/* * Linux syscalls * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#include #include #define termios host_termios #define winsize host_winsize #define termio host_termio #define sgttyb host_sgttyb /* same as target */ #define tchars host_tchars /* same as target */ #define ltchars host_ltchars /* same as target */ #include #include #include #include #include #include #include #include #include "qemu.h" //#define DEBUG //#include #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct dirent [2]) #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct dirent [2]) void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); long do_sigreturn(CPUX86State *env); long do_rt_sigreturn(CPUX86State *env); #define __NR_sys_uname __NR_uname #define __NR_sys_getcwd1 __NR_getcwd #define __NR_sys_statfs __NR_statfs #define __NR_sys_fstatfs __NR_fstatfs #define __NR_sys_getdents __NR_getdents #define __NR_sys_getdents64 __NR_getdents64 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo #if defined(__alpha__) || defined (__ia64__) #define __NR__llseek __NR_lseek #endif #ifdef __NR_gettid _syscall0(int, gettid) #else static int gettid(void) { return -ENOSYS; } #endif _syscall1(int,sys_uname,struct new_utsname *,buf) _syscall2(int,sys_getcwd1,char *,buf,size_t,size) _syscall3(int, sys_getdents, uint, fd, struct dirent *, dirp, uint, count); _syscall3(int, sys_getdents64, uint, fd, struct dirent64 *, dirp, uint, count); _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo, loff_t *, res, uint, wh); _syscall2(int,sys_statfs,const char *,path,struct kernel_statfs *,buf) _syscall2(int,sys_fstatfs,int,fd,struct kernel_statfs *,buf) _syscall3(int,sys_rt_sigqueueinfo,int,pid,int,sig,siginfo_t *,uinfo) #ifdef __NR_exit_group _syscall1(int,exit_group,int,error_code) #endif extern int personality(int); extern int flock(int, int); extern int setfsuid(int); extern int setfsgid(int); extern int setresuid(uid_t, uid_t, uid_t); extern int getresuid(uid_t *, uid_t *, uid_t *); extern int setresgid(gid_t, gid_t, gid_t); extern int getresgid(gid_t *, gid_t *, gid_t *); extern int setgroups(int, gid_t *); static inline long get_errno(long ret) { if (ret == -1) return -errno; else return ret; } static inline int is_error(long ret) { return (unsigned long)ret >= (unsigned long)(-4096); } static char *target_brk; static char *target_original_brk; void target_set_brk(char *new_brk) { target_brk = new_brk; target_original_brk = new_brk; } static long do_brk(char *new_brk) { char *brk_page; long mapped_addr; int new_alloc_size; if (!new_brk) return (long)target_brk; if (new_brk < target_original_brk) return -ENOMEM; brk_page = (char *)HOST_PAGE_ALIGN((unsigned long)target_brk); /* If the new brk is less than this, set it and we're done... */ if (new_brk < brk_page) { target_brk = new_brk; return (long)target_brk; } /* We need to allocate more memory after the brk... */ new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page + 1); mapped_addr = get_errno(target_mmap((unsigned long)brk_page, new_alloc_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_FIXED|MAP_PRIVATE, 0, 0)); if (is_error(mapped_addr)) { return mapped_addr; } else { target_brk = new_brk; return (long)target_brk; } } static inline fd_set *target_to_host_fds(fd_set *fds, target_long *target_fds, int n) { #if !defined(BSWAP_NEEDED) && !defined(WORDS_BIGENDIAN) return (fd_set *)target_fds; #else int i, b; if (target_fds) { FD_ZERO(fds); for(i = 0;i < n; i++) { b = (tswapl(target_fds[i / TARGET_LONG_BITS]) >> (i & (TARGET_LONG_BITS - 1))) & 1; if (b) FD_SET(i, fds); } return fds; } else { return NULL; } #endif } static inline void host_to_target_fds(target_long *target_fds, fd_set *fds, int n) { #if !defined(BSWAP_NEEDED) && !defined(WORDS_BIGENDIAN) /* nothing to do */ #else int i, nw, j, k; target_long v; if (target_fds) { nw = n / TARGET_LONG_BITS; k = 0; for(i = 0;i < nw; i++) { v = 0; for(j = 0; j < TARGET_LONG_BITS; j++) { v |= ((FD_ISSET(k, fds) != 0) << j); k++; } target_fds[i] = tswapl(v); } } #endif } static inline void target_to_host_timeval(struct timeval *tv, const struct target_timeval *target_tv) { tv->tv_sec = tswapl(target_tv->tv_sec); tv->tv_usec = tswapl(target_tv->tv_usec); } static inline void host_to_target_timeval(struct target_timeval *target_tv, const struct timeval *tv) { target_tv->tv_sec = tswapl(tv->tv_sec); target_tv->tv_usec = tswapl(tv->tv_usec); } static long do_select(long n, target_long *target_rfds, target_long *target_wfds, target_long *target_efds, struct target_timeval *target_tv) { fd_set rfds, wfds, efds; fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; struct timeval tv, *tv_ptr; long ret; rfds_ptr = target_to_host_fds(&rfds, target_rfds, n); wfds_ptr = target_to_host_fds(&wfds, target_wfds, n); efds_ptr = target_to_host_fds(&efds, target_efds, n); if (target_tv) { target_to_host_timeval(&tv, target_tv); tv_ptr = &tv; } else { tv_ptr = NULL; } ret = get_errno(select(n, rfds_ptr, wfds_ptr, efds_ptr, tv_ptr)); if (!is_error(ret)) { host_to_target_fds(target_rfds, rfds_ptr, n); host_to_target_fds(target_wfds, wfds_ptr, n); host_to_target_fds(target_efds, efds_ptr, n); if (target_tv) { host_to_target_timeval(target_tv, &tv); } } return ret; } static inline void target_to_host_sockaddr(struct sockaddr *addr, struct target_sockaddr *target_addr, socklen_t len) { memcpy(addr, target_addr, len); addr->sa_family = tswap16(target_addr->sa_family); } static inline void host_to_target_sockaddr(struct target_sockaddr *target_addr, struct sockaddr *addr, socklen_t len) { memcpy(target_addr, addr, len); target_addr->sa_family = tswap16(addr->sa_family); } static inline void target_to_host_cmsg(struct msghdr *msgh, struct target_msghdr *target_msgh) { struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); struct target_cmsghdr *target_cmsg = TARGET_CMSG_FIRSTHDR(target_msgh); socklen_t space = 0; while (cmsg && target_cmsg) { void *data = CMSG_DATA(cmsg); void *target_data = TARGET_CMSG_DATA(target_cmsg); int len = tswapl(target_cmsg->cmsg_len) - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr)); space += CMSG_SPACE(len); if (space > msgh->msg_controllen) { space -= CMSG_SPACE(len); gemu_log("Host cmsg overflow"); break; } cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); cmsg->cmsg_len = CMSG_LEN(len); if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) { gemu_log("Unsupported ancillary data: %d/%d\n", cmsg->cmsg_level, cmsg->cmsg_type); memcpy(data, target_data, len); } else { int *fd = (int *)data; int *target_fd = (int *)target_data; int i, numfds = len / sizeof(int); for (i = 0; i < numfds; i++) fd[i] = tswap32(target_fd[i]); } cmsg = CMSG_NXTHDR(msgh, cmsg); target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg); } msgh->msg_controllen = space; } static inline void host_to_target_cmsg(struct target_msghdr *target_msgh, struct msghdr *msgh) { struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); struct target_cmsghdr *target_cmsg = TARGET_CMSG_FIRSTHDR(target_msgh); socklen_t space = 0; while (cmsg && target_cmsg) { void *data = CMSG_DATA(cmsg); void *target_data = TARGET_CMSG_DATA(target_cmsg); int len = cmsg->cmsg_len - CMSG_ALIGN(sizeof (struct cmsghdr)); space += TARGET_CMSG_SPACE(len); if (space > tswapl(target_msgh->msg_controllen)) { space -= TARGET_CMSG_SPACE(len); gemu_log("Target cmsg overflow"); break; } target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); target_cmsg->cmsg_len = tswapl(TARGET_CMSG_LEN(len)); if (cmsg->cmsg_level != SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) { gemu_log("Unsupported ancillary data: %d/%d\n", cmsg->cmsg_level, cmsg->cmsg_type); memcpy(target_data, data, len); } else { int *fd = (int *)data; int *target_fd = (int *)target_data; int i, numfds = len / sizeof(int); for (i = 0; i < numfds; i++) target_fd[i] = tswap32(fd[i]); } cmsg = CMSG_NXTHDR(msgh, cmsg); target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg); } msgh->msg_controllen = tswapl(space); } static long do_setsockopt(int sockfd, int level, int optname, void *optval, socklen_t optlen) { if (level == SOL_TCP) { /* TCP options all take an 'int' value. */ int val; if (optlen < sizeof(uint32_t)) return -EINVAL; val = tswap32(*(uint32_t *)optval); return get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); } else if (level != SOL_SOCKET) { gemu_log("Unsupported setsockopt level: %d\n", level); return -ENOSYS; } switch (optname) { /* Options with 'int' argument. */ case SO_DEBUG: case SO_REUSEADDR: case SO_TYPE: case SO_ERROR: case SO_DONTROUTE: case SO_BROADCAST: case SO_SNDBUF: case SO_RCVBUF: case SO_KEEPALIVE: case SO_OOBINLINE: case SO_NO_CHECK: case SO_PRIORITY: case SO_BSDCOMPAT: case SO_PASSCRED: case SO_TIMESTAMP: case SO_RCVLOWAT: case SO_RCVTIMEO: case SO_SNDTIMEO: { int val; if (optlen < sizeof(uint32_t)) return -EINVAL; val = tswap32(*(uint32_t *)optval); return get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); } default: gemu_log("Unsupported setsockopt SOL_SOCKET option: %d\n", optname); return -ENOSYS; } } static long do_getsockopt(int sockfd, int level, int optname, void *optval, socklen_t *optlen) { gemu_log("getsockopt not yet supported\n"); return -ENOSYS; } static long do_socketcall(int num, int32_t *vptr) { long ret; switch(num) { case SOCKOP_socket: { int domain = tswap32(vptr[0]); int type = tswap32(vptr[1]); int protocol = tswap32(vptr[2]); ret = get_errno(socket(domain, type, protocol)); } break; case SOCKOP_bind: { int sockfd = tswap32(vptr[0]); void *target_addr = (void *)tswap32(vptr[1]); socklen_t addrlen = tswap32(vptr[2]); void *addr = alloca(addrlen); target_to_host_sockaddr(addr, target_addr, addrlen); ret = get_errno(bind(sockfd, addr, addrlen)); } break; case SOCKOP_connect: { int sockfd = tswap32(vptr[0]); void *target_addr = (void *)tswap32(vptr[1]); socklen_t addrlen = tswap32(vptr[2]); void *addr = alloca(addrlen); target_to_host_sockaddr(addr, target_addr, addrlen); ret = get_errno(connect(sockfd, addr, addrlen)); } break; case SOCKOP_listen: { int sockfd = tswap32(vptr[0]); int backlog = tswap32(vptr[1]); ret = get_errno(listen(sockfd, backlog)); } break; case SOCKOP_accept: { int sockfd = tswap32(vptr[0]); void *target_addr = (void *)tswap32(vptr[1]); uint32_t *target_addrlen = (void *)tswap32(vptr[2]); socklen_t addrlen = tswap32(*target_addrlen); void *addr = alloca(addrlen); ret = get_errno(accept(sockfd, addr, &addrlen)); if (!is_error(ret)) { host_to_target_sockaddr(target_addr, addr, addrlen); *target_addrlen = tswap32(addrlen); } } break; case SOCKOP_getsockname: { int sockfd = tswap32(vptr[0]); void *target_addr = (void *)tswap32(vptr[1]); uint32_t *target_addrlen = (void *)tswap32(vptr[2]); socklen_t addrlen = tswap32(*target_addrlen); void *addr = alloca(addrlen); ret = get_errno(getsockname(sockfd, addr, &addrlen)); if (!is_error(ret)) { host_to_target_sockaddr(target_addr, addr, addrlen); *target_addrlen = tswap32(addrlen); } } break; case SOCKOP_getpeername: { int sockfd = tswap32(vptr[0]); void *target_addr = (void *)tswap32(vptr[1]); uint32_t *target_addrlen = (void *)tswap32(vptr[2]); socklen_t addrlen = tswap32(*target_addrlen); void *addr = alloca(addrlen); ret = get_errno(getpeername(sockfd, addr, &addrlen)); if (!is_error(ret)) { host_to_target_sockaddr(target_addr, addr, addrlen); *target_addrlen = tswap32(addrlen); } } break; case SOCKOP_socketpair: { int domain = tswap32(vptr[0]); int type = tswap32(vptr[1]); int protocol = tswap32(vptr[2]); int32_t *target_tab = (void *)tswap32(vptr[3]); int tab[2]; ret = get_errno(socketpair(domain, type, protocol, tab)); if (!is_error(ret)) { target_tab[0] = tswap32(tab[0]); target_tab[1] = tswap32(tab[1]); } } break; case SOCKOP_send: { int sockfd = tswap32(vptr[0]); void *msg = (void *)tswap32(vptr[1]); size_t len = tswap32(vptr[2]); int flags = tswap32(vptr[3]); ret = get_errno(send(sockfd, msg, len, flags)); } break; case SOCKOP_recv: { int sockfd = tswap32(vptr[0]); void *msg = (void *)tswap32(vptr[1]); size_t len = tswap32(vptr[2]); int flags = tswap32(vptr[3]); ret = get_errno(recv(sockfd, msg, len, flags)); } break; case SOCKOP_sendto: { int sockfd = tswap32(vptr[0]); void *msg = (void *)tswap32(vptr[1]); size_t len = tswap32(vptr[2]); int flags = tswap32(vptr[3]); void *target_addr = (void *)tswap32(vptr[4]); socklen_t addrlen = tswap32(vptr[5]); void *addr = alloca(addrlen); target_to_host_sockaddr(addr, target_addr, addrlen); ret = get_errno(sendto(sockfd, msg, len, flags, addr, addrlen)); } break; case SOCKOP_recvfrom: { int sockfd = tswap32(vptr[0]); void *msg = (void *)tswap32(vptr[1]); size_t len = tswap32(vptr[2]); int flags = tswap32(vptr[3]); void *target_addr = (void *)tswap32(vptr[4]); uint32_t *target_addrlen = (void *)tswap32(vptr[5]); socklen_t addrlen = tswap32(*target_addrlen); void *addr = alloca(addrlen); ret = get_errno(recvfrom(sockfd, msg, len, flags, addr, &addrlen)); if (!is_error(ret)) { host_to_target_sockaddr(target_addr, addr, addrlen); *target_addrlen = tswap32(addrlen); } } break; case SOCKOP_shutdown: { int sockfd = tswap32(vptr[0]); int how = tswap32(vptr[1]); ret = get_errno(shutdown(sockfd, how)); } break; case SOCKOP_sendmsg: case SOCKOP_recvmsg: { int fd; struct target_msghdr *msgp; struct msghdr msg; int flags, count, i; struct iovec *vec; struct target_iovec *target_vec; msgp = (void *)tswap32(vptr[1]); msg.msg_name = (void *)tswapl(msgp->msg_name); msg.msg_namelen = tswapl(msgp->msg_namelen); msg.msg_controllen = 2 * tswapl(msgp->msg_controllen); msg.msg_control = alloca(msg.msg_controllen); msg.msg_flags = tswap32(msgp->msg_flags); count = tswapl(msgp->msg_iovlen); vec = alloca(count * sizeof(struct iovec)); target_vec = (void *)tswapl(msgp->msg_iov); for(i = 0;i < count; i++) { vec[i].iov_base = (void *)tswapl(target_vec[i].iov_base); vec[i].iov_len = tswapl(target_vec[i].iov_len); } msg.msg_iovlen = count; msg.msg_iov = vec; fd = tswap32(vptr[0]); flags = tswap32(vptr[2]); if (num == SOCKOP_sendmsg) { target_to_host_cmsg(&msg, msgp); ret = get_errno(sendmsg(fd, &msg, flags)); } else { ret = get_errno(recvmsg(fd, &msg, flags)); if (!is_error(ret)) host_to_target_cmsg(msgp, &msg); } } break; case SOCKOP_setsockopt: { int sockfd = tswap32(vptr[0]); int level = tswap32(vptr[1]); int optname = tswap32(vptr[2]); void *optval = (void *)tswap32(vptr[3]); socklen_t optlen = tswap32(vptr[4]); ret = do_setsockopt(sockfd, level, optname, optval, optlen); } break; case SOCKOP_getsockopt: { int sockfd = tswap32(vptr[0]); int level = tswap32(vptr[1]); int optname = tswap32(vptr[2]); void *optval = (void *)tswap32(vptr[3]); uint32_t *target_len = (void *)tswap32(vptr[4]); socklen_t optlen = tswap32(*target_len); ret = do_getsockopt(sockfd, level, optname, optval, &optlen); if (!is_error(ret)) *target_len = tswap32(optlen); } break; default: gemu_log("Unsupported socketcall: %d\n", num); ret = -ENOSYS; break; } return ret; } /* kernel structure types definitions */ #define IFNAMSIZ 16 #define STRUCT(name, list...) STRUCT_ ## name, #define STRUCT_SPECIAL(name) STRUCT_ ## name, enum { #include "syscall_types.h" }; #undef STRUCT #undef STRUCT_SPECIAL #define STRUCT(name, list...) const argtype struct_ ## name ## _def[] = { list, TYPE_NULL }; #define STRUCT_SPECIAL(name) #include "syscall_types.h" #undef STRUCT #undef STRUCT_SPECIAL typedef struct IOCTLEntry { int target_cmd; int host_cmd; const char *name; int access; const argtype arg_type[5]; } IOCTLEntry; #define IOC_R 0x0001 #define IOC_W 0x0002 #define IOC_RW (IOC_R | IOC_W) #define MAX_STRUCT_SIZE 4096 const IOCTLEntry ioctl_entries[] = { #define IOCTL(cmd, access, types...) \ { TARGET_ ## cmd, cmd, #cmd, access, { types } }, #include "ioctls.h" { 0, 0, }, }; static long do_ioctl(long fd, long cmd, long arg) { const IOCTLEntry *ie; const argtype *arg_type; long ret; uint8_t buf_temp[MAX_STRUCT_SIZE]; ie = ioctl_entries; for(;;) { if (ie->target_cmd == 0) { gemu_log("Unsupported ioctl: cmd=0x%04lx\n", cmd); return -ENOSYS; } if (ie->target_cmd == cmd) break; ie++; } arg_type = ie->arg_type; #if defined(DEBUG) gemu_log("ioctl: cmd=0x%04lx (%s)\n", cmd, ie->name); #endif switch(arg_type[0]) { case TYPE_NULL: /* no argument */ ret = get_errno(ioctl(fd, ie->host_cmd)); break; case TYPE_PTRVOID: case TYPE_INT: /* int argment */ ret = get_errno(ioctl(fd, ie->host_cmd, arg)); break; case TYPE_PTR: arg_type++; switch(ie->access) { case IOC_R: ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); if (!is_error(ret)) { thunk_convert((void *)arg, buf_temp, arg_type, THUNK_TARGET); } break; case IOC_W: thunk_convert(buf_temp, (void *)arg, arg_type, THUNK_HOST); ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); break; default: case IOC_RW: thunk_convert(buf_temp, (void *)arg, arg_type, THUNK_HOST); ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); if (!is_error(ret)) { thunk_convert((void *)arg, buf_temp, arg_type, THUNK_TARGET); } break; } break; default: gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n", cmd, arg_type[0]); ret = -ENOSYS; break; } return ret; } bitmask_transtbl iflag_tbl[] = { { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, { TARGET_IXON, TARGET_IXON, IXON, IXON }, { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, { 0, 0, 0, 0 } }; bitmask_transtbl oflag_tbl[] = { { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, { 0, 0, 0, 0 } }; bitmask_transtbl cflag_tbl[] = { { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, { 0, 0, 0, 0 } }; bitmask_transtbl lflag_tbl[] = { { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, { 0, 0, 0, 0 } }; static void target_to_host_termios (void *dst, const void *src) { struct host_termios *host = dst; const struct target_termios *target = src; host->c_iflag = target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); host->c_oflag = target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); host->c_cflag = target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); host->c_lflag = target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); host->c_line = target->c_line; host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; } static void host_to_target_termios (void *dst, const void *src) { struct target_termios *target = dst; const struct host_termios *host = src; target->c_iflag = tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); target->c_oflag = tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); target->c_cflag = tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); target->c_lflag = tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); target->c_line = host->c_line; target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; } StructEntry struct_termios_def = { .convert = { host_to_target_termios, target_to_host_termios }, .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, }; #ifdef TARGET_I386 /* NOTE: there is really one LDT for all the threads */ uint8_t *ldt_table; static int read_ldt(void *ptr, unsigned long bytecount) { int size; if (!ldt_table) return 0; size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; if (size > bytecount) size = bytecount; memcpy(ptr, ldt_table, size); return size; } /* XXX: add locking support */ static int write_ldt(CPUX86State *env, void *ptr, unsigned long bytecount, int oldmode) { struct target_modify_ldt_ldt_s ldt_info; int seg_32bit, contents, read_exec_only, limit_in_pages; int seg_not_present, useable; uint32_t *lp, entry_1, entry_2; if (bytecount != sizeof(ldt_info)) return -EINVAL; memcpy(&ldt_info, ptr, sizeof(ldt_info)); tswap32s(&ldt_info.entry_number); tswapls((long *)&ldt_info.base_addr); tswap32s(&ldt_info.limit); tswap32s(&ldt_info.flags); if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) return -EINVAL; seg_32bit = ldt_info.flags & 1; contents = (ldt_info.flags >> 1) & 3; read_exec_only = (ldt_info.flags >> 3) & 1; limit_in_pages = (ldt_info.flags >> 4) & 1; seg_not_present = (ldt_info.flags >> 5) & 1; useable = (ldt_info.flags >> 6) & 1; if (contents == 3) { if (oldmode) return -EINVAL; if (seg_not_present == 0) return -EINVAL; } /* allocate the LDT */ if (!ldt_table) { ldt_table = malloc(TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); if (!ldt_table) return -ENOMEM; memset(ldt_table, 0, TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); env->ldt.base = ldt_table; env->ldt.limit = 0xffff; } /* NOTE: same code as Linux kernel */ /* Allow LDTs to be cleared by the user. */ if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { if (oldmode || (contents == 0 && read_exec_only == 1 && seg_32bit == 0 && limit_in_pages == 0 && seg_not_present == 1 && useable == 0 )) { entry_1 = 0; entry_2 = 0; goto install; } } entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | (ldt_info.limit & 0x0ffff); entry_2 = (ldt_info.base_addr & 0xff000000) | ((ldt_info.base_addr & 0x00ff0000) >> 16) | (ldt_info.limit & 0xf0000) | ((read_exec_only ^ 1) << 9) | (contents << 10) | ((seg_not_present ^ 1) << 15) | (seg_32bit << 22) | (limit_in_pages << 23) | 0x7000; if (!oldmode) entry_2 |= (useable << 20); /* Install the new entry ... */ install: lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); lp[0] = tswap32(entry_1); lp[1] = tswap32(entry_2); return 0; } /* specific and weird i386 syscalls */ int do_modify_ldt(CPUX86State *env, int func, void *ptr, unsigned long bytecount) { int ret = -ENOSYS; switch (func) { case 0: ret = read_ldt(ptr, bytecount); break; case 1: ret = write_ldt(env, ptr, bytecount, 1); break; case 0x11: ret = write_ldt(env, ptr, bytecount, 0); break; } return ret; } /* this stack is the equivalent of the kernel stack associated with a thread/process */ #define NEW_STACK_SIZE 8192 static int clone_func(void *arg) { CPUX86State *env = arg; cpu_loop(env); /* never exits */ return 0; } int do_fork(CPUX86State *env, unsigned int flags, unsigned long newsp) { int ret; TaskState *ts; uint8_t *new_stack; CPUX86State *new_env; if (flags & CLONE_VM) { if (!newsp) newsp = env->regs[R_ESP]; ts = malloc(sizeof(TaskState) + NEW_STACK_SIZE); memset(ts, 0, sizeof(TaskState)); new_stack = ts->stack; ts->used = 1; /* add in task state list */ ts->next = first_task_state; first_task_state = ts; /* we create a new CPU instance. */ new_env = cpu_x86_init(); memcpy(new_env, env, sizeof(CPUX86State)); new_env->regs[R_ESP] = newsp; new_env->regs[R_EAX] = 0; new_env->opaque = ts; #ifdef __ia64__ ret = clone2(clone_func, new_stack + NEW_STACK_SIZE, flags, new_env); #else ret = clone(clone_func, new_stack + NEW_STACK_SIZE, flags, new_env); #endif } else { /* if no CLONE_VM, we consider it is a fork */ if ((flags & ~CSIGNAL) != 0) return -EINVAL; ret = fork(); } return ret; } #endif #define high2lowuid(x) (x) #define high2lowgid(x) (x) #define low2highuid(x) (x) #define low2highgid(x) (x) void syscall_init(void) { #define STRUCT(name, list...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); #include "syscall_types.h" #undef STRUCT #undef STRUCT_SPECIAL } long do_syscall(void *cpu_env, int num, long arg1, long arg2, long arg3, long arg4, long arg5, long arg6) { long ret; struct stat st; struct kernel_statfs *stfs; #ifdef DEBUG gemu_log("syscall %d\n", num); #endif switch(num) { case TARGET_NR_exit: #ifdef HAVE_GPROF _mcleanup(); #endif /* XXX: should free thread stack and CPU env */ _exit(arg1); ret = 0; /* avoid warning */ break; case TARGET_NR_read: page_unprotect_range((void *)arg2, arg3); ret = get_errno(read(arg1, (void *)arg2, arg3)); break; case TARGET_NR_write: ret = get_errno(write(arg1, (void *)arg2, arg3)); break; case TARGET_NR_open: ret = get_errno(open(path((const char *)arg1), arg2, arg3)); break; case TARGET_NR_close: ret = get_errno(close(arg1)); break; case TARGET_NR_brk: ret = do_brk((char *)arg1); break; case TARGET_NR_fork: ret = get_errno(do_fork(cpu_env, SIGCHLD, 0)); break; case TARGET_NR_waitpid: { int *status = (int *)arg2; ret = get_errno(waitpid(arg1, status, arg3)); if (!is_error(ret) && status) tswapls((long *)&status); } break; case TARGET_NR_creat: ret = get_errno(creat((const char *)arg1, arg2)); break; case TARGET_NR_link: ret = get_errno(link((const char *)arg1, (const char *)arg2)); break; case TARGET_NR_unlink: ret = get_errno(unlink((const char *)arg1)); break; case TARGET_NR_execve: { char **argp, **envp; int argc, envc; uint32_t *p; char **q; argc = 0; for (p = (void *)arg2; *p; p++) argc++; envc = 0; for (p = (void *)arg3; *p; p++) envc++; argp = alloca((argc + 1) * sizeof(void *)); envp = alloca((envc + 1) * sizeof(void *)); for (p = (void *)arg2, q = argp; *p; p++, q++) *q = (void *)tswap32(*p); *q = NULL; for (p = (void *)arg3, q = envp; *p; p++, q++) *q = (void *)tswap32(*p); *q = NULL; ret = get_errno(execve((const char *)arg1, argp, envp)); } break; case TARGET_NR_chdir: ret = get_errno(chdir((const char *)arg1)); break; case TARGET_NR_time: { int *time_ptr = (int *)arg1; ret = get_errno(time((time_t *)time_ptr)); if (!is_error(ret) && time_ptr) tswap32s(time_ptr); } break; case TARGET_NR_mknod: ret = get_errno(mknod((const char *)arg1, arg2, arg3)); break; case TARGET_NR_chmod: ret = get_errno(chmod((const char *)arg1, arg2)); break; case TARGET_NR_lchown: ret = get_errno(chown((const char *)arg1, arg2, arg3)); break; case TARGET_NR_break: goto unimplemented; case TARGET_NR_oldstat: goto unimplemented; case TARGET_NR_lseek: ret = get_errno(lseek(arg1, arg2, arg3)); break; case TARGET_NR_getpid: ret = get_errno(getpid()); break; case TARGET_NR_mount: /* need to look at the data field */ goto unimplemented; case TARGET_NR_umount: ret = get_errno(umount((const char *)arg1)); break; case TARGET_NR_setuid: ret = get_errno(setuid(low2highuid(arg1))); break; case TARGET_NR_getuid: ret = get_errno(getuid()); break; case TARGET_NR_stime: { int *time_ptr = (int *)arg1; if (time_ptr) tswap32s(time_ptr); ret = get_errno(stime((time_t *)time_ptr)); } break; case TARGET_NR_ptrace: goto unimplemented; case TARGET_NR_alarm: ret = alarm(arg1); break; case TARGET_NR_oldfstat: goto unimplemented; case TARGET_NR_pause: ret = get_errno(pause()); break; case TARGET_NR_utime: goto unimplemented; case TARGET_NR_stty: goto unimplemented; case TARGET_NR_gtty: goto unimplemented; case TARGET_NR_access: ret = get_errno(access((const char *)arg1, arg2)); break; case TARGET_NR_nice: ret = get_errno(nice(arg1)); break; case TARGET_NR_ftime: goto unimplemented; case TARGET_NR_sync: sync(); ret = 0; break; case TARGET_NR_kill: ret = get_errno(kill(arg1, arg2)); break; case TARGET_NR_rename: ret = get_errno(rename((const char *)arg1, (const char *)arg2)); break; case TARGET_NR_mkdir: ret = get_errno(mkdir((const char *)arg1, arg2)); break; case TARGET_NR_rmdir: ret = get_errno(rmdir((const char *)arg1)); break; case TARGET_NR_dup: ret = get_errno(dup(arg1)); break; case TARGET_NR_pipe: { int *pipe_ptr = (int *)arg1; ret = get_errno(pipe(pipe_ptr)); if (!is_error(ret)) { tswap32s(&pipe_ptr[0]); tswap32s(&pipe_ptr[1]); } } break; case