_NR_readlink
case TARGET_NR_readlink:
{
void *p2;
p = lock_user_string(arg1);
p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
if (!p || !p2) {
ret = -TARGET_EFAULT;
} else if (!arg3) {
/* Short circuit this for the magic exe check. */
ret = -TARGET_EINVAL;
} else if (is_proc_myself((const char *)p, "exe")) {
char real[PATH_MAX], *temp;
temp = realpath(exec_path, real);
/* Return value is # of bytes that we wrote to the buffer. */
if (temp == NULL) {
ret = get_errno(-1);
} else {
/* Don't worry about sign mismatch as earlier mapping
* logic would have thrown a bad address error. */
ret = MIN(strlen(real), arg3);
/* We cannot NUL terminate the string. */
memcpy(p2, real, ret);
}
} else {
ret = get_errno(readlink(path(p), p2, arg3));
}
unlock_user(p2, arg2, ret);
unlock_user(p, arg1, 0);
}
break;
#endif
#if defined(TARGET_NR_readlinkat)
case TARGET_NR_readlinkat:
{
void *p2;
p = lock_user_string(arg2);
p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
if (!p || !p2) {
ret = -TARGET_EFAULT;
} else if (is_proc_myself((const char *)p, "exe")) {
char real[PATH_MAX], *temp;
temp = realpath(exec_path, real);
ret = temp == NULL ? get_errno(-1) : strlen(real) ;
snprintf((char *)p2, arg4, "%s", real);
} else {
ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
}
unlock_user(p2, arg3, ret);
unlock_user(p, arg2, 0);
}
break;
#endif
#ifdef TARGET_NR_uselib
case TARGET_NR_uselib:
goto unimplemented;
#endif
#ifdef TARGET_NR_swapon
case TARGET_NR_swapon:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(swapon(p, arg2));
unlock_user(p, arg1, 0);
break;
#endif
case TARGET_NR_reboot:
if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
/* arg4 must be ignored in all other cases */
p = lock_user_string(arg4);
if (!p) {
goto efault;
}
ret = get_errno(reboot(arg1, arg2, arg3, p));
unlock_user(p, arg4, 0);
} else {
ret = get_errno(reboot(arg1, arg2, arg3, NULL));
}
break;
#ifdef TARGET_NR_readdir
case TARGET_NR_readdir:
goto unimplemented;
#endif
#ifdef TARGET_NR_mmap
case TARGET_NR_mmap:
#if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
(defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
|| defined(TARGET_S390X)
{
abi_ulong *v;
abi_ulong v1, v2, v3, v4, v5, v6;
if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
goto efault;
v1 = tswapal(v[0]);
v2 = tswapal(v[1]);
v3 = tswapal(v[2]);
v4 = tswapal(v[3]);
v5 = tswapal(v[4]);
v6 = tswapal(v[5]);
unlock_user(v, arg1, 0);
ret = get_errno(target_mmap(v1, v2, v3,
target_to_host_bitmask(v4, mmap_flags_tbl),
v5, v6));
}
#else
ret = get_errno(target_mmap(arg1, arg2, arg3,
target_to_host_bitmask(arg4, mmap_flags_tbl),
arg5,
arg6));
#endif
break;
#endif
#ifdef TARGET_NR_mmap2
case TARGET_NR_mmap2:
#ifndef MMAP_SHIFT
#define MMAP_SHIFT 12
#endif
ret = get_errno(target_mmap(arg1, arg2, arg3,
target_to_host_bitmask(arg4, mmap_flags_tbl),
arg5,
arg6 << MMAP_SHIFT));
break;
#endif
case TARGET_NR_munmap:
ret = get_errno(target_munmap(arg1, arg2));
break;
case TARGET_NR_mprotect:
{
TaskState *ts = cpu->opaque;
/* Special hack to detect libc making the stack executable. */
if ((arg3 & PROT_GROWSDOWN)
&& arg1 >= ts->info->stack_limit
&& arg1 <= ts->info->start_stack) {
arg3 &= ~PROT_GROWSDOWN;
arg2 = arg2 + arg1 - ts->info->stack_limit;
arg1 = ts->info->stack_limit;
}
}
ret = get_errno(target_mprotect(arg1, arg2, arg3));
break;
#ifdef TARGET_NR_mremap
case TARGET_NR_mremap:
ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
break;
#endif
/* ??? msync/mlock/munlock are broken for softmmu. */
#ifdef TARGET_NR_msync
case TARGET_NR_msync:
ret = get_errno(msync(g2h(arg1), arg2, arg3));
break;
#endif
#ifdef TARGET_NR_mlock
case TARGET_NR_mlock:
ret = get_errno(mlock(g2h(arg1), arg2));
break;
#endif
#ifdef TARGET_NR_munlock
case TARGET_NR_munlock:
ret = get_errno(munlock(g2h(arg1), arg2));
break;
#endif
#ifdef TARGET_NR_mlockall
case TARGET_NR_mlockall:
ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
break;
#endif
#ifdef TARGET_NR_munlockall
case TARGET_NR_munlockall:
ret = get_errno(munlockall());
break;
#endif
case TARGET_NR_truncate:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(truncate(p, arg2));
unlock_user(p, arg1, 0);
break;
case TARGET_NR_ftruncate:
ret = get_errno(ftruncate(arg1, arg2));
break;
case TARGET_NR_fchmod:
ret = get_errno(fchmod(arg1, arg2));
break;
#if defined(TARGET_NR_fchmodat)
case TARGET_NR_fchmodat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(fchmodat(arg1, p, arg3, 0));
unlock_user(p, arg2, 0);
break;
#endif
case TARGET_NR_getpriority:
/* Note that negative values are valid for getpriority, so we must
differentiate based on errno settings. */
errno = 0;
ret = getpriority(arg1, arg2);
if (ret == -1 && errno != 0) {
ret = -host_to_target_errno(errno);
break;
}
#ifdef TARGET_ALPHA
/* Return value is the unbiased priority. Signal no error. */
((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
#else
/* Return value is a biased priority to avoid negative numbers. */
ret = 20 - ret;
#endif
break;
case TARGET_NR_setpriority:
ret = get_errno(setpriority(arg1, arg2, arg3));
break;
#ifdef TARGET_NR_profil
case TARGET_NR_profil:
goto unimplemented;
#endif
case TARGET_NR_statfs:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(statfs(path(p), &stfs));
unlock_user(p, arg1, 0);
convert_statfs:
if (!is_error(ret)) {
struct target_statfs *target_stfs;
if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
goto efault;
__put_user(stfs.f_type, &target_stfs->f_type);
__put_user(stfs.f_bsize, &target_stfs->f_bsize);
__put_user(stfs.f_blocks, &target_stfs->f_blocks);
__put_user(stfs.f_bfree, &target_stfs->f_bfree);
__put_user(stfs.f_bavail, &target_stfs->f_bavail);
__put_user(stfs.f_files, &target_stfs->f_files);
__put_user(stfs.f_ffree, &target_stfs->f_ffree);
__put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
__put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
__put_user(stfs.f_namelen, &target_stfs->f_namelen);
__put_user(stfs.f_frsize, &target_stfs->f_frsize);
memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
unlock_user_struct(target_stfs, arg2, 1);
}
break;
case TARGET_NR_fstatfs:
ret = get_errno(fstatfs(arg1, &stfs));
goto convert_statfs;
#ifdef TARGET_NR_statfs64
case TARGET_NR_statfs64:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(statfs(path(p), &stfs));
unlock_user(p, arg1, 0);
convert_statfs64:
if (!is_error(ret)) {
struct target_statfs64 *target_stfs;
if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
goto efault;
__put_user(stfs.f_type, &target_stfs->f_type);
__put_user(stfs.f_bsize, &target_stfs->f_bsize);
__put_user(stfs.f_blocks, &target_stfs->f_blocks);
__put_user(stfs.f_bfree, &target_stfs->f_bfree);
__put_user(stfs.f_bavail, &target_stfs->f_bavail);
__put_user(stfs.f_files, &target_stfs->f_files);
__put_user(stfs.f_ffree, &target_stfs->f_ffree);
__put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
__put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
__put_user(stfs.f_namelen, &target_stfs->f_namelen);
__put_user(stfs.f_frsize, &target_stfs->f_frsize);
memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
unlock_user_struct(target_stfs, arg3, 1);
}
break;
case TARGET_NR_fstatfs64:
ret = get_errno(fstatfs(arg1, &stfs));
goto convert_statfs64;
#endif
#ifdef TARGET_NR_ioperm
case TARGET_NR_ioperm:
goto unimplemented;
#endif
#ifdef TARGET_NR_socketcall
case TARGET_NR_socketcall:
ret = do_socketcall(arg1, arg2);
break;
#endif
#ifdef TARGET_NR_accept
case TARGET_NR_accept:
ret = do_accept4(arg1, arg2, arg3, 0);
break;
#endif
#ifdef TARGET_NR_accept4
case TARGET_NR_accept4:
ret = do_accept4(arg1, arg2, arg3, arg4);
break;
#endif
#ifdef TARGET_NR_bind
case TARGET_NR_bind:
ret = do_bind(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_connect
case TARGET_NR_connect:
ret = do_connect(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_getpeername
case TARGET_NR_getpeername:
ret = do_getpeername(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_getsockname
case TARGET_NR_getsockname:
ret = do_getsockname(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_getsockopt
case TARGET_NR_getsockopt:
ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5);
break;
#endif
#ifdef TARGET_NR_listen
case TARGET_NR_listen:
ret = get_errno(listen(arg1, arg2));
break;
#endif
#ifdef TARGET_NR_recv
case TARGET_NR_recv:
ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
break;
#endif
