/* * Linux syscalls * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //#include #include #include #define termios host_termios #define winsize host_winsize #define termio host_termio #define sgttyb host_sgttyb /* same as target */ #define tchars host_tchars /* same as target */ #define ltchars host_ltchars /* same as target */ #include #include #include #include #include #include #include #include #include "qemu.h" //#define DEBUG #if defined(TARGET_I386) || defined(TARGET_ARM) || defined(TARGET_SPARC) \ || defined(TARGET_M68K) /* 16 bit uid wrappers emulation */ #define USE_UID16 #endif //#include #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct dirent [2]) #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct dirent [2]) #undef _syscall0 #undef _syscall1 #undef _syscall2 #undef _syscall3 #undef _syscall4 #undef _syscall5 #undef _syscall6 #define _syscall0(type,name) \ type name (void) \ { \ return syscall(__NR_##name); \ } #define _syscall1(type,name,type1,arg1) \ type name (type1 arg1) \ { \ return syscall(__NR_##name, arg1); \ } #define _syscall2(type,name,type1,arg1,type2,arg2) \ type name (type1 arg1,type2 arg2) \ { \ return syscall(__NR_##name, arg1, arg2); \ } #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \ type name (type1 arg1,type2 arg2,type3 arg3) \ { \ return syscall(__NR_##name, arg1, arg2, arg3); \ } #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \ type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \ { \ return syscall(__NR_##name, arg1, arg2, arg3, arg4); \ } #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ type5,arg5) \ type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \ { \ return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \ } #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \ type5,arg5,type6,arg6) \ type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5,type6 arg6) \ { \ return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \ } #define __NR_sys_uname __NR_uname #define __NR_sys_getcwd1 __NR_getcwd #define __NR_sys_getdents __NR_getdents #define __NR_sys_getdents64 __NR_getdents64 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) #define __NR__llseek __NR_lseek #endif #ifdef __NR_gettid _syscall0(int, gettid) #else static int gettid(void) { return -ENOSYS; } #endif _syscall1(int,sys_uname,struct new_utsname *,buf) _syscall2(int,sys_getcwd1,char *,buf,size_t,size) _syscall3(int, sys_getdents, uint, fd, struct dirent *, dirp, uint, count); _syscall3(int, sys_getdents64, uint, fd, struct dirent64 *, dirp, uint, count); _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo, loff_t *, res, uint, wh); _syscall3(int,sys_rt_sigqueueinfo,int,pid,int,sig,siginfo_t *,uinfo) #ifdef __NR_exit_group _syscall1(int,exit_group,int,error_code) #endif extern int personality(int); extern int flock(int, int); extern int setfsuid(int); extern int setfsgid(int); extern int setresuid(uid_t, uid_t, uid_t); extern int getresuid(uid_t *, uid_t *, uid_t *); extern int setresgid(gid_t, gid_t, gid_t); extern int getresgid(gid_t *, gid_t *, gid_t *); extern int setgroups(int, gid_t *); static inline long get_errno(long ret) { if (ret == -1) return -errno; else return ret; } static inline int is_error(long ret) { return (unsigned long)ret >= (unsigned long)(-4096); } static target_ulong target_brk; static target_ulong target_original_brk; void target_set_brk(target_ulong new_brk) { target_original_brk = target_brk = new_brk; } long do_brk(target_ulong new_brk) { target_ulong brk_page; long mapped_addr; int new_alloc_size; if (!new_brk) return target_brk; if (new_brk < target_original_brk) return -ENOMEM; brk_page = HOST_PAGE_ALIGN(target_brk); /* If the new brk is less than this, set it and we're done... */ if (new_brk < brk_page) { target_brk = new_brk; return target_brk; } /* We need to allocate more memory after the brk... */ new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page + 1); mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size, PROT_READ|PROT_WRITE, MAP_ANON|MAP_FIXED|MAP_PRIVATE, 0, 0)); if (is_error(mapped_addr)) { return mapped_addr; } else { target_brk = new_brk; return target_brk; } } static inline fd_set *target_to_host_fds(fd_set *fds, target_long *target_fds, int n) { #if !defined(BSWAP_NEEDED) && !defined(WORDS_BIGENDIAN) return (fd_set *)target_fds; #else int i, b; if (target_fds) { FD_ZERO(fds); for(i = 0;i < n; i++) { b = (tswapl(target_fds[i / TARGET_LONG_BITS]) >> (i & (TARGET_LONG_BITS - 1))) & 1; if (b) FD_SET(i, fds); } return fds; } else { return NULL; } #endif } static inline void host_to_target_fds(target_long *target_fds, fd_set *fds, int n) { #if !defined(BSWAP_NEEDED) && !defined(WORDS_BIGENDIAN) /* nothing to do */ #else int i, nw, j, k; target_long v; if (target_fds) { nw = (n + TARGET_LONG_BITS - 1) / TARGET_LONG_BITS; k = 0; for(i = 0;i < nw; i++) { v = 0; for(j = 0; j < TARGET_LONG_BITS; j++) { v |= ((FD_ISSET(k, fds) != 0) << j); k++; } target_fds[i] = tswapl(v); } } #endif } #if defined(__alpha__) #define