TARGET_NR_times: { struct target_tms *tmsp = (void *)arg1; struct tms tms; ret = get_errno(times(&tms)); if (tmsp) { tmsp->tms_utime = tswapl(tms.tms_utime); tmsp->tms_stime = tswapl(tms.tms_stime); tmsp->tms_cutime = tswapl(tms.tms_cutime); tmsp->tms_cstime = tswapl(tms.tms_cstime); } } break; case TARGET_NR_prof: goto unimplemented; case TARGET_NR_setgid: ret = get_errno(setgid(low2highgid(arg1))); break; case TARGET_NR_getgid: ret = get_errno(getgid()); break; case TARGET_NR_signal: goto unimplemented; case TARGET_NR_geteuid: ret = get_errno(geteuid()); break; case TARGET_NR_getegid: ret = get_errno(getegid()); break; case TARGET_NR_acct: goto unimplemented; case TARGET_NR_umount2: ret = get_errno(umount2((const char *)arg1, arg2)); break; case TARGET_NR_lock: goto unimplemented; case TARGET_NR_ioctl: ret = do_ioctl(arg1, arg2, arg3); break; case TARGET_NR_fcntl: { struct flock fl; struct target_flock *target_fl = (void *)arg3; switch(arg2) { case TARGET_F_GETLK: ret = get_errno(fcntl(arg1, arg2, &fl)); if (ret == 0) { target_fl->l_type = tswap16(fl.l_type); target_fl->l_whence = tswap16(fl.l_whence); target_fl->l_start = tswapl(fl.l_start); target_fl->l_len = tswapl(fl.l_len); target_fl->l_pid = tswapl(fl.l_pid); } break; case TARGET_F_SETLK: case TARGET_F_SETLKW: fl.l_type = tswap16(target_fl->l_type); fl.l_whence = tswap16(target_fl->l_whence); fl.l_start = tswapl(target_fl->l_start); fl.l_len = tswapl(target_fl->l_len); fl.l_pid = tswapl(target_fl->l_pid); ret = get_errno(fcntl(arg1, arg2, &fl)); break; case TARGET_F_GETLK64: case TARGET_F_SETLK64: case TARGET_F_SETLKW64: goto unimplemented; default: ret = get_errno(fcntl(arg1, arg2, arg3)); break; } break; } case TARGET_NR_mpx: goto unimplemented; case TARGET_NR_setpgid: ret = get_errno(setpgid(arg1, arg2)); break; case TARGET_NR_ulimit: goto unimplemented; case TARGET_NR_oldolduname: goto unimplemented; case TARGET_NR_umask: ret = get_errno(umask(arg1)); break; case TARGET_NR_chroot: ret = get_errno(chroot((const char *)arg1)); break; case TARGET_NR_ustat: goto unimplemented; case TARGET_NR_dup2: ret = get_errno(dup2(arg1, arg2)); break; case TARGET_NR_getppid: ret = get_errno(getppid()); break; case TARGET_NR_getpgrp: ret = get_errno(getpgrp()); break; case TARGET_NR_setsid: ret = get_errno(setsid()); break; case TARGET_NR_sigaction: { struct target_old_sigaction *old_act = (void *)arg2; struct target_old_sigaction *old_oact = (void *)arg3; struct target_sigaction act, oact, *pact; if (old_act) { act._sa_handler = old_act->_sa_handler; target_siginitset(&act.sa_mask, old_act->sa_mask); act.sa_flags = old_act->sa_flags; act.sa_restorer = old_act->sa_restorer; pact = &act; } else { pact = NULL; } ret = get_errno(do_sigaction(arg1, pact, &oact)); if (!is_error(ret) && old_oact) { old_oact->_sa_handler = oact._sa_handler; old_oact->sa_mask = oact.sa_mask.sig[0]; old_oact->sa_flags = oact.sa_flags; old_oact->sa_restorer = oact.sa_restorer; } } break; case TARGET_NR_rt_sigaction: ret = get_errno(do_sigaction(arg1, (void *)arg2, (void *)arg3)); break; case TARGET_NR_sgetmask: { sigset_t cur_set; target_ulong target_set; sigprocmask(0, NULL, &cur_set); host_to_target_old_sigset(&target_set, &cur_set); ret = target_set; } break; case TARGET_NR_ssetmask: { sigset_t set, oset, cur_set; target_ulong target_set = arg1; sigprocmask(0, NULL, &cur_set); target_to_host_old_sigset(&set, &target_set); sigorset(&set, &set, &cur_set); sigprocmask(SIG_SETMASK, &set, &oset); host_to_target_old_sigset(&target_set, &oset); ret = target_set; } break; case TARGET_NR_sigprocmask: { int how = arg1; sigset_t set, oldset, *set_ptr; target_ulong *pset = (void *)arg2, *poldset = (void *)arg3; if (pset) { switch(how) { case TARGET_SIG_BLOCK: how = SIG_BLOCK; break; case TARGET_SIG_UNBLOCK: how = SIG_UNBLOCK; break; case TARGET_SIG_SETMASK: how = SIG_SETMASK; break; default: ret = -EINVAL; goto fail; } target_to_host_old_sigset(&set, pset); set_ptr = &set; } else { how = 0; set_ptr = NULL; } ret = get_errno(sigprocmask(arg1, set_ptr, &oldset)); if (!is_error(ret) && poldset) { host_to_target_old_sigset(poldset, &oldset); } } break; case TARGET_NR_rt_sigprocmask: { int how = arg1; sigset_t set, oldset, *set_ptr; target_sigset_t *pset = (void *)arg2; target_sigset_t *poldset = (void *)arg3; if (pset) { switch(how) { case TARGET_SIG_BLOCK: how = SIG_BLOCK; break; case TARGET_SIG_UNBLOCK: how = SIG_UNBLOCK; break; case TARGET_SIG_SETMASK: how = SIG_SETMASK; break; default: ret = -EINVAL; goto fail; } target_to_host_sigset(&set, pset); set_ptr = &set; } else { how = 0; set_ptr = NULL; } ret = get_errno(sigprocmask(how, set_ptr, &oldset)); if (!is_error(ret) && poldset) { host_to_target_sigset(poldset, &oldset); } } break; case TARGET_NR_sigpending: { sigset_t set; ret = get_errno(sigpending(&set)); if (!is_error(ret)) { host_to_target_old_sigset((target_ulong *)arg1, &set); } } break; case TARGET_NR_rt_sigpending: { sigset_t set; ret = get_errno(sigpending(&set)); if (!is_error(ret)) { host_to_target_sigset((target_sigset_t *)arg1, &set); } } break; case TARGET_NR_sigsuspend: { sigset_t set; target_to_host_old_sigset(&set, (target_ulong *)arg1); ret = get_errno(sigsuspend(&set)); } break; case TARGET_NR_rt_sigsuspend: { sigset_t set; target_to_host_sigset(&set, (target_sigset_t *)arg1); ret = get_errno(sigsuspend(&set)); } break; case TARGET_NR_rt_sigtimedwait: { target_sigset_t *target_set = (void *)arg1; target_siginfo_t *target_uinfo = (void *)arg2; struct target_timespec *target_uts = (void *)arg3; sigset_t set; struct timespec uts, *puts; siginfo_t uinfo; target_to_host_sigset(&set, target_set); if (target_uts) { puts = &uts; puts->tv_sec = tswapl(target_uts->tv_sec); puts->tv_nsec = tswapl(target_uts->tv_nsec); } else { puts = NULL; } ret = get_errno(sigtimedwait(&set, &uinfo, puts)); if (!is_error(ret) && target_uinfo) { host_to_target_siginfo(target_uinfo, &uinfo); } } break; case TARGET_NR_rt_sigqueueinfo: { siginfo_t uinfo; target_to_host_siginfo(&uinfo, (target_siginfo_t *)arg3); ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo)); } break; case TARGET_NR_sigreturn: /* NOTE: ret is eax, so not transcoding must be done */ ret = do_sigreturn(cpu_env); break; case TARGET_NR_rt_sigreturn: /* NOTE: ret is eax, so not transcoding must be done */ ret = do_rt_sigreturn(cpu_env); break; case TARGET_NR_setreuid: ret = get_errno(setreuid(arg1, arg2)); break; case TARGET_NR_setregid: ret = get_errno(setregid(arg1, arg2)); break; case TARGET_NR_sethostname: ret = get_errno(sethostname((const char *)arg1, arg2)); break; case TARGET_NR_setrlimit: { /* XXX: convert resource ? */ int resource = arg1; struct target_rlimit *target_rlim = (void *)arg2; struct rlimit rlim; rlim.rlim_cur = tswapl(target_rlim->rlim_cur); rlim.rlim_max = tswapl(target_rlim->rlim_max); ret = get_errno(setrlimit(resource, &rlim)); } break; case TARGET_NR_getrlimit: { /* XXX: convert resource ? */ int resource = arg1; struct target_rlimit *target_rlim = (void *)arg2; struct rlimit rlim; ret = get_errno(getrlimit(resource, &rlim)); if (!is_error(ret)) { target_rlim->rlim_cur = tswapl(rlim.rlim_cur); target_rlim->rlim_max = tswapl(rlim.rlim_max); } } break; case TARGET_NR_getrusage: goto unimplemented; case TARGET_NR_gettimeofday: { struct target_timeval *target_tv = (void *)arg1; struct timeval tv; ret = get_errno(gettimeofday(&tv, NULL)); if (!is_error(ret)) { host_to_target_timeval(target_tv, &tv); } } break; case TARGET_NR_settimeofday: { struct target_timeval *target_tv = (void *)arg1; struct timeval tv; target_to_host_timeval(&tv, target_tv); ret = get_errno(settimeofday(&tv, NULL)); } break; case TARGET_NR_getgroups: { int gidsetsize = arg1; uint16_t *target_grouplist = (void *)arg2; gid_t *grouplist; int i; grouplist = alloca(gidsetsize * sizeof(gid_t)); ret = get_errno(getgroups(gidsetsize, grouplist)); if (!is_error(ret)) { for(i = 0;i < gidsetsize; i++) target_grouplist[i] = tswap16(grouplist[i]); } } break; case TARGET_NR_setgroups: { int gidsetsize = arg1; uint16_t *target_grouplist = (void *)arg2; gid_t *grouplist; int i; grouplist = alloca(gidsetsize * sizeof(gid_t)); for(i = 0;i < gidsetsize; i++) grouplist[i] = tswap16(target_grouplist[i]); ret = get_errno(setgroups(gidsetsize, grouplist)); } break; case TARGET_NR_select: goto unimplemented; case TARGET_NR_symlink: ret = get_errno(symlink((const char *)arg1, (const char *)arg2)); break; case TARGET_NR_oldlstat: goto unimplemented; case TARGET_NR_readlink: ret = get_errno(readlink(path((const char *)arg1), (char *)arg2, arg3)); break; case TARGET_NR_uselib: goto unimplemented; case TARGET_NR_swapon: ret = get_errno(swapon((const char *)arg1, arg2)); break; case TARGET_NR_reboot: goto unimplemented; case TARGET_NR_readdir: goto unimplemented; #ifdef TARGET_I386 case TARGET_NR_mmap: { uint32_t v1, v2, v3, v4, v5, v6, *vptr; vptr = (uint32_t *)arg1; v1 = tswap32(vptr[0]); v2 = tswap32(vptr[1]); v3 = tswap32(vptr[2]); v4 = tswap32(vptr[3]); v5 = tswap32(vptr[4]); v6 = tswap32(vptr[5]); ret = get_errno(target_mmap(v1, v2, v3, v4, v5, v6)); } break; #endif #ifdef TARGET_I386 case TARGET_NR_mmap2: #else case TARGET_NR_mmap: #endif ret = get_errno(target_mmap(arg1, arg2, arg3, arg4, arg5, arg6)); break; case TARGET_NR_munmap: ret = get_errno(target_munmap(arg1, arg2)); break; case TARGET_NR_mprotect: ret = get_errno(target_mprotect(arg1, arg2, arg3)); break; case TARGET_NR_mremap: ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); break; case TARGET_NR_msync: ret = get_errno(msync((void *)arg1, arg2, arg3)); break; case TARGET_NR_mlock: ret = get_errno(mlock((void *)arg1, arg2)); break; case TARGET_NR_munlock: ret = get_errno(munlock((void *)arg1, arg2)); break; case TARGET_NR_mlockall: ret = get_errno(mlockall(arg1)); break; case TARGET_NR_munlockall: ret = get_errno(munlockall()); break; case TARGET_NR_truncate: ret = get_errno(truncate((const char *)arg1, arg2)); break; case TARGET_NR_ftruncate: ret = get_errno(ftruncate(arg1, arg2)); break; case TARGET_NR_fchmod: ret = get_errno(fchmod(arg1, arg2)); break; case TARGET_NR_fchown: ret = get_errno(fchown(arg1, arg2, arg3)); break; case TARGET_NR_getpriority: ret = get_errno(getpriority(arg1, arg2)); break; case TARGET_NR_setpriority: ret = get_errno(setpriority(arg1, arg2, arg3)); break; case TARGET_NR_profil: goto unimplemented; case TARGET_NR_statfs: stfs = (void *)arg2; ret = get_errno(sys_statfs(path((const char *)arg1), stfs)); convert_statfs: if (!is_error(ret)) { tswap32s(&stfs->f_type); tswap32s(&stfs->f_bsize); tswap32s(&stfs->f_blocks); tswap32s(&stfs->f_bfree); tswap32s(&stfs->f_bavail); tswap32s(&stfs->f_files); tswap32s(&stfs->f_ffree); tswap32s(&stfs->f_fsid.val[0]); tswap32s(&stfs->f_fsid.val[1]); tswap32s(&stfs->f_namelen); } break; case TARGET_NR_fstatfs: stfs = (void *)arg2; ret = get_errno(sys_fstatfs(arg1, stfs)); goto convert_statfs; case TARGET_NR_ioperm: goto unimplemented; case TARGET_NR_socketcall: ret = do_socketcall(arg1, (int32_t *)arg2); break; case TARGET_NR_syslog: goto unimplemented; case TARGET_NR_setitimer: { struct target_itimerval *target_value = (void *)arg2; struct target_itimerval *target_ovalue = (void *)arg3; struct itimerval value, ovalue, *pvalue; if (target_value) { pvalue = &value; target_to_host_timeval(&pvalue->it_interval, &target_value->it_interval); target_to_host_timeval(&pvalue->it_value, &target_value->it_value); } else { pvalue = NULL; } ret = get_errno(setitimer(arg1, pvalue, &ovalue)); if (!is_error(ret) && target_ovalue) { host_to_target_timeval(&target_ovalue->it_interval, &ovalue.it_interval); host_to_target_timeval(&target_ovalue->it_value, &ovalue.it_value); } } break; case TARGET_NR_getitimer: { struct target_itimerval *target_value = (void *)arg2; struct itimerval value; ret = get_errno(getitimer(arg1, &value)); if (!is_error(ret) && target_value) { host_to_target_timeval(&target_value->it_interval, &value.it_interval); host_to_target_timeval(&target_value->it_value, &value.it_value); } } break; case TARGET_NR_stat: ret = get_errno(stat(path((const char *)arg1), &st)); goto do_stat; case TARGET_NR_lstat: ret = get_errno(lstat(path((const char *)arg1), &st)); goto do_stat; case TARGET_NR_fstat: { ret = get_errno(fstat(arg1, &st)); do_stat: if (!is_error(ret)) { struct target_stat *target_st = (void *)arg2; target_st->st_dev = tswap16(st.st_dev); target_st->st_ino = tswapl(st.st_ino); target_st->st_mode = tswap16(st.st_mode); target_st->st_nlink = tswap16(st.st_nlink); target_st->st_uid = tswap16(st.st_uid); target_st->st_gid = tswap16(st.st_gid); target_st->st_rdev = tswap16(st.st_rdev); target_st->st_size = tswapl(st.st_size); target_st->st_blksize = tswapl(st.st_blksize); target_st->st_blocks = tswapl(st.st_blocks); target_st->target_st_atime = tswapl(st.st_atime); target_st->target_st_mtime = tswapl(st.st_mtime); target_st->target_st_ctime = tswapl(st.st_ctime); } } break; case TARGET_NR_olduname: goto unimplemented; case TARGET_NR_iopl: goto unimplemented; case TARGET_NR_vhangup: ret = get_errno(vhangup()); break; case TARGET_NR_idle: goto unimplemented; case TARGET_NR_wait4: { int status; target_long *status_ptr = (void *)arg2; struct rusage rusage, *rusage_ptr; struct target_rusage *target_rusage = (void *)arg4; if (target_rusage) rusage_ptr = &rusage; else rusage_ptr = NULL; ret = get_errno(wait4(arg1, &status, arg3, rusage_ptr)); if (!is_error(ret)) { if (status_ptr) *status_ptr = tswap32(status); if (target_rusage) { target_rusage->ru_utime.tv_sec = tswapl(rusage.ru_utime.tv_sec); target_rusage->ru_utime.tv_usec = tswapl(rusage.ru_utime.tv_usec); target_rusage->ru_stime.tv_sec = tswapl(rusage.ru_stime.tv_sec); target_rusage->ru_stime.tv_usec = tswapl(rusage.ru_stime.tv_usec); target_rusage->ru_maxrss = tswapl(rusage.ru_maxrss); target_rusage->ru_ixrss = tswapl(rusage.ru_ixrss); target_rusage->ru_idrss = tswapl(rusage.ru_idrss); target_rusage->ru_isrss = tswapl(rusage.ru_isrss); target_rusage->ru_minflt = tswapl(rusage.ru_minflt); target_rusage->ru_majflt = tswapl(rusage.ru_majflt); target_rusage->ru_nswap = tswapl(rusage.ru_nswap); target_rusage->ru_inblock = tswapl(rusage.ru_inblock); target_rusage->ru_oublock = tswapl(rusage.ru_oublock); target_rusage->ru_msgsnd = tswapl(rusage.ru_msgsnd); target_rusage->ru_msgrcv = tswapl(rusage.ru_msgrcv); target_rusage->ru_nsignals = tswapl(rusage.ru_nsignals); target_rusage->ru_nvcsw = tswapl(rusage.ru_nvcsw); target_rusage->ru_nivcsw = tswapl(rusage.ru_nivcsw); } } } break; case TARGET_NR_swapoff: ret = get_errno(swapoff((const char *)arg1)); break; case TARGET_NR_sysinfo: goto unimplemented; case TARGET_NR_ipc: goto unimplemented; case TARGET_NR_fsync: ret = get_errno(fsync(arg1)); break; case TARGET_NR_clone: ret = get_errno(do_fork(cpu_env, arg1, arg2)); break; #ifdef __NR_exit_group /* new thread calls */ case TARGET_NR_exit_group: ret = get_errno(exit_group(arg1)); break; #endif case TARGET_NR_setdomainname: ret = get_errno(setdomainname((const char *)arg1, arg2)); break; case TARGET_NR_uname: /* no need to transcode because we use the linux syscall */ ret = get_errno(sys_uname((struct new_utsname *)arg1)); break; #ifdef TARGET_I386 case TARGET_NR_modify_ldt: ret = get_errno(do_modify_ldt(cpu_env, arg1, (void *)arg2, arg3)); break; case TARGET_NR_vm86old: goto unimplemented; case TARGET_NR_vm86: ret = do_vm86(cpu_env, arg1, (void *)arg2); break; #endif case TARGET_NR_adjtimex: goto unimplemented; case TARGET_NR_create_module: case TARGET_NR_init_module: case TARGET_NR_delete_module: case TARGET_NR_get_kernel_syms: goto unimplemented; case TARGET_NR_quotactl: goto unimplemented; case TARGET_NR_getpgid: ret = get_errno(getpgid(arg1)); break; case TARGET_NR_fchdir: ret = get_errno(fchdir(arg1)); break; case TARGET_NR_bdflush: goto unimplemented; case TARGET_NR_sysfs: goto unimplemented; case TARGET_NR_personality: ret = get_errno(personality(arg1)); break; case TARGET_NR_afs_syscall: goto unimplemented; case TARGET_NR_setfsuid: ret = get_errno(setfsuid(arg1)); break; case TARGET_NR_setfsgid: ret = get_errno(setfsgid(arg1)); break; case TARGET_NR__llseek: { int64_t res; ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); *(int64_t *)arg4 = tswap64(res); } break; case TARGET_NR_getdents: #if TARGET_LONG_SIZE != 4 #error not supported #endif { struct dirent *dirp = (void *)arg2; long count = arg3; ret = get_errno(sys_getdents(arg1, dirp, count)); if (!is_error(ret)) { struct dirent *de; int len = ret; int reclen; de = dirp; while (len > 0) { reclen = de->d_reclen; if (reclen > len) break; de->d_reclen = tswap16(reclen); tswapls(&de->d_ino); tswapls(&de->d_off); de = (struct dirent *)((char *)de + reclen); len -= reclen; } } } break; case TARGET_NR_getdents64: { struct dirent64 *dirp = (void *)arg2; long count = arg3; ret = get_errno(sys_getdents64(arg1, dirp, count)); if (!is_error(ret)) { struct dirent64 *de; int len = ret; int reclen; de = dirp; while (len > 0) { reclen = de->d_reclen; if (reclen > len) break; de->d_reclen = tswap16(reclen); tswap64s(&de->d_ino); tswap64s(&de->d_off); de = (struct dirent64 *)((char *)de + reclen); len -= reclen; } } } break; case TARGET_NR__newselect: ret = do_select(arg1, (void *)arg2, (void *)arg3, (void *)arg4, (void *)arg5); break; case TARGET_NR_poll: { struct target_pollfd *target_pfd = (void *)arg1; unsigned int nfds = arg2; int timeout = arg3; struct pollfd *pfd; unsigned int i; pfd = alloca(sizeof(struct pollfd) * nfds); for(i = 0; i < nfds; i++) { pfd[i].fd = tswap32(target_pfd[i].fd); pfd[i].events = tswap16(target_pfd[i].events); } ret = get_errno(poll(pfd, nfds, timeout)); if (!is_error(ret)) { for(i = 0; i < nfds; i++) { target_pfd[i].revents = tswap16(pfd[i].revents); } } } break; case TARGET_NR_flock: /* NOTE: the flock constant seems to be the same for every Linux platform */ ret = get_errno(flock(arg1, arg2)); break; case TARGET_NR_readv: { int count = arg3; int i; struct iovec *vec; struct target_iovec *target_vec = (void *)arg2; vec = alloca(count * sizeof(struct iovec)); for(i = 0;i < count; i++) { vec[i].iov_base = (void *)tswapl(target_vec[i].iov_base); vec[i].iov_len = tswapl(target_vec[i].iov_len); } ret = get_errno(readv(arg1, vec, count)); } break; case TARGET_NR_writev: { int count = arg3; int i; struct iovec *vec; struct target_iovec *target_vec = (void *)arg2; vec = alloca(count * sizeof(struct iovec)); for(i = 0;i < count; i++) { vec[i].iov_base = (void *)tswapl(target_vec[i].iov_base); vec[i].iov_len = tswapl(target_vec[i].iov_len); } ret = get_errno(writev(arg1, vec, count)); } break; case TARGET_NR_getsid: ret = get_errno(getsid(arg1)); break; case TARGET_NR_fdatasync: ret = get_errno(fdatasync(arg1)); break; case TARGET_NR__sysctl: goto unimplemented; case TARGET_NR_sched_setparam: { struct sched_param *target_schp = (void *)arg2; struct sched_param schp; schp.sched_priority = tswap32(target_schp->sched_priority); ret = get_errno(sched_setparam(arg1, &schp)); } break; case TARGET_NR_sched_getparam: { struct sched_param *target_schp = (void *)arg2; struct sched_param schp; ret = get_errno(sched_getparam(arg1, &schp)); if (!is_error(ret)) { target_schp->sched_priority = tswap32(schp.sched_priority); } } break; case TARGET_NR_sched_setscheduler: { struct sched_param *target_schp = (void *)arg3; struct sched_param schp; schp.sched_priority = tswap32(target_schp->sched_priority); ret = get_errno(sched_setscheduler(arg1, arg2, &schp)); } break; case TARGET_NR_sched_getscheduler: ret = get_errno(sched_getscheduler(arg1)); break; case TARGET_NR_sched_yield: ret = get_errno(sched_yield()); break; case TARGET_NR_sched_get_priority_max: ret = get_errno(sched_get_priority_max(arg1)); break; case TARGET_NR_sched_get_priority_min: ret = get_errno(sched_get_priority_min(arg1)); break; case TARGET_NR_sched_rr_get_interval: { struct target_timespec *target_ts = (void *)arg2; struct timespec ts; ret = get_errno(sched_rr_get_interval(arg1, &ts)); if (!is_error(ret)) { target_ts->tv_sec = tswapl(ts.tv_sec); target_ts->tv_nsec = tswapl(ts.tv_nsec); } } break; case TARGET_NR_nanosleep: { struct target_timespec *target_req = (void *)arg1; struct