#ifdef TARGET_NR_recvfrom
case TARGET_NR_recvfrom:
ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
break;
#endif
#ifdef TARGET_NR_recvmsg
case TARGET_NR_recvmsg:
ret = do_sendrecvmsg(arg1, arg2, arg3, 0);
break;
#endif
#ifdef TARGET_NR_send
case TARGET_NR_send:
ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0);
break;
#endif
#ifdef TARGET_NR_sendmsg
case TARGET_NR_sendmsg:
ret = do_sendrecvmsg(arg1, arg2, arg3, 1);
break;
#endif
#ifdef TARGET_NR_sendmmsg
case TARGET_NR_sendmmsg:
ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
break;
case TARGET_NR_recvmmsg:
ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
break;
#endif
#ifdef TARGET_NR_sendto
case TARGET_NR_sendto:
ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
break;
#endif
#ifdef TARGET_NR_shutdown
case TARGET_NR_shutdown:
ret = get_errno(shutdown(arg1, arg2));
break;
#endif
#if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
case TARGET_NR_getrandom:
p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
if (!p) {
goto efault;
}
ret = get_errno(getrandom(p, arg2, arg3));
unlock_user(p, arg1, ret);
break;
#endif
#ifdef TARGET_NR_socket
case TARGET_NR_socket:
ret = do_socket(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_socketpair
case TARGET_NR_socketpair:
ret = do_socketpair(arg1, arg2, arg3, arg4);
break;
#endif
#ifdef TARGET_NR_setsockopt
case TARGET_NR_setsockopt:
ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
break;
#endif
#if defined(TARGET_NR_syslog)
case TARGET_NR_syslog:
{
int len = arg2;
switch (arg1) {
case TARGET_SYSLOG_ACTION_CLOSE: /* Close log */
case TARGET_SYSLOG_ACTION_OPEN: /* Open log */
case TARGET_SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
case TARGET_SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging */
case TARGET_SYSLOG_ACTION_CONSOLE_ON: /* Enable logging */
case TARGET_SYSLOG_ACTION_CONSOLE_LEVEL: /* Set messages level */
case TARGET_SYSLOG_ACTION_SIZE_UNREAD: /* Number of chars */
case TARGET_SYSLOG_ACTION_SIZE_BUFFER: /* Size of the buffer */
{
ret = get_errno(sys_syslog((int)arg1, NULL, (int)arg3));
}
break;
case TARGET_SYSLOG_ACTION_READ: /* Read from log */
case TARGET_SYSLOG_ACTION_READ_CLEAR: /* Read/clear msgs */
case TARGET_SYSLOG_ACTION_READ_ALL: /* Read last messages */
{
ret = -TARGET_EINVAL;
if (len < 0) {
goto fail;
}
ret = 0;
if (len == 0) {
break;
}
p = lock_user(VERIFY_WRITE, arg2, arg3, 0);
if (!p) {
ret = -TARGET_EFAULT;
goto fail;
}
ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
unlock_user(p, arg2, arg3);
}
break;
default:
ret = -EINVAL;
break;
}
}
break;
#endif
case TARGET_NR_setitimer:
{
struct itimerval value, ovalue, *pvalue;
if (arg2) {
pvalue = &value;
if (copy_from_user_timeval(&pvalue->it_interval, arg2)
|| copy_from_user_timeval(&pvalue->it_value,
arg2 + sizeof(struct target_timeval)))
goto efault;
} else {
pvalue = NULL;
}
ret = get_errno(setitimer(arg1, pvalue, &ovalue));
if (!is_error(ret) && arg3) {
if (copy_to_user_timeval(arg3,
&ovalue.it_interval)
|| copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
&ovalue.it_value))
goto efault;
}
}
break;
case TARGET_NR_getitimer:
{
struct itimerval value;
ret = get_errno(getitimer(arg1, &value));
if (!is_error(ret) && arg2) {
if (copy_to_user_timeval(arg2,
&value.it_interval)
|| copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
&value.it_value))
goto efault;
}
}
break;
#ifdef TARGET_NR_stat
case TARGET_NR_stat:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(stat(path(p), &st));
unlock_user(p, arg1, 0);
goto do_stat;
#endif
#ifdef TARGET_NR_lstat
case TARGET_NR_lstat:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(lstat(path(p), &st));
unlock_user(p, arg1, 0);
goto do_stat;
#endif
case TARGET_NR_fstat:
{
ret = get_errno(fstat(arg1, &st));
#if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
do_stat:
#endif
if (!is_error(ret)) {
struct target_stat *target_st;
if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
goto efault;
memset(target_st, 0, sizeof(*target_st));
__put_user(st.st_dev, &target_st->st_dev);
__put_user(st.st_ino, &target_st->st_ino);
__put_user(st.st_mode, &target_st->st_mode);
__put_user(st.st_uid, &target_st->st_uid);
__put_user(st.st_gid, &target_st->st_gid);
__put_user(st.st_nlink, &target_st->st_nlink);
__put_user(st.st_rdev, &target_st->st_rdev);
__put_user(st.st_size, &target_st->st_size);
__put_user(st.st_blksize, &target_st->st_blksize);
__put_user(st.st_blocks, &target_st->st_blocks);
__put_user(st.st_atime, &target_st->target_st_atime);
__put_user(st.st_mtime, &target_st->target_st_mtime);
__put_user(st.st_ctime, &target_st->target_st_ctime);
unlock_user_struct(target_st, arg2, 1);
}
}
break;
#ifdef TARGET_NR_olduname
case TARGET_NR_olduname:
goto unimplemented;
#endif
#ifdef TARGET_NR_iopl
case TARGET_NR_iopl:
goto unimplemented;
#endif
case TARGET_NR_vhangup:
ret = get_errno(vhangup());
break;
#ifdef TARGET_NR_idle
case TARGET_NR_idle:
goto unimplemented;
#endif
#ifdef TARGET_NR_syscall
case TARGET_NR_syscall:
ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
arg6, arg7, arg8, 0);
break;
#endif
case TARGET_NR_wait4:
{
int status;
abi_long status_ptr = arg2;
struct rusage rusage, *rusage_ptr;
abi_ulong target_rusage = arg4;
abi_long rusage_err;
if (target_rusage)
rusage_ptr = &rusage;
else
rusage_ptr = NULL;
ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
if (!is_error(ret)) {
if (status_ptr && ret) {
status = host_to_target_waitstatus(status);
if (put_user_s32(status, status_ptr))
goto efault;
}
if (target_rusage) {
rusage_err = host_to_target_rusage(target_rusage, &rusage);
if (rusage_err) {
ret = rusage_err;
}
}
}
}
break;
#ifdef TARGET_NR_swapoff
case TARGET_NR_swapoff:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(swapoff(p));
unlock_user(p, arg1, 0);
break;
#endif
case TARGET_NR_sysinfo:
{
struct target_sysinfo *target_value;
struct sysinfo value;
ret = get_errno(sysinfo(&value));
if (!is_error(ret) && arg1)
{
if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
goto efault;
__put_user(value.uptime, &target_value->uptime);
__put_user(value.loads[0], &target_value->loads[0]);
__put_user(value.loads[1], &target_value->loads[1]);
__put_user(value.loads[2], &target_value->loads[2]);
__put_user(value.totalram, &target_value->totalram);
__put_user(value.freeram, &target_value->freeram);
__put_user(value.sharedram, &target_value->sharedram);
__put_user(value.bufferram, &target_value->bufferram);
__put_user(value.totalswap, &target_value->totalswap);
__put_user(value.freeswap, &target_value->freeswap);
__put_user(value.procs, &target_value->procs);
__put_user(value.totalhigh, &target_value->totalhigh);
__put_user(value.freehigh, &target_value->freehigh);
__put_user(value.mem_unit, &target_value->mem_unit);
unlock_user_struct(target_value, arg1, 1);
}
}
break;
#ifdef TARGET_NR_ipc
case TARGET_NR_ipc:
ret = do_ipc(cpu_env, arg1, arg2, arg3, arg4, arg5, arg6);
break;
#endif
#ifdef TARGET_NR_semget
case TARGET_NR_semget:
ret = get_errno(semget(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_semop
case TARGET_NR_semop:
ret = do_semop(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_semctl
case TARGET_NR_semctl:
ret = do_semctl(arg1, arg2, arg3, arg4);
break;
#endif
#ifdef TARGET_NR_msgctl
case TARGET_NR_msgctl:
ret = do_msgctl(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_msgget
case TARGET_NR_msgget:
ret = get_errno(msgget(arg1, arg2));
break;
#endif
#ifdef TARGET_NR_msgrcv
case TARGET_NR_msgrcv:
ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5);
break;
#endif
#ifdef TARGET_NR_msgsnd
case TARGET_NR_msgsnd:
ret = do_msgsnd(arg1, arg2, arg3, arg4);
break;
#endif
#ifdef TARGET_NR_shmget
case TARGET_NR_shmget:
ret = get_errno(shmget(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_shmctl
case TARGET_NR_shmctl:
ret = do_shmctl(arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_shmat
case TARGET_NR_shmat:
ret = do_shmat(cpu_env, arg1, arg2, arg3);
break;
#endif
#ifdef TARGET_NR_shmdt
case TARGET_NR_shmdt:
ret = do_shmdt(arg1);
break;
#endif
case TARGET_NR_fsync:
ret = get_errno(fsync(arg1));
break;
case TARGET_NR_clone:
/* Linux manages to have three different orderings for its
* arguments to clone(); the BACKWARDS and BACKWARDS2 defines
* match the kernel's CONFIG_CLONE_* settings.
* Microblaze is further special in that it uses a sixth
* implicit argument to clone for the TLS pointer.
*/
#if defined(TARGET_MICROBLAZE)
ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
#elif defined(TARGET_CLONE_BACKWARDS)
ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
#elif defined(TARGET_CLONE_BACKWARDS2)
ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
#else
ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
#endif
break;
#ifdef __NR_exit_group
/* new thread calls */
case TARGET_NR_exit_group:
#ifdef TARGET_GPROF
_mcleanup();
#endif
gdb_exit(cpu_env, arg1);
ret = get_errno(exit_group(arg1));
break;
#endif
case TARGET_NR_setdomainname:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(setdomainname(p, arg2));
unlock_user(p, arg1, 0);
break;
case TARGET_NR_uname:
/* no need to transcode because we use the linux syscall */
{
struct new_utsname * buf;
if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
goto efault;
ret = get_errno(sys_uname(buf));
if (!is_error(ret)) {
/* Overwrite the native machine name with whatever is being
emulated. */
strcpy (buf->machine, cpu_to_uname_machine(cpu_env));
/* Allow the user to override the reported release. */
if (qemu_uname_release && *qemu_uname_release) {
g_strlcpy(buf->release, qemu_uname_release,
sizeof(buf->release));
}
}
unlock_user_struct(buf, arg1, 1);
}
break;
#ifdef TARGET_I386
case TARGET_NR_modify_ldt:
ret = do_modify_ldt(cpu_env, arg1, arg2, arg3);
break;
#if !defined(TARGET_X86_64)
case TARGET_NR_vm86old:
goto unimplemented;
case TARGET_NR_vm86:
ret = do_vm86(cpu_env, arg1, arg2);
break;
#endif
#endif
case TARGET_NR_adjtimex:
{
struct timex host_buf;
if (target_to_host_timex(&host_buf, arg1) != 0) {
goto efault;
}
ret = get_errno(adjtimex(&host_buf));
if (!is_error(ret)) {
if (host_to_target_timex(arg1, &host_buf) != 0) {
goto efault;
}
}
}
break;
#if defined(TARGET_NR_clock_adjtime) && defined(CONFIG_CLOCK_ADJTIME)
case TARGET_NR_clock_adjtime:
{
struct timex htx, *phtx = &htx;
if (target_to_host_timex(phtx, arg2) != 0) {
goto efault;
}
ret = get_errno(clock_adjtime(arg1, phtx));
if (!is_error(ret) && phtx) {
if (host_to_target_timex(arg2, phtx) != 0) {
goto efault;
}
}
}
break;
#endif
#ifdef TARGET_NR_create_module
case TARGET_NR_create_module:
#endif
case TARGET_NR_init_module:
case TARGET_NR_delete_module:
#ifdef TARGET_NR_get_kernel_syms
case TARGET_NR_get_kernel_syms:
#endif
goto unimplemented;
case TARGET_NR_quotactl:
goto unimplemented;
case TARGET_NR_getpgid:
ret = get_errno(getpgid(arg1));
break;
case TARGET_NR_fchdir:
ret = get_errno(fchdir(arg1));
break;
#ifdef TARGET_NR_bdflush /* not on x86_64 */
case TARGET_NR_bdflush:
goto unimplemented;
#endif
#ifdef TARGET_NR_sysfs
case TARGET_NR_sysfs:
goto unimplemented;
#endif
case TARGET_NR_personality:
ret = get_errno(personality(arg1));
break;
#ifdef TARGET_NR_afs_syscall
case TARGET_NR_afs_syscall:
goto unimplemented;
#endif
#ifdef TARGET_NR__llseek /* Not on alpha */
case TARGET_NR__llseek:
{
int64_t res;
#if !defined(__NR_llseek)
res = lseek(arg1, ((uint64_t)arg2 << 32) | (abi_ulong)arg3, arg5);
if (res == -1) {
ret = get_errno(res);
} else {
ret = 0;
}
#else
ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
#endif
if ((ret == 0) && put_user_s64(res, arg4)) {
goto efault;
}
}
break;
#endif
#ifdef TARGET_NR_getdents
case TARGET_NR_getdents:
#ifdef __NR_getdents
#if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
{
struct target_dirent *target_dirp;
struct linux_dirent *dirp;
abi_long count = arg3;
dirp = g_try_malloc(count);
if (!dirp) {
ret = -TARGET_ENOMEM;
goto fail;
}
ret = get_errno(sys_getdents(arg1, dirp, count));
if (!is_error(ret)) {
struct linux_dirent *de;
struct target_dirent *tde;
int len = ret;
int reclen, treclen;
int count1, tnamelen;
count1 = 0;
de = dirp;
if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
goto efault;
tde = target_dirp;
while (len > 0) {
reclen = de->d_reclen;
tnamelen = reclen - offsetof(struct linux_dirent, d_name);
assert(tnamelen >= 0);
treclen = tnamelen + offsetof(struct target_dirent, d_name);
assert(count1 + treclen <= count);
tde->d_reclen = tswap16(treclen);
tde->d_ino = tswapal(de->d_ino);
tde->d_off = tswapal(de->d_off);
memcpy(tde->d_name, de->d_name, tnamelen);
de = (struct linux_dirent *)((char *)de + reclen);
len -= reclen;
tde = (struct target_dirent *)((char *)tde + treclen);
count1 += treclen;
}
ret = count1;
unlock_user(target_dirp, arg2, ret);
}
g_free(dirp);
}
#else
{
struct linux_dirent *dirp;
abi_long count = arg3;
if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
goto efault;
ret = get_errno(sys_getdents(arg1, dirp, count));
if (!is_error(ret)) {
struct linux_dirent *de;
int len = ret;
int reclen;
de = dirp;
while (len > 0) {
reclen = de->d_reclen;
if (reclen > len)
break;
de->d_reclen = tswap16(reclen);
tswapls(&de->d_ino);
tswapls(&de->d_off);
de = (struct linux_dirent *)((char *)de + reclen);
len -= reclen;
}
}
unlock_user(dirp, arg2, ret);
}
#endif
#else
/* Implement getdents in terms of getdents64 */
{
struct linux_dirent64 *dirp;
abi_long count = arg3;
dirp = lock_user(VERIFY_WRITE, arg2, count, 0);
if (!dirp) {
goto efault;
}
ret = get_errno(sys_getdents64(arg1, dirp, count));
if (!is_error(ret)) {
/* Convert the dirent64 structs to target dirent. We do this
* in-place, since we can guarantee that a target_dirent is no
* larger than a dirent64; however this means we have to be
* careful to read everything before writing in the new format.
*/
struct linux_dirent64 *de;
struct target_dirent *tde;
int len = ret;
int tlen = 0;
de = dirp;
tde = (struct target_dirent *)dirp;
while (len > 0) {
int namelen, treclen;
int reclen = de->d_reclen;
uint64_t ino = de->d_ino;
int64_t off = de->d_off;
uint8_t type = de->d_type;
namelen = strlen(de->d_name);
treclen = offsetof(struct target_dirent, d_name)
+ namelen + 2;
treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long));
memmove(tde->d_name, de->d_name, namelen + 1);
tde->d_ino = tswapal(ino);
tde->d_off = tswapal(off);
tde->d_reclen = tswap16(treclen);
/* The target_dirent type is in what was formerly a padding
* byte at the end of the structure:
*/
*(((char *)tde) + treclen - 1) = type;
de = (struct linux_dirent64 *)((char *)de + reclen);
tde = (struct target_dirent *)((char *)tde + treclen);
len -= reclen;
tlen += treclen;
}
ret = tlen;
}
unlock_user(dirp, arg2, ret);
}
#endif
break;
#endif /* TARGET_NR_getdents */
#if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
case TARGET_NR_getdents64:
{
struct linux_dirent64 *dirp;
abi_long count = arg3;
if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
goto efault;
ret = get_errno(sys_getdents64(arg1, dirp, count));
if (!is_error(ret)) {
struct linux_dirent64 *de;
int len = ret;
int reclen;
de = dirp;
while (len > 0) {
reclen = de->d_reclen;
if (reclen > len)
break;
de->d_reclen = tswap16(reclen);
tswap64s((uint64_t *)&de->d_ino);
tswap64s((uint64_t *)&de->d_off);
de = (struct linux_dirent64 *)((char *)de + reclen);
len -= reclen;
}
}
unlock_user(dirp, arg2, ret);
}
break;
#endif /* TARGET_NR_getdents64 */
#if defined(TARGET_NR__newselect)
case TARGET_NR__newselect:
ret = do_select(arg1, arg2, arg3, arg4, arg5);
break;
#endif
#if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
# ifdef TARGET_NR_poll
case TARGET_NR_poll:
# endif
# ifdef TARGET_NR_ppoll
case TARGET_NR_ppoll:
# endif
{
struct target_pollfd *target_pfd;
unsigned int nfds = arg2;
struct pollfd *pfd;
unsigned int i;
pfd = NULL;
target_pfd = NULL;
if (nfds) {
if (nfds > (INT_MAX / sizeof(struct target_pollfd))) {
ret = -TARGET_EINVAL;
break;
}
target_pfd = lock_user(VERIFY_WRITE, arg1,
sizeof(struct target_pollfd) * nfds, 1);
if (!target_pfd) {
goto efault;
}
pfd = alloca(sizeof(struct pollfd) * nfds);
for (i = 0; i < nfds; i++) {
pfd[i].fd = tswap32(target_pfd[i].fd);
pfd[i].events = tswap16(target_pfd[i].events);
}
}
switch (num) {
# ifdef TARGET_NR_ppoll
case TARGET_NR_ppoll:
{
struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
target_sigset_t *target_set;
sigset_t _set, *set = &_set;
if (arg3) {
if (target_to_host_timespec(timeout_ts, arg3)) {
unlock_user(target_pfd, arg1, 0);
goto efault;
}
} else {
timeout_ts = NULL;
}
if (arg4) {
if (arg5 != sizeof(target_sigset_t)) {
unlock_user(target_pfd, arg1, 0);
ret = -TARGET_EINVAL;
break;
}
target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1);
if (!target_set) {
unlock_user(target_pfd, arg1, 0);
goto efault;
}
target_to_host_sigset(set, target_set);
} else {
set = NULL;
}
ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
set, SIGSET_T_SIZE));
if (!is_error(ret) && arg3) {
host_to_target_timespec(arg3, timeout_ts);
}
if (arg4) {
unlock_user(target_set, arg4, 0);
}
break;
}
# endif
# ifdef TARGET_NR_poll
case TARGET_NR_poll:
{
struct timespec ts, *pts;
if (arg3 >= 0) {
/* Convert ms to secs, ns */
ts.tv_sec = arg3 / 1000;
ts.tv_nsec = (arg3 % 1000) * 1000000LL;
pts = &ts;
} else {
/* -ve poll() timeout means "infinite" */
pts = NULL;
}
ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
break;
}
# endif
default:
g_assert_not_reached();
}
if (!is_error(ret)) {
for(i = 0; i < nfds; i++) {
target_pfd[i].revents = tswap16(pfd[i].revents);
}
}
unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
}
break;
#endif
case TARGET_NR_flock:
/* NOTE: the flock constant seems to be the same for every
Linux platform */
ret = get_errno(safe_flock(arg1, arg2));
break;
case TARGET_NR_readv:
{
struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
if (vec != NULL) {
ret = get_errno(safe_readv(arg1, vec, arg3));
unlock_iovec(vec, arg2, arg3, 1);
} else {
ret = -host_to_target_errno(errno);
}
}
break;
case TARGET_NR_writev:
{
struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
if (vec != NULL) {
ret = get_errno(safe_writev(arg1, vec, arg3));
unlock_iovec(vec, arg2, arg3, 0);
} else {
ret = -host_to_target_errno(errno);
}
}
break;
#if defined(TARGET_NR_preadv)
case TARGET_NR_preadv:
{
struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
if (vec != NULL) {
ret = get_errno(safe_preadv(arg1, vec, arg3, arg4, arg5));
unlock_iovec(vec, arg2, arg3, 1);
} else {
ret = -host_to_target_errno(errno);
}
}
break;
#endif
#if defined(TARGET_NR_pwritev)
case TARGET_NR_pwritev:
{
struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
if (vec != NULL) {
ret = get_errno(safe_pwritev(arg1, vec, arg3, arg4, arg5));
unlock_iovec(vec, arg2, arg3, 0);
} else {
ret = -host_to_target_errno(errno);
}
}
break;
#endif
case TARGET_NR_getsid:
ret = get_errno(getsid(arg1));
break;
#if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
case TARGET_NR_fdatasync:
ret = get_errno(fdatasync(arg1));
break;
#endif
#ifdef TARGET_NR__sysctl
case TARGET_NR__sysctl:
/* We don't implement this, but ENOTDIR is always a safe
return value. */
ret = -TARGET_ENOTDIR;
break;
#endif
case TARGET_NR_sched_getaffinity:
{
unsigned int mask_size;
unsigned long *mask;
/*
* sched_getaffinity needs multiples of ulong, so need to take
* care of mismatches between target ulong and host ulong sizes.