target_timespec *target_rem = (void *)arg2; struct timespec req, rem; req.tv_sec = tswapl(target_req->tv_sec); req.tv_nsec = tswapl(target_req->tv_nsec); ret = get_errno(nanosleep(&req, &rem)); if (target_rem) { target_rem->tv_sec = tswapl(rem.tv_sec); target_rem->tv_nsec = tswapl(rem.tv_nsec); } } break; case TARGET_NR_setresuid: ret = get_errno(setresuid(low2highuid(arg1), low2highuid(arg2), low2highuid(arg3))); break; case TARGET_NR_getresuid: { int ruid, euid, suid; ret = get_errno(getresuid(&ruid, &euid, &suid)); if (!is_error(ret)) { *(uint16_t *)arg1 = tswap16(high2lowuid(ruid)); *(uint16_t *)arg2 = tswap16(high2lowuid(euid)); *(uint16_t *)arg3 = tswap16(high2lowuid(suid)); } } break; case TARGET_NR_setresgid: ret = get_errno(setresgid(low2highgid(arg1), low2highgid(arg2), low2highgid(arg3))); break; case TARGET_NR_getresgid: { int rgid, egid, sgid; ret = get_errno(getresgid(&rgid, &egid, &sgid)); if (!is_error(ret)) { *(uint16_t *)arg1 = high2lowgid(tswap16(rgid)); *(uint16_t *)arg2 = high2lowgid(tswap16(egid)); *(uint16_t *)arg3 = high2lowgid(tswap16(sgid)); } } break; case TARGET_NR_query_module: goto unimplemented; case TARGET_NR_nfsservctl: goto unimplemented; case TARGET_NR_prctl: goto unimplemented; case TARGET_NR_pread: page_unprotect_range((void *)arg2, arg3); ret = get_errno(pread(arg1, (void *)arg2, arg3, arg4)); break; case TARGET_NR_pwrite: ret = get_errno(pwrite(arg1, (void *)arg2, arg3, arg4)); break; case TARGET_NR_chown: ret = get_errno(chown((const char *)arg1, arg2, arg3)); break; case TARGET_NR_getcwd: ret = get_errno(sys_getcwd1((char *)arg1, arg2)); break; case TARGET_NR_capget: goto unimplemented; case TARGET_NR_capset: goto unimplemented; case TARGET_NR_sigaltstack: goto unimplemented; case TARGET_NR_sendfile: goto unimplemented; case TARGET_NR_getpmsg: goto unimplemented; case TARGET_NR_putpmsg: goto unimplemented; case TARGET_NR_vfork: ret = get_errno(do_fork(cpu_env, CLONE_VFORK | CLONE_VM | SIGCHLD, 0)); break; case TARGET_NR_ugetrlimit: { struct rlimit rlim; ret = get_errno(getrlimit(arg1, &rlim)); if (!is_error(ret)) { struct target_rlimit *target_rlim = (void *)arg2; target_rlim->rlim_cur = tswapl(rlim.rlim_cur); target_rlim->rlim_max = tswapl(rlim.rlim_max); } break; } case TARGET_NR_truncate64: goto unimplemented; case TARGET_NR_ftruncate64: goto unimplemented; case TARGET_NR_stat64: ret = get_errno(stat(path((const char *)arg1), &st)); goto do_stat64; case TARGET_NR_lstat64: ret = get_errno(lstat(path((const char *)arg1), &st)); goto do_stat64; case TARGET_NR_fstat64: { ret = get_errno(fstat(arg1, &st)); do_stat64: if (!is_error(ret)) { struct target_stat64 *target_st = (void *)arg2; memset(target_st, 0, sizeof(struct target_stat64)); target_st->st_dev = tswap16(st.st_dev); target_st->st_ino = tswap64(st.st_ino); #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO target_st->__st_ino = tswapl(st.st_ino); #endif target_st->st_mode = tswap32(st.st_mode); target_st->st_nlink = tswap32(st.st_nlink); target_st->st_uid = tswapl(st.st_uid); target_st->st_gid = tswapl(st.st_gid); target_st->st_rdev = tswap16(st.st_rdev); /* XXX: better use of kernel struct */ target_st->st_size = tswap64(st.st_size); target_st->st_blksize = tswapl(st.st_blksize); target_st->st_blocks = tswapl(st.st_blocks); target_st->target_st_atime = tswapl(st.st_atime); target_st->target_st_mtime = tswapl(st.st_mtime); target_st->target_st_ctime = tswapl(st.st_ctime); } } break; case TARGET_NR_lchown32: ret = get_errno(lchown((const char *)arg1, arg2, arg3)); break; case TARGET_NR_getuid32: ret = get_errno(getuid()); break; case TARGET_NR_getgid32: ret = get_errno(getgid()); break; case TARGET_NR_geteuid32: ret = get_errno(geteuid()); break; case TARGET_NR_getegid32: ret = get_errno(getegid()); break; case TARGET_NR_setreuid32: ret = get_errno(setreuid(arg1, arg2)); break; case TARGET_NR_setregid32: ret = get_errno(setregid(arg1, arg2)); break; case TARGET_NR_getgroups32: goto unimplemented; case TARGET_NR_setgroups32: goto unimplemented; case TARGET_NR_fchown32: ret = get_errno(fchown(arg1, arg2, arg3)); break; case TARGET_NR_setresuid32: ret = get_errno(setresuid(arg1, arg2, arg3)); break; case TARGET_NR_getresuid32: { int ruid, euid, suid; ret = get_errno(getresuid(&ruid, &euid, &suid)); if (!is_error(ret)) { *(uint32_t *)arg1 = tswap32(ruid); *(uint32_t *)arg2 = tswap32(euid); *(uint32_t *)arg3 = tswap32(suid); } } break; case TARGET_NR_setresgid32: ret = get_errno(setresgid(arg1, arg2, arg3)); break; case TARGET_NR_getresgid32: { int rgid, egid, sgid; ret = get_errno(getresgid(&rgid, &egid, &sgid)); if (!is_error(ret)) { *(uint32_t *)arg1 = tswap32(rgid); *(uint32_t *)arg2 = tswap32(egid); *(uint32_t *)arg3 = tswap32(sgid); } } break; case TARGET_NR_chown32: ret = get_errno(chown((const char *)arg1, arg2, arg3)); break; case TARGET_NR_setuid32: ret = get_errno(setuid(arg1)); break; case TARGET_NR_setgid32: ret = get_errno(setgid(arg1)); break; case TARGET_NR_setfsuid32: ret = get_errno(setfsuid(arg1)); break; case TARGET_NR_setfsgid32: ret = get_errno(setfsgid(arg1)); break; case TARGET_NR_pivot_root: goto unimplemented; case TARGET_NR_mincore: goto unimplemented; case TARGET_NR_madvise: goto unimplemented; #if TARGET_LONG_BITS == 32 case TARGET_NR_fcntl64: { struct flock64 fl; struct target_flock64 *target_fl = (void *)arg3; switch(arg2) { case F_GETLK64: ret = get_errno(fcntl(arg1, arg2, &fl)); if (ret == 0) { target_fl->l_type = tswap16(fl.l_type); target_fl->l_whence = tswap16(fl.l_whence); target_fl->l_start = tswap64(fl.l_start); target_fl->l_len = tswap64(fl.l_len); target_fl->l_pid = tswapl(fl.l_pid); } break; case F_SETLK64: case F_SETLKW64: fl.l_type = tswap16(target_fl->l_type); fl.l_whence = tswap16(target_fl->l_whence); fl.l_start = tswap64(target_fl->l_start); fl.l_len = tswap64(target_fl->l_len); fl.l_pid = tswapl(target_fl->l_pid); ret = get_errno(fcntl(arg1, arg2, &fl)); break; default: ret = get_errno(fcntl(arg1, arg2, arg3)); break; } break; } #endif case TARGET_NR_security: goto unimplemented; case TARGET_NR_gettid: ret = get_errno(gettid()); break; case TARGET_NR_readahead: goto unimplemented; case TARGET_NR_setxattr: case TARGET_NR_lsetxattr: case TARGET_NR_fsetxattr: case TARGET_NR_getxattr: case TARGET_NR_lgetxattr: case TARGET_NR_fgetxattr: case TARGET_NR_listxattr: case TARGET_NR_llistxattr: case TARGET_NR_flistxattr: case TARGET_NR_removexattr: case TARGET_NR_lremovexattr: case TARGET_NR_fremovexattr: goto unimplemented_nowarn; case TARGET_NR_set_thread_area: case TARGET_NR_get_thread_area: goto unimplemented_nowarn; default: unimplemented: gemu_log("qemu: Unsupported syscall: %d\n", num); unimplemented_nowarn: ret = -ENOSYS; break; } fail: return ret; }