*/
if (arg2 & (sizeof(abi_ulong) - 1)) {
ret = -TARGET_EINVAL;
break;
}
mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
mask = alloca(mask_size);
memset(mask, 0, mask_size);
ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
if (!is_error(ret)) {
if (ret > arg2) {
/* More data returned than the caller's buffer will fit.
* This only happens if sizeof(abi_long) < sizeof(long)
* and the caller passed us a buffer holding an odd number
* of abi_longs. If the host kernel is actually using the
* extra 4 bytes then fail EINVAL; otherwise we can just
* ignore them and only copy the interesting part.
*/
int numcpus = sysconf(_SC_NPROCESSORS_CONF);
if (numcpus > arg2 * 8) {
ret = -TARGET_EINVAL;
break;
}
ret = arg2;
}
ret = host_to_target_cpu_mask(mask, mask_size, arg3, arg2);
}
}
break;
case TARGET_NR_sched_setaffinity:
{
unsigned int mask_size;
unsigned long *mask;
/*
* sched_setaffinity needs multiples of ulong, so need to take
* care of mismatches between target ulong and host ulong sizes.
*/
if (arg2 & (sizeof(abi_ulong) - 1)) {
ret = -TARGET_EINVAL;
break;
}
mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
mask = alloca(mask_size);
ret = target_to_host_cpu_mask(mask, mask_size, arg3, arg2);
if (ret) {
break;
}
ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
}
break;
case TARGET_NR_getcpu:
{
unsigned cpu, node;
ret = get_errno(sys_getcpu(arg1 ? &cpu : NULL,
arg2 ? &node : NULL,
NULL));
if (is_error(ret)) {
goto fail;
}
if (arg1 && put_user_u32(cpu, arg1)) {
goto efault;
}
if (arg2 && put_user_u32(node, arg2)) {
goto efault;
}
}
break;
case TARGET_NR_sched_setparam:
{
struct sched_param *target_schp;
struct sched_param schp;
if (arg2 == 0) {
return -TARGET_EINVAL;
}
if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
goto efault;
schp.sched_priority = tswap32(target_schp->sched_priority);
unlock_user_struct(target_schp, arg2, 0);
ret = get_errno(sched_setparam(arg1, &schp));
}
break;
case TARGET_NR_sched_getparam:
{
struct sched_param *target_schp;
struct sched_param schp;
if (arg2 == 0) {
return -TARGET_EINVAL;
}
ret = get_errno(sched_getparam(arg1, &schp));
if (!is_error(ret)) {
if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
goto efault;
target_schp->sched_priority = tswap32(schp.sched_priority);
unlock_user_struct(target_schp, arg2, 1);
}
}
break;
case TARGET_NR_sched_setscheduler:
{
struct sched_param *target_schp;
struct sched_param schp;
if (arg3 == 0) {
return -TARGET_EINVAL;
}
if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
goto efault;
schp.sched_priority = tswap32(target_schp->sched_priority);
unlock_user_struct(target_schp, arg3, 0);
ret = get_errno(sched_setscheduler(arg1, arg2, &schp));
}
break;
case TARGET_NR_sched_getscheduler:
ret = get_errno(sched_getscheduler(arg1));
break;
case TARGET_NR_sched_yield:
ret = get_errno(sched_yield());
break;
case TARGET_NR_sched_get_priority_max:
ret = get_errno(sched_get_priority_max(arg1));
break;
case TARGET_NR_sched_get_priority_min:
ret = get_errno(sched_get_priority_min(arg1));
break;
case TARGET_NR_sched_rr_get_interval:
{
struct timespec ts;
ret = get_errno(sched_rr_get_interval(arg1, &ts));
if (!is_error(ret)) {
ret = host_to_target_timespec(arg2, &ts);
}
}
break;
case TARGET_NR_nanosleep:
{
struct timespec req, rem;
target_to_host_timespec(&req, arg1);
ret = get_errno(safe_nanosleep(&req, &rem));
if (is_error(ret) && arg2) {
host_to_target_timespec(arg2, &rem);
}
}
break;
#ifdef TARGET_NR_query_module
case TARGET_NR_query_module:
goto unimplemented;
#endif
#ifdef TARGET_NR_nfsservctl
case TARGET_NR_nfsservctl:
goto unimplemented;
#endif
case TARGET_NR_prctl:
switch (arg1) {
case PR_GET_PDEATHSIG:
{
int deathsig;
ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
if (!is_error(ret) && arg2
&& put_user_ual(deathsig, arg2)) {
goto efault;
}
break;
}
#ifdef PR_GET_NAME
case PR_GET_NAME:
{
void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
if (!name) {
goto efault;
}
ret = get_errno(prctl(arg1, (unsigned long)name,
arg3, arg4, arg5));
unlock_user(name, arg2, 16);
break;
}
case PR_SET_NAME:
{
void *name = lock_user(VERIFY_READ, arg2, 16, 1);
if (!name) {
goto efault;
}
ret = get_errno(prctl(arg1, (unsigned long)name,
arg3, arg4, arg5));
unlock_user(name, arg2, 0);
break;
}
#endif
case PR_GET_SECCOMP:
case PR_SET_SECCOMP:
/* Disable seccomp to prevent the target disabling syscalls we
* need. */
ret = -TARGET_EINVAL;
break;
default:
/* Most prctl options have no pointer arguments */
ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
break;
}
break;
#ifdef TARGET_NR_arch_prctl
case TARGET_NR_arch_prctl:
#if defined(TARGET_I386) && !defined(TARGET_ABI32)
ret = do_arch_prctl(cpu_env, arg1, arg2);
break;
#else
goto unimplemented;
#endif
#endif
#ifdef TARGET_NR_pread64
case TARGET_NR_pread64:
if (regpairs_aligned(cpu_env, num)) {
arg4 = arg5;
arg5 = arg6;
}
if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
goto efault;
ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
unlock_user(p, arg2, ret);
break;
case TARGET_NR_pwrite64:
if (regpairs_aligned(cpu_env, num)) {
arg4 = arg5;
arg5 = arg6;
}
if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
goto efault;
ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
unlock_user(p, arg2, 0);
break;
#endif
case TARGET_NR_getcwd:
if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
goto efault;
ret = get_errno(sys_getcwd1(p, arg2));
unlock_user(p, arg1, ret);
break;
case TARGET_NR_capget:
case TARGET_NR_capset:
{
struct target_user_cap_header *target_header;
struct target_user_cap_data *target_data = NULL;
struct __user_cap_header_struct header;
struct __user_cap_data_struct data[2];
struct __user_cap_data_struct *dataptr = NULL;
int i, target_datalen;
int data_items = 1;
if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
goto efault;
}
header.version = tswap32(target_header->version);
header.pid = tswap32(target_header->pid);
if (header.version != _LINUX_CAPABILITY_VERSION) {
/* Version 2 and up takes pointer to two user_data structs */
data_items = 2;
}
target_datalen = sizeof(*target_data) * data_items;
if (arg2) {
if (num == TARGET_NR_capget) {
target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
} else {
target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
}
if (!target_data) {
unlock_user_struct(target_header, arg1, 0);
goto efault;
}
if (num == TARGET_NR_capset) {
for (i = 0; i < data_items; i++) {
data[i].effective = tswap32(target_data[i].effective);
data[i].permitted = tswap32(target_data[i].permitted);
data[i].inheritable = tswap32(target_data[i].inheritable);
}
}
dataptr = data;
}
if (num == TARGET_NR_capget) {
ret = get_errno(capget(&header, dataptr));
} else {
ret = get_errno(capset(&header, dataptr));
}
/* The kernel always updates version for both capget and capset */
target_header->version = tswap32(header.version);
unlock_user_struct(target_header, arg1, 1);
if (arg2) {
if (num == TARGET_NR_capget) {
for (i = 0; i < data_items; i++) {
target_data[i].effective = tswap32(data[i].effective);
target_data[i].permitted = tswap32(data[i].permitted);
target_data[i].inheritable = tswap32(data[i].inheritable);
}
unlock_user(target_data, arg2, target_datalen);
} else {
unlock_user(target_data, arg2, 0);
}
}
break;
}
case TARGET_NR_sigaltstack:
ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env));
break;
#ifdef CONFIG_SENDFILE
case TARGET_NR_sendfile:
{
off_t *offp = NULL;
off_t off;
if (arg3) {
ret = get_user_sal(off, arg3);
if (is_error(ret)) {
break;
}
offp = &off;
}
ret = get_errno(sendfile(arg1, arg2, offp, arg4));
if (!is_error(ret) && arg3) {
abi_long ret2 = put_user_sal(off, arg3);
if (is_error(ret2)) {
ret = ret2;
}
}
break;
}
#ifdef TARGET_NR_sendfile64
case TARGET_NR_sendfile64:
{
off_t *offp = NULL;
off_t off;
if (arg3) {
ret = get_user_s64(off, arg3);
if (is_error(ret)) {
break;
}
offp = &off;
}
ret = get_errno(sendfile(arg1, arg2, offp, arg4));
if (!is_error(ret) && arg3) {
abi_long ret2 = put_user_s64(off, arg3);
if (is_error(ret2)) {
ret = ret2;
}
}
break;
}
#endif
#else
case TARGET_NR_sendfile:
#ifdef TARGET_NR_sendfile64
case TARGET_NR_sendfile64:
#endif
goto unimplemented;
#endif
#ifdef TARGET_NR_getpmsg
case TARGET_NR_getpmsg:
goto unimplemented;
#endif
#ifdef TARGET_NR_putpmsg
case TARGET_NR_putpmsg:
goto unimplemented;
#endif
#ifdef TARGET_NR_vfork
case TARGET_NR_vfork:
ret = get_errno(do_fork(cpu_env,
CLONE_VFORK | CLONE_VM | TARGET_SIGCHLD,
0, 0, 0, 0));
break;
#endif
#ifdef TARGET_NR_ugetrlimit
case TARGET_NR_ugetrlimit:
{
struct rlimit rlim;
int resource = target_to_host_resource(arg1);
ret = get_errno(getrlimit(resource, &rlim));
if (!is_error(ret)) {
struct target_rlimit *target_rlim;
if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
goto efault;
target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
unlock_user_struct(target_rlim, arg2, 1);
}
break;
}
#endif
#ifdef TARGET_NR_truncate64
case TARGET_NR_truncate64:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_ftruncate64
case TARGET_NR_ftruncate64:
ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
break;
#endif
#ifdef TARGET_NR_stat64
case TARGET_NR_stat64:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(stat(path(p), &st));
unlock_user(p, arg1, 0);
if (!is_error(ret))
ret = host_to_target_stat64(cpu_env, arg2, &st);
break;
#endif
#ifdef TARGET_NR_lstat64
case TARGET_NR_lstat64:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(lstat(path(p), &st));
unlock_user(p, arg1, 0);
if (!is_error(ret))
ret = host_to_target_stat64(cpu_env, arg2, &st);
break;
#endif
#ifdef TARGET_NR_fstat64
case TARGET_NR_fstat64:
ret = get_errno(fstat(arg1, &st));
if (!is_error(ret))
ret = host_to_target_stat64(cpu_env, arg2, &st);
break;
#endif
#if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
#ifdef TARGET_NR_fstatat64
case TARGET_NR_fstatat64:
#endif
#ifdef TARGET_NR_newfstatat
case TARGET_NR_newfstatat:
#endif
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(fstatat(arg1, path(p), &st, arg4));
if (!is_error(ret))
ret = host_to_target_stat64(cpu_env, arg3, &st);
break;
#endif
#ifdef TARGET_NR_lchown
case TARGET_NR_lchown:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_getuid
case TARGET_NR_getuid:
ret = get_errno(high2lowuid(getuid()));
break;
#endif
#ifdef TARGET_NR_getgid
case TARGET_NR_getgid:
ret = get_errno(high2lowgid(getgid()));
break;
#endif
#ifdef TARGET_NR_geteuid
case TARGET_NR_geteuid:
ret = get_errno(high2lowuid(geteuid()));
break;
#endif
#ifdef TARGET_NR_getegid
case TARGET_NR_getegid:
ret = get_errno(high2lowgid(getegid()));
break;
#endif
case TARGET_NR_setreuid:
ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
break;
case TARGET_NR_setregid:
ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
break;
case TARGET_NR_getgroups:
{
int gidsetsize = arg1;
target_id *target_grouplist;
gid_t *grouplist;
int i;
grouplist = alloca(gidsetsize * sizeof(gid_t));
ret = get_errno(getgroups(gidsetsize, grouplist));
if (gidsetsize == 0)
break;
if (!is_error(ret)) {
target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
if (!target_grouplist)
goto efault;
for(i = 0;i < ret; i++)
target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
}
}
break;
case TARGET_NR_setgroups:
{
int gidsetsize = arg1;
target_id *target_grouplist;
gid_t *grouplist = NULL;
int i;
if (gidsetsize) {
grouplist = alloca(gidsetsize * sizeof(gid_t));
target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
if (!target_grouplist) {
ret = -TARGET_EFAULT;
goto fail;
}
for (i = 0; i < gidsetsize; i++) {
grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
}
unlock_user(target_grouplist, arg2, 0);
}
ret = get_errno(setgroups(gidsetsize, grouplist));
}
break;
case TARGET_NR_fchown:
ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
break;
#if defined(TARGET_NR_fchownat)
case TARGET_NR_fchownat:
if (!(p = lock_user_string(arg2)))
goto efault;
ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
low2highgid(arg4), arg5));
unlock_user(p, arg2, 0);
break;
#endif
#ifdef TARGET_NR_setresuid
case TARGET_NR_setresuid:
ret = get_errno(sys_setresuid(low2highuid(arg1),
low2highuid(arg2),
low2highuid(arg3)));
break;
#endif
#ifdef TARGET_NR_getresuid
case TARGET_NR_getresuid:
{
uid_t ruid, euid, suid;
ret = get_errno(getresuid(&ruid, &euid, &suid));
if (!is_error(ret)) {
if (put_user_id(high2lowuid(ruid), arg1)
|| put_user_id(high2lowuid(euid), arg2)
|| put_user_id(high2lowuid(suid), arg3))
goto efault;
}
}
break;
#endif
#ifdef TARGET_NR_getresgid
case TARGET_NR_setresgid:
ret = get_errno(sys_setresgid(low2highgid(arg1),
low2highgid(arg2),
low2highgid(arg3)));
break;
#endif
#ifdef TARGET_NR_getresgid
case TARGET_NR_getresgid:
{
gid_t rgid, egid, sgid;
ret = get_errno(getresgid(&rgid, &egid, &sgid));
if (!is_error(ret)) {
if (put_user_id(high2lowgid(rgid), arg1)
|| put_user_id(high2lowgid(egid), arg2)
|| put_user_id(high2lowgid(sgid), arg3))
goto efault;
}
}
break;
#endif
#ifdef TARGET_NR_chown
case TARGET_NR_chown:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
unlock_user(p, arg1, 0);
break;
#endif
case TARGET_NR_setuid:
ret = get_errno(sys_setuid(low2highuid(arg1)));
break;
case TARGET_NR_setgid:
ret = get_errno(sys_setgid(low2highgid(arg1)));
break;
case TARGET_NR_setfsuid:
ret = get_errno(setfsuid(arg1));
break;
case TARGET_NR_setfsgid:
ret = get_errno(setfsgid(arg1));
break;
#ifdef TARGET_NR_lchown32
case TARGET_NR_lchown32:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(lchown(p, arg2, arg3));
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_getuid32
case TARGET_NR_getuid32:
ret = get_errno(getuid());
break;
#endif
#if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
/* Alpha specific */
case TARGET_NR_getxuid:
{
uid_t euid;
euid=geteuid();
((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
}
ret = get_errno(getuid());
break;
#endif
#if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
/* Alpha specific */
case TARGET_NR_getxgid:
{
uid_t egid;
egid=getegid();
((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
}
ret = get_errno(getgid());
break;
#endif
#if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
/* Alpha specific */
case TARGET_NR_osf_getsysinfo:
ret = -TARGET_EOPNOTSUPP;
switch (arg1) {
case TARGET_GSI_IEEE_FP_CONTROL:
{
uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env);
/* Copied from linux ieee_fpcr_to_swcr. */
swcr = (fpcr >> 35) & SWCR_STATUS_MASK;
swcr |= (fpcr >> 36) & SWCR_MAP_DMZ;
swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV
| SWCR_TRAP_ENABLE_DZE
| SWCR_TRAP_ENABLE_OVF);
swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF
| SWCR_TRAP_ENABLE_INE);
swcr |= (fpcr >> 47) & SWCR_MAP_UMZ;
swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO;
if (put_user_u64 (swcr, arg2))
goto efault;
ret = 0;
}
break;
/* case GSI_IEEE_STATE_AT_SIGNAL:
-- Not implemented in linux kernel.
case GSI_UACPROC:
-- Retrieves current unaligned access state; not much used.
case GSI_PROC_TYPE:
-- Retrieves implver information; surely not used.
case GSI_GET_HWRPB:
-- Grabs a copy of the HWRPB; surely not used.
*/
}
break;
#endif
#if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
/* Alpha specific */
case TARGET_NR_osf_setsysinfo:
ret = -TARGET_EOPNOTSUPP;
switch (arg1) {
case TARGET_SSI_IEEE_FP_CONTROL:
{
uint64_t swcr, fpcr, orig_fpcr;
if (get_user_u64 (swcr, arg2)) {
goto efault;
}
orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
fpcr = orig_fpcr & FPCR_DYN_MASK;
/* Copied from linux ieee_swcr_to_fpcr. */
fpcr |= (swcr & SWCR_STATUS_MASK) << 35;
fpcr |= (swcr & SWCR_MAP_DMZ) << 36;
fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV
| SWCR_TRAP_ENABLE_DZE
| SWCR_TRAP_ENABLE_OVF)) << 48;
fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF
| SWCR_TRAP_ENABLE_INE)) << 57;
fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0);
fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41;
cpu_alpha_store_fpcr(cpu_env, fpcr);
ret = 0;
}
break;
case TARGET_SSI_IEEE_RAISE_EXCEPTION:
{
uint64_t exc, fpcr, orig_fpcr;
int si_code;
if (get_user_u64(exc, arg2)) {
goto efault;
}
orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
/* We only add to the exception status here. */
fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35);
cpu_alpha_store_fpcr(cpu_env, fpcr);
ret = 0;
/* Old exceptions are not signaled. */
fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK);
/* If any exceptions set by this call,
and are unmasked, send a signal. */
si_code = 0;
if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) {
si_code = TARGET_FPE_FLTRES;
}
if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) {
si_code = TARGET_FPE_FLTUND;
}
if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) {
si_code = TARGET_FPE_FLTOVF;
}
if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) {
si_code = TARGET_FPE_FLTDIV;
}
if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) {
si_code = TARGET_FPE_FLTINV;
}
if (si_code != 0) {
target_siginfo_t info;
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = si_code;
info._sifields._sigfault._addr
= ((CPUArchState *)cpu_env)->pc;
queue_signal((CPUArchState *)cpu_env, info.si_signo,
QEMU_SI_FAULT, &info);
}
}
break;
/* case SSI_NVPAIRS:
-- Used with SSIN_UACPROC to enable unaligned accesses.
case SSI_IEEE_STATE_AT_SIGNAL:
case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
-- Not implemented in linux kernel
*/
}
break;
#endif
#ifdef TARGET_NR_osf_sigprocmask
/* Alpha specific. */
case TARGET_NR_osf_sigprocmask:
{
abi_ulong mask;
int how;
sigset_t set, oldset;
switch(arg1) {
case TARGET_SIG_BLOCK:
how = SIG_BLOCK;
break;
case TARGET_SIG_UNBLOCK:
how = SIG_UNBLOCK;
break;
case TARGET_SIG_SETMASK:
how = SIG_SETMASK;
break;
default:
ret = -TARGET_EINVAL;
goto fail;
}
mask = arg2;
target_to_host_old_sigset(&set, &mask);
ret = do_sigprocmask(how, &set, &oldset);
if (!ret) {
host_to_target_old_sigset(&mask, &oldset);
ret = mask;
}
}
break;
#endif
#ifdef TARGET_NR_getgid32
case TARGET_NR_getgid32:
ret = get_errno(getgid());
break;
#endif
#ifdef TARGET_NR_geteuid32
case TARGET_NR_geteuid32:
ret = get_errno(geteuid());
break;
#endif
#ifdef TARGET_NR_getegid32
case TARGET_NR_getegid32:
ret = get_errno(getegid());
break;
#endif
#ifdef TARGET_NR_setreuid32
case TARGET_NR_setreuid32:
ret = get_errno(setreuid(arg1, arg2));
break;
#endif
#ifdef TARGET_NR_setregid32
case TARGET_NR_setregid32:
ret = get_errno(setregid(arg1, arg2));
break;
#endif
#ifdef TARGET_NR_getgroups32
case TARGET_NR_getgroups32:
{
int gidsetsize = arg1;
uint32_t *target_grouplist;
gid_t *grouplist;
int i;
grouplist = alloca(gidsetsize * sizeof(gid_t));
ret = get_errno(getgroups(gidsetsize, grouplist));
if (gidsetsize == 0)
break;
if (!is_error(ret)) {
target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
if (!target_grouplist) {
ret = -TARGET_EFAULT;
goto fail;
}
for(i = 0;i < ret; i++)
target_grouplist[i] = tswap32(grouplist[i]);
unlock_user(target_grouplist, arg2, gidsetsize * 4);
}
}
break;
#endif
#ifdef TARGET_NR_setgroups32
case TARGET_NR_setgroups32:
{
int gidsetsize = arg1;
uint32_t *target_grouplist;
gid_t *grouplist;
int i;
grouplist = alloca(gidsetsize * sizeof(gid_t));
target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
if (!target_grouplist) {
ret = -TARGET_EFAULT;
goto fail;
}
for(i = 0;i < gidsetsize; i++)
grouplist[i] = tswap32(target_grouplist[i]);
unlock_user(target_grouplist, arg2, 0);
ret = get_errno(setgroups(gidsetsize, grouplist));
}
break;
#endif
#ifdef TARGET_NR_fchown32
case TARGET_NR_fchown32:
ret = get_errno(fchown(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_setresuid32
case TARGET_NR_setresuid32:
ret = get_errno(sys_setresuid(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_getresuid32
case TARGET_NR_getresuid32:
{
uid_t ruid, euid, suid;
ret = get_errno(getresuid(&ruid, &euid, &suid));
if (!is_error(ret)) {
if (put_user_u32(ruid, arg1)
|| put_user_u32(euid, arg2)
|| put_user_u32(suid, arg3))
goto efault;
}
}
break;
#endif
#ifdef TARGET_NR_setresgid32
case TARGET_NR_setresgid32:
ret = get_errno(sys_setresgid(arg1, arg2, arg3));
break;
#endif
#ifdef TARGET_NR_getresgid32
case TARGET_NR_getresgid32:
{
gid_t rgid, egid, sgid;
ret = get_errno(getresgid(&rgid, &egid, &sgid));
if (!is_error(ret)) {
if (put_user_u32(rgid, arg1)
|| put_user_u32(egid, arg2)
|| put_user_u32(sgid, arg3))
goto efault;
}
}
break;
#endif
#ifdef TARGET_NR_chown32
case TARGET_NR_chown32:
if (!(p = lock_user_string(arg1)))
goto efault;
ret = get_errno(chown(p, arg2, arg3));
unlock_user(p, arg1, 0);
break;
#endif
#ifdef TARGET_NR_setuid32
case TARGET_NR_setuid32:
ret = get_errno(sys_setuid(arg1));
break;
#endif
#ifdef TARGET_NR_setgid32
case TARGET_NR_setgid32:
ret = get_errno(sys_setgid(arg1));
break;
#endif
#ifdef TARGET_NR_setfsuid32
case TARGET_NR_setfsuid32:
ret = get_errno(setfsuid(arg1));
break;
#endif
#ifdef TARGET_NR_setfsgid32
case TARGET_NR_setfsgid32:
ret = get_errno(setfsgid(arg1));
break;
#endif
case TARGET_NR_pivot_root:
goto unimplemented;
#ifdef TARGET_NR_mincore
case TARGET_NR_mincore:
{
void *a;
ret = -TARGET_ENOMEM;
a = lock_user(VERIFY_READ, arg1, arg2, 0);
if (!a) {
goto fail;
}
ret = -TARGET_EFAULT;
p = lock_user_string(arg3);
if (!p) {
goto mincore_fail;
}
ret = get_errno(mincore(a, arg2, p));
unlock_user(p, arg3, ret);
mincore_fail:
unlock_user(a, arg1, 0);
}
break;
#endif
#ifdef TARGET_NR_arm_fadvise64_64
case TARGET_NR_arm_fadvise64_64:
/* arm_fadvise64_64 looks like fadvise64_64 but
* with different argument order: fd, advice, offset, len
* rather than the usual fd, offset, len, advice.
* Note that offset and len are both 64-bit so appear as
* pairs of 32-bit registers.
*/
ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
target_offset64(arg5, arg6), arg2);
ret = -host_to_target_errno(ret);
break;
#endif
#if TARGET_ABI_BITS == 32
#ifdef TARGET_NR_fadvise64_64
case TARGET_NR_fadvise64_64:
#if defined(TARGET_PPC)
/* 6 args: fd, advice, offset (high, low), len (high, low) */
ret = arg2;
arg2 = arg3;
arg3 = arg4;
arg4 = arg5;
arg5 = arg6;
arg6 = ret;
#else
/* 6 args: fd, offset (high, low), len (high, low), advice */
if (regpairs_aligned(cpu_env, num)) {
/* offset is in (3,4), len in (5,6) and advice in 7 */
arg2 = arg3;
arg3 = arg4;
arg4 = arg5;
arg5 = arg6;
arg6 = arg7;
}
#endif
ret = -host_to_target_errno(posix_fadvise(arg1,
target_offset64(arg2, arg3),
target_offset64(arg4, arg5),
arg6));
break;
#endif
#ifdef TARGET_NR_fadvise64
case TARGET_NR_fadvise64:
/* 5 args: fd, offset (high, low), len, advice */
if (regpairs_aligned(cpu_env, num)) {
/* offset is in (3,4), len in 5 and advice in 6 */
arg2 = arg3;
arg3 = arg4;
arg4 = arg5;
arg5 = arg6;
}
ret = -host_to_target_errno(posix_fadvise(arg1,
target_offset64(arg2, arg3),
arg4, arg5));
break;
#endif
#else /* not a 32-bit ABI */
#if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
#ifdef TARGET_NR_fadvise64_64
case TARGET_NR_fadvise64_64:
#endif
#ifdef TARGET_NR_fadvise64
case TARGET_NR_fadvise64:
#endif
#ifdef TARGET_S390X
switch (arg4) {
case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
case 6: arg4 = POSIX_FADV_DONTNEED; break;
case 7: arg4 = POSIX_FADV_NOREUSE; break;
default: break;
}
#endif
ret = -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
break;
#endif
#endif /* end of 64-bit ABI fadvise handling */
#ifdef TARGET_NR_madvise
case TARGET_NR_madvise:
/* A straight passthrough may not be safe because qemu sometimes
turns private file-backed mappings into anonymous mappings.
This will break MADV_DONTNEED.
This is a hint, so ignoring and returning success is ok. */
ret = get_errno(0);
break;
#endif
#if TARGET_ABI_BITS == 32
case TARGET_NR_fcntl64:
{
int cmd;
struct flock64 fl;
from_flock64_fn *copyfrom = copy_from_user_flock64;
to_flock64_fn *copyto = copy_to_user_flock64;
#ifdef TARGET_ARM
if (((CPUARMState *)cpu_env)->eabi) {
copyfrom = copy_from_user_eabi_flock64;
copyto = copy_to_user_eabi_flock64;
}
#endif
cmd = target_to_host_fcntl_cmd(arg2);
if (cmd == -TARGET_EINVAL) {
ret = cmd;
break;
}
switch(arg2) {
case TARGET_F_GETLK64:
ret = copyfrom(&fl, arg3);
if (ret) {
break;
}
ret = get_errno(fcntl(arg1, cmd, &fl));
if (ret == 0) {
ret = copyto(arg3, &fl);
}
break;
case TARGET_F_SETLK64:
case TARGET_F_SETLKW64:
ret = copyfrom(&fl, arg3);
if (ret) {
break;
}
ret = get_errno(safe_fcntl(arg1, cmd, &fl));
break;
default:
ret = do_fcntl(arg1, arg2, arg3);
break;
}
break;
}
#endif
#ifdef TARGET_NR_cacheflush
case TARGET_NR_cacheflush:
/* self-modifying code is handled automatically, so nothing needed */
ret = 0;
break;
#endif
#ifdef TARGET_NR_security
case TARGET_NR_security:
goto unimplemented;
#endif
#ifdef TARGET_NR_getpagesize
case TARGET_NR_getpagesize:
ret = TARGET_PAGE_SIZE;
break;
#endif
case TARGET_NR_gettid:
ret = get_errno(gettid());
break;
#ifdef TARGET_NR_readahead
case TARGET_NR_readahead:
#if TARGET_ABI_BITS == 32
if (regpairs_aligned(cpu_env, num)) {
arg2 = arg3;
arg3 = arg4;
arg4 = arg5;
}
ret = get_errno(readahead(arg1, target_offset64(arg2, arg3) , arg4));
#else
ret = get_errno(readahead(arg1, arg2, arg3));
#endif
break;
#endif
#ifdef CONFIG_ATTR
#ifdef TARGET_NR_setxattr
case TARGET_NR_listxattr:
case TARGET_NR_llistxattr:
{
void *p, *b = 0;
if (arg2) {
b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
if (!b) {
ret = -TARGET_EFAULT;
break;
}
}
p = lock_user_string(arg1);
if (p) {
if (num == TARGET_NR_listxattr) {
ret = get_errno(listxattr(p, b, arg3));
} else {
ret = get_errno(llistxattr(p, b, arg3));
}
} else {
ret = -TARGET_EFAULT;
}
unlock_user(p, arg1, 0);
unlock_user(b, arg2, arg3);
break;
}
case TARGET_NR_flistxattr:
{
void *b = 0;
if (arg2) {
b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
if (!b) {
ret = -TARGET_EFAULT;
break;
}
}
ret = get_errno(flistxattr(arg1, b, arg3));
unlock_user(b, arg2, arg3);
break;
}
case TARGET_NR_setxattr:
case TARGET_NR_lsetxattr:
{
void *p, *n, *v = 0;
if (arg3) {
v = lock_user(VERIFY_READ, arg3, arg4, 1);
if (!v) {
ret = -TARGET_EFAULT;
break;
}
}
p = lock_user_string(arg1);
n = lock_user_string(arg2);
if (p && n) {
if (num == TARGET_NR_setxattr) {
ret = get_errno(setxattr(p, n, v, arg4, arg5));
} else {
ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
}
} else {
ret = -TARGET_EFAULT;
}
unlock_user(p, arg1, 0);
unlock_user(n, arg2, 0);
unlock_user(v, arg3, 0);
}
break;
case TARGET_NR_fsetxattr:
{
void *n, *v = 0;
if (arg3) {
v = lock_user(VERIFY_READ, arg3, arg4, 1);
if (!v) {
ret = -TARGET_EFAULT;
break;
}
}
n = lock_user_string(arg2);
if (n) {
ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
} else {
ret = -TARGET_EFAULT;
}
unlock_user(n, arg2, 0);
unlock_user(v, arg3, 0);
}
break;
case TARGET_NR_getxattr:
case TARGET_NR_lgetxattr:
{
void *p, *n, *v = 0;
if (arg3) {
v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
if (!v) {
ret = -TARGET_EFAULT;
break;
}
}
p = lock_user_string(arg1);
n = lock_user_string(arg2);
if (p && n) {
if (num == TARGET_NR_getxattr) {
ret = get_errno(getxattr(p, n, v, arg4));
} else {
ret = get_errno(lgetxattr(p, n, v, arg4));
}
} else {
ret = -TARGET_EFAULT;
}
unlock_user(p, arg1, 0);
unlock_user(n, arg2, 0);
unlock_user(v, arg3, arg4);
}
break;
case TARGET_NR_fgetxattr:
{
void *n, *v = 0;
if (arg3) {
v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
if (!v) {
ret = -TARGET_EFAULT;
break;
}
}
n = lock_user_string(arg2);
if (n) {
ret = get_errno(fgetxattr(arg1, n, v, arg4));
} else {
ret = -TARGET_EFAULT;
}
unlock_user(n, arg2, 0);
unlock_user(v, arg3, arg4);
}
break;
case TARGET_NR_removexattr:
case TARGET_NR_lremovexattr:
{
void *p, *n;
p = lock_user_string(arg1);
n = lock_user_string(arg2);
if (p && n) {
if (num == TARGET_NR_removexattr) {
ret = get_errno(removexattr(p, n));
} else {
ret = get_errno(lremovexattr(p, n));
}
} else {
ret = -TARGET_EFAULT;
}
unlock_user(p, arg1, 0);
unlock_user(n, arg2, 0);
}
break;
case TARGET_NR_fremovexattr:
{
void *n;
n = lock_user_string(arg2);
if (n) {
ret = get_errno(fremovexattr(arg1, n));
} else {
ret = -TARGET_EFAULT;
}
unlock_user(n, arg2, 0);
}
break;
#endif
#endif /* CONFIG_ATTR */
#ifdef TARGET_NR_set_thread_area
case TARGET_NR_set_thread_area:
#if defined(TARGET_MIPS)
((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
ret = 0;
break;
#elif defined(TARGET_CRIS)
if (arg1 & 0xff)
ret = -TARGET_EINVAL;
else {
((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
ret = 0;
}
break;
#elif defined(TARGET_I386) && defined(TARGET_ABI32)
ret = do_set_thread_area(cpu_env, arg1);
break;
#elif defined(TARGET_M68K)
{
TaskState *ts = cpu->opaque;
ts->tp_value = arg1;
ret = 0;
break;
}
#else
goto unimplemented_nowarn;
#endif
#endif
#ifdef TARGET_NR_get_thread_area
case TARGET_NR_get_thread_area:
#if defined(TARGET_I386) && defined(TARGET_ABI32)
ret = do_get_thread_area(cpu_env, arg1);
break;
#elif defined(TARGET_M68K)
{
TaskState *ts = cpu->opaque;
ret = ts->tp_value;
break;
}
#else
goto unimplemented_nowarn;
#endif
#endif
#ifdef TARGET_NR_getdomainname
case TARGET_NR_getdomainname:
goto unimplemented_nowarn;
#endif
#ifdef TARGET_NR_clock_gettime
case TARGET_NR_clock_gettime:
{
struct timespec ts;
ret = get_errno(clock_gettime(arg1, &ts));
if (!is_error(ret)) {
host_to_target_timespec(arg2, &ts);
}
break;
}
#endif
#ifdef TARGET_NR_clock_getres
case TARGET_NR_clock_getres:
{
struct timespec ts;
ret = get_errno(clock_getres(arg1, &ts));
if (!is_error(ret)) {
host_to_target_timespec(arg2, &ts);
}
break;
}
#endif
#ifdef TARGET_NR_clock_nanosleep
case TARGET_NR_clock_nanosleep:
{
struct timespec ts;
target_to_host_timespec(&ts, arg3);
ret = get_errno(safe_clock_nanosleep(arg1, arg2,
&ts, arg4 ? &ts : NULL));
if (arg4)
host_to_target_timespec(arg4, &ts);
#if defined(TARGET_PPC)
/* clock_nanosleep is odd in that it returns positive errno values.
* On PPC, CR0 bit 3 should be set in such a situation. */
if (ret && ret != -TARGET_ERESTARTSYS) {
((CPUPPCState *)cpu_env)->crf[0] |= 1;
}
#endif
break;
}
#endif
#if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
case TARGET_NR_set_tid_address:
ret = get_errno(set_tid_address((int *)g2h(arg1)));
break;
#endif
case TARGET_NR_tkill:
ret = get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
break;
case TARGET_NR_tgkill:
ret = get_errno(safe_tgkill((int)arg1, (int)arg2,
target_to_host_signal(arg3)));
break;
#ifdef TARGET_NR_set_robust_list
case TARGET_NR_set_robust_list:
case TARGET_NR_get_robust_list:
/* The ABI for supporting robust futexes has userspace pass
* the kernel a pointer to a linked list which is updated by
* userspace after the syscall; the list is walked by the kernel
* when the thread exits. Since the linked list in QEMU guest
* memory isn't a valid linked list for the host and we have
* no way to reliably intercept the thread-death event, we can't
* support these. Silently return ENOSYS so that guest userspace
* falls back to a non-robust futex implementation (which should
* be OK except in the corner case of the guest crashing while
* holding a mutex that is shared with another process via
* shared memory).
*/
goto unimplemented_nowarn;
#endif
#if defined(TARGET_NR_utimensat)
case TARGET_NR_utimensat:
{
struct timespec *tsp, ts[2];
if (!arg3) {
tsp = NULL;
} else {
target_to_host_timespec(ts, arg3);
target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec));
tsp = ts;
}
if (!arg2)
ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
else {
if (!(p = lock_user_string(arg2))) {
ret = -TARGET_EFAULT;
goto fail;
}
ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
unlock_user(p, arg2, 0);
}
}
break;
#endif
case TARGET_NR_futex:
ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6);
break;
#if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
case TARGET_NR_inotify_init:
ret = get_errno(sys_inotify_init());
if (ret >= 0) {
fd_trans_register(ret, &target_inotify_trans);
}
break;
#endif
#ifdef CONFIG_INOTIFY1
#if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
case TARGET_NR_inotify_init1:
ret = get_errno(sys_inotify_init1(target_to_host_bitmask(arg1,
fcntl_flags_tbl)));
if (ret >= 0) {
fd_trans_register(ret, &target_inotify_trans);
}
break;
#endif
#endif
#if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
case TARGET_NR_inotify_add_watch:
p = lock_user_string(arg2);
ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
unlock_user(p, arg2, 0);
break;
#endif
#if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
case TARGET_NR_inotify_rm_watch:
ret = get_errno(sys_inotify_rm_watch(arg1, arg2));
break;
#endif
#if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
case TARGET_NR_mq_open:
{
struct mq_attr posix_mq_attr;
struct mq_attr *pposix_mq_attr;
int host_flags;
host_flags = target_to_host_bitmask(arg2, fcntl_flags_tbl);
pposix_mq_attr = NULL;
if (arg4) {
if (copy_from_user_mq_attr(&posix_mq_attr, arg4) != 0) {
goto efault;
}
pposix_mq_attr = &posix_mq_attr;
}
p = lock_user_string(arg1 - 1);
if (!p) {
goto efault;
}
ret = get_errno(mq_open(p, host_flags, arg3, pposix_mq_attr));
unlock_user (p, arg1, 0);
}
break;
case TARGET_NR_mq_unlink:
p = lock_user_string(arg1 - 1);
if (!p) {
ret = -TARGET_EFAULT;
break;
}
ret = get_errno(mq_unlink(p));
unlock_user (p, arg1, 0);
break;
case TARGET_NR_mq_timedsend:
{
struct timespec ts;
p = lock_user (VERIFY_READ, arg2, arg3, 1);
if (arg5 != 0) {
target_to_host_timespec(&ts, arg5);
ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
host_to_target_timespec(arg5, &ts);
} else {
ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
}
unlock_user (p, arg2, arg3);
}
break;
case TARGET_NR_mq_timedreceive:
{
struct timespec ts;
unsigned int prio;
p = lock_user (VERIFY_READ, arg2, arg3, 1);
if (arg5 != 0) {
target_to_host_timespec(&ts, arg5);
ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
&prio, &ts));
host_to_target_timespec(arg5, &ts);
} else {
ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
&prio, NULL));
}
unlock_user (p, arg2, arg3);
if (arg4 != 0)
put_user_u32(prio, arg4);
}
break;
/* Not implemented for now... */
/* case TARGET_NR_mq_notify: */
/* break; */
case TARGET_NR_mq_getsetattr:
{
struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
ret = 0;
if (arg3 != 0) {
ret = mq_getattr(arg1, &posix_mq_attr_out);
copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
}
if (arg2 != 0) {
copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out);
}
}
break;
#endif
#ifdef CONFIG_SPLICE
#ifdef TARGET_NR_tee
case TARGET_NR_tee:
{
ret = get_errno(tee(arg1,arg2,arg3,arg4));
}
break;
#endif
#ifdef TARGET_NR_splice
case TARGET_NR_splice:
{
loff_t loff_in, loff_out;
loff_t *ploff_in = NULL, *ploff_out = NULL;
if (arg2) {
if (get_user_u64(loff_in, arg2)) {
goto efault;
}
ploff_in = &loff_in;
}
if (arg4) {
if (get_user_u64(loff_out, arg4)) {
goto efault;
}
ploff_out = &loff_out;
}
ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
if (arg2) {
if (put_user_u64(loff_in, arg2)) {
goto efault;
}
}
if (arg4) {
if (put_user_u64(loff_out, arg4)) {
goto efault;
}
}
}
break;
#endif
#ifdef TARGET_NR_vmsplice
case TARGET_NR_vmsplice:
{
struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
if (vec != NULL) {
ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
unlock_iovec(vec, arg2, arg3, 0);
} else {
ret = -host_to_target_errno(errno);
}
}
break;
#endif
#endif /* CONFIG_SPLICE */
#ifdef CONFIG_EVENTFD
#if defined(TARGET_NR_eventfd)
case TARGET_NR_eventfd:
ret = get_errno(eventfd(arg1, 0));
if (ret >= 0) {
fd_trans_register(ret, &target_eventfd_trans);
}
break;
#endif
#if defined(TARGET_NR_eventfd2)
case TARGET_NR_eventfd2:
{
int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC));
if (arg2 & TARGET_O_NONBLOCK) {
host_flags |= O_NONBLOCK;
}
if (arg2 & TARGET_O_CLOEXEC) {
host_flags |= O_CLOEXEC;
}
ret = get_errno(eventfd(arg1, host_flags));
if (ret >= 0) {
fd_trans_register(ret, &target_eventfd_trans);
}
break;
}
#endif
#endif /* CONFIG_EVENTFD */
#if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
case TARGET_NR_fallocate:
#if TARGET_ABI_BITS == 32
ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
target_offset64(arg5, arg6)));
#else
ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
#endif
break;
#endif
#if defined(CONFIG_SYNC_FILE_RANGE)
#if defined(TARGET_NR_sync_file_range)
case TARGET_NR_sync_file_range:
#if TARGET_ABI_BITS == 32
#if defined(TARGET_MIPS)
ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
target_offset64(arg5, arg6), arg7));
#else
ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
target_offset64(arg4, arg5), arg6));
#endif /* !TARGET_MIPS */
#else
ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
#endif
break;
#endif
#if defined(TARGET_NR_sync_file_range2)
case TARGET_NR_sync_file_range2:
/* This is like sync_file_range but the arguments are reordered */
#if TARGET_ABI_BITS == 32
ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
target_offset64(arg5, arg6), arg2));
#else
ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
#endif
break;
#endif
#endif
#if defined(TARGET_NR_signalfd4)
case TARGET_NR_signalfd4:
ret = do_signalfd4(arg1, arg2, arg4);
break;
#endif
#if defined(TARGET_NR_signalfd)
case TARGET_NR_signalfd:
ret = do_signalfd4(arg1, arg2, 0);
break;
#endif
#if defined(CONFIG_EPOLL)
#if defined(TARGET_NR_epoll_create)
case TARGET_NR_epoll_create:
ret = get_errno(epoll_create(arg1));
break;
#endif
#if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
case TARGET_NR_epoll_create1:
ret = get_errno(epoll_create1(arg1));
break;
#endif
#if defined(TARGET_NR_epoll_ctl)
case TARGET_NR_epoll_ctl:
{
struct epoll_event ep;
struct epoll_event *epp = 0;
if (arg4) {
struct target_epoll_event *target_ep;
if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
goto efault;
}
ep.events = tswap32(target_ep->events);
/* The epoll_data_t union is just opaque data to the kernel,
* so we transfer all 64 bits across and need not worry what
* actual data type it is.
*/
ep.data.u64 = tswap64(target_ep->data.u64);
unlock_user_struct(target_ep, arg4, 0);
epp = &ep;
}
ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp));
break;
}
#endif
#if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
#if defined(TARGET_NR_epoll_wait)
case TARGET_NR_epoll_wait:
#endif
#if defined(TARGET_NR_epoll_pwait)
case TARGET_NR_epoll_pwait:
#endif
{
struct target_epoll_event *target_ep;
struct epoll_event *ep;
int epfd = arg1;
int maxevents = arg3;
int timeout = arg4;
if (maxevents <= 0 || maxevents > TARGET_EP_MAX_EVENTS) {
ret = -TARGET_EINVAL;
break;
}
target_ep = lock_user(VERIFY_WRITE, arg2,
maxevents * sizeof(struct target_epoll_event), 1);
if (!target_ep) {
goto efault;
}
ep = g_try_new(struct epoll_event, maxevents);
if (!ep) {
unlock_user(target_ep, arg2, 0);
ret = -TARGET_ENOMEM;
break;
}
switch (num) {
#if defined(TARGET_NR_epoll_pwait)
case TARGET_NR_epoll_pwait:
{
target_sigset_t *target_set;
sigset_t _set, *set = &_set;
if (arg5) {
if (arg6 != sizeof(target_sigset_t)) {
ret = -TARGET_EINVAL;
break;
}
target_set = lock_user(VERIFY_READ, arg5,
sizeof(target_sigset_t), 1);
if (!target_set) {
ret = -TARGET_EFAULT;
break;
}
target_to_host_sigset(set, target_set);
unlock_user(target_set, arg5, 0);
} else {
set = NULL;
}
ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
set, SIGSET_T_SIZE));
break;
}
#endif
#if defined(TARGET_NR_epoll_wait)
case TARGET_NR_epoll_wait:
ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
NULL, 0));
break;
#endif
default:
ret = -TARGET_ENOSYS;
}
if (!is_error(ret)) {
int i;
for (i = 0; i < ret; i++) {
target_ep[i].events = tswap32(ep[i].events);
target_ep[i].data.u64 = tswap64(ep[i].data.u64);
}
unlock_user(target_ep, arg2,
ret * sizeof(struct target_epoll_event));
} else {
unlock_user(target_ep, arg2, 0);
}
g_free(ep);
break;
}
#endif
#endif
#ifdef TARGET_NR_prlimit64
case TARGET_NR_prlimit64:
{
/* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
struct target_rlimit64 *target_rnew, *target_rold;
struct host_rlimit64 rnew, rold, *rnewp = 0;
int resource = target_to_host_resource(arg2);
if (arg3) {
if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
goto efault;
}
rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
rnew.rlim_max = tswap64(target_rnew->rlim_max);
unlock_user_struct(target_rnew, arg3, 0);
rnewp = &rnew;
}
ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
if (!is_error(ret) && arg4) {
if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
goto efault;
}
target_rold->rlim_cur = tswap64(rold.rlim_cur);
target_rold->rlim_max = tswap64(rold.rlim_max);
unlock_user_struct(target_rold, arg4, 1);
}
break;
}
#endif
#ifdef TARGET_NR_gethostname
case TARGET_NR_gethostname:
{
char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
if (name) {
ret = get_errno(gethostname(name, arg2));
unlock_user(name, arg1, arg2);
} else {
ret = -TARGET_EFAULT;
}
break;
}
#endif
#ifdef TARGET_NR_atomic_cmpxchg_32
case TARGET_NR_atomic_cmpxchg_32:
{
/* should use start_exclusive from main.c */
abi_ulong mem_value;
if (get_user_u32(mem_value, arg6)) {
target_siginfo_t info;
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SEGV_MAPERR;
info._sifields._sigfault._addr = arg6;
queue_signal((CPUArchState *)cpu_env, info.si_signo,
QEMU_SI_FAULT, &info);
ret = 0xdeadbeef;
}
if (mem_value == arg2)
put_user_u32(arg1, arg6);
ret = mem_value;
break;
}
#endif
#ifdef TARGET_NR_atomic_barrier
case TARGET_NR_atomic_barrier:
{
/* Like the kernel implementation and the qemu arm barrier, no-op this? */
ret = 0;
break;
}
#endif
#ifdef TARGET_NR_timer_create
case TARGET_NR_timer_create:
{
/* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
int clkid = arg1;
int timer_index = next_free_host_timer();
if (timer_index < 0) {
ret = -TARGET_EAGAIN;
} else {
timer_t *phtimer = g_posix_timers + timer_index;
if (arg2) {
phost_sevp = &host_sevp;
ret = target_to_host_sigevent(phost_sevp, arg2);
if (ret != 0) {
break;
}
}
ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
if (ret) {
phtimer = NULL;
} else {
if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
goto efault;
}
}
}
break;
}
#endif
#ifdef TARGET_NR_timer_settime
case TARGET_NR_timer_settime:
{
/* args: timer_t timerid, int flags, const struct itimerspec *new_value,
* struct itimerspec * old_value */
target_timer_t timerid = get_timer_id(arg1);
if (timerid < 0) {
ret = timerid;
} else if (arg3 == 0) {
ret = -TARGET_EINVAL;
} else {
timer_t htimer = g_posix_timers[timerid];
struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
if (target_to_host_itimerspec(&hspec_new, arg3)) {
goto efault;
}
ret = get_errno(
timer_settime(htimer, arg2, &hspec_new, &hspec_old));
if (arg4 && host_to_target_itimerspec(arg4, &hspec_old)) {
goto efault;
}
}
break;
}
#endif
#ifdef TARGET_NR_timer_gettime
case TARGET_NR_timer_gettime:
{
/* args: timer_t timerid, struct itimerspec *curr_value */
target_timer_t timerid = get_timer_id(arg1);
if (timerid < 0) {
ret = timerid;
} else if (!arg2) {
ret = -TARGET_EFAULT;
} else {
timer_t htimer = g_posix_timers[timerid];
struct itimerspec hspec;
ret = get_errno(timer_gettime(htimer, &hspec));
if (host_to_target_itimerspec(arg2, &hspec)) {
ret = -TARGET_EFAULT;
}
}
break;
}
#endif
#ifdef TARGET_NR_timer_getoverrun
case TARGET_NR_timer_getoverrun:
{
/* args: timer_t timerid */
target_timer_t timerid = get_timer_id(arg1);
if (timerid < 0) {
ret = timerid;
} else {
timer_t htimer = g_posix_timers[timerid];
ret = get_errno(timer_getoverrun(htimer));
}
fd_trans_unregister(ret);
break;
}
#endif
#ifdef TARGET_NR_timer_delete
case TARGET_NR_timer_delete:
{
/* args: timer_t timerid */
target_timer_t timerid = get_timer_id(arg1);
if (timerid < 0) {
ret = timerid;
} else {
timer_t htimer = g_posix_timers[timerid];
ret = get_errno(timer_delete(htimer));
g_posix_timers[timerid] = 0;
}
break;
}
#endif
#if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
case TARGET_NR_timerfd_create:
ret = get_errno(timerfd_create(arg1,
target_to_host_bitmask(arg2, fcntl_flags_tbl)));
break;
#endif
#if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
case TARGET_NR_timerfd_gettime:
{
struct itimerspec its_curr;
ret = get_errno(timerfd_gettime(arg1, &its_curr));
if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
goto efault;
}
}
break;
#endif
#if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
case TARGET_NR_timerfd_settime:
{
struct itimerspec its_new, its_old, *p_new;
if (arg3) {
if (target_to_host_itimerspec(&its_new, arg3)) {
goto efault;
}
p_new = &its_new;
} else {
p_new = NULL;
}
ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
goto efault;
}
}
break;
#endif
#if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
case TARGET_NR_ioprio_get:
ret = get_errno(ioprio_get(arg1, arg2));
break;
#endif
#if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
case TARGET_NR_ioprio_set:
ret = get_errno(ioprio_set(arg1, arg2, arg3));
break;
#endif
#if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
case TARGET_NR_setns:
ret = get_errno(setns(arg1, arg2));
break;
#endif
#if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
case TARGET_NR_unshare:
ret = get_errno(unshare(arg1));
break;
#endif
#if defined(TARGET_NR_kcmp) && defined(__NR_kcmp)
case TARGET_NR_kcmp:
ret = get_errno(kcmp(arg1, arg2, arg3, arg4, arg5));
break;
#endif
default:
unimplemented:
gemu_log("qemu: Unsupported syscall: %d\n", num);
#if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list)
unimplemented_nowarn:
#endif
ret = -TARGET_ENOSYS;
break;
}
fail:
#ifdef DEBUG
gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret);
#endif
if(do_strace)
print_syscall_ret(num, ret);
trace_guest_user_syscall_ret(cpu, num, ret);
return ret;
efault:
ret = -TARGET_EFAULT;
goto fail;
}