HOST_HZ 1024 #else #define HOST_HZ 100 #endif static inline long host_to_target_clock_t(long ticks) { #if HOST_HZ == TARGET_HZ return ticks; #else return ((int64_t)ticks * TARGET_HZ) / HOST_HZ; #endif } static inline void host_to_target_rusage(target_ulong target_addr, const struct rusage *rusage) { struct target_rusage *target_rusage; lock_user_struct(target_rusage, target_addr, 0); target_rusage->ru_utime.tv_sec = tswapl(rusage->ru_utime.tv_sec); target_rusage->ru_utime.tv_usec = tswapl(rusage->ru_utime.tv_usec); target_rusage->ru_stime.tv_sec = tswapl(rusage->ru_stime.tv_sec); target_rusage->ru_stime.tv_usec = tswapl(rusage->ru_stime.tv_usec); target_rusage->ru_maxrss = tswapl(rusage->ru_maxrss); target_rusage->ru_ixrss = tswapl(rusage->ru_ixrss); target_rusage->ru_idrss = tswapl(rusage->ru_idrss); target_rusage->ru_isrss = tswapl(rusage->ru_isrss); target_rusage->ru_minflt = tswapl(rusage->ru_minflt); target_rusage->ru_majflt = tswapl(rusage->ru_majflt); target_rusage->ru_nswap = tswapl(rusage->ru_nswap); target_rusage->ru_inblock = tswapl(rusage->ru_inblock); target_rusage->ru_oublock = tswapl(rusage->ru_oublock); target_rusage->ru_msgsnd = tswapl(rusage->ru_msgsnd); target_rusage->ru_msgrcv = tswapl(rusage->ru_msgrcv); target_rusage->ru_nsignals = tswapl(rusage->ru_nsignals); target_rusage->ru_nvcsw = tswapl(rusage->ru_nvcsw); target_rusage->ru_nivcsw = tswapl(rusage->ru_nivcsw); unlock_user_struct(target_rusage, target_addr, 1); } static inline void target_to_host_timeval(struct timeval *tv, target_ulong target_addr) { struct target_timeval *target_tv; lock_user_struct(target_tv, target_addr, 1); tv->tv_sec = tswapl(target_tv->tv_sec); tv->tv_usec = tswapl(target_tv->tv_usec); unlock_user_struct(target_tv, target_addr, 0); } static inline void host_to_target_timeval(target_ulong target_addr, const struct timeval *tv) { struct target_timeval *target_tv; lock_user_struct(target_tv, target_addr, 0); target_tv->tv_sec = tswapl(tv->tv_sec); target_tv->tv_usec = tswapl(tv->tv_usec); unlock_user_struct(target_tv, target_addr, 1); } static long do_select(long n, target_ulong rfd_p, target_ulong wfd_p, target_ulong efd_p, target_ulong target_tv) { fd_set rfds, wfds, efds; fd_set *rfds_ptr, *wfds_ptr, *efds_ptr; target_long *target_rfds, *target_wfds, *target_efds; struct timeval tv, *tv_ptr; long ret; int ok; if (rfd_p) { target_rfds = lock_user(rfd_p, sizeof(target_long) * n, 1); rfds_ptr = target_to_host_fds(&rfds, target_rfds, n); } else { target_rfds = NULL; rfds_ptr = NULL; } if (wfd_p) { target_wfds = lock_user(wfd_p, sizeof(target_long) * n, 1); wfds_ptr = target_to_host_fds(&wfds, target_wfds, n); } else { target_wfds = NULL; wfds_ptr = NULL; } if (efd_p) { target_efds = lock_user(efd_p, sizeof(target_long) * n, 1); efds_ptr = target_to_host_fds(&efds, target_efds, n); } else { target_efds = NULL; efds_ptr = NULL; } if (target_tv) { target_to_host_timeval(&tv, target_tv); tv_ptr = &tv; } else { tv_ptr = NULL; } ret = get_errno(select(n, rfds_ptr, wfds_ptr, efds_ptr, tv_ptr)); ok = !is_error(ret); if (ok) { host_to_target_fds(target_rfds, rfds_ptr, n); host_to_target_fds(target_wfds, wfds_ptr, n); host_to_target_fds(target_efds, efds_ptr, n); if (target_tv) { host_to_target_timeval(target_tv, &tv); } } if (target_rfds) unlock_user(target_rfds, rfd_p, ok ? sizeof(target_long) * n : 0); if (target_wfds) unlock_user(target_wfds, wfd_p, ok ? sizeof(target_long) * n : 0); if (target_efds) unlock_user(target_efds, efd_p, ok ? sizeof(target_long) * n : 0); return ret; } static inline void target_to_host_sockaddr(struct sockaddr *addr, target_ulong target_addr, socklen_t len) { struct target_sockaddr *target_saddr; target_saddr = lock_user(target_addr, len, 1); memcpy(addr, target_saddr, len); addr->sa_family = tswap16(target_saddr->sa_family); unlock_user(target_saddr, target_addr, 0); } static inline void host_to_target_sockaddr(target_ulong target_addr, struct sockaddr *addr, socklen_t len) { struct target_sockaddr *target_saddr; target_saddr = lock_user(target_addr, len, 0); memcpy(target_saddr, addr, len); target_saddr->sa_family = tswap16(addr->sa_family); unlock_user(target_saddr, target_addr, len); } /* ??? Should this also swap msgh->name? */ static inline void target_to_host_cmsg(struct msghdr *msgh, struct target_msghdr *target_msgh) { struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); struct target_cmsghdr *target_cmsg = TARGET_CMSG_FIRSTHDR(target_msgh); socklen_t space = 0; while (cmsg && target_cmsg) { void *data = CMSG_DATA(cmsg); void *target_data = TARGET_CMSG_DATA(target_cmsg); int len = tswapl(target_cmsg->cmsg_len) - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr)); space += CMSG_SPACE(len); if (space > msgh->msg_controllen) { space -= CMSG_SPACE(len); gemu_log("Host cmsg overflow\n"); break; } cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level); cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type); cmsg->cmsg_len = CMSG_LEN(len); if (cmsg->cmsg_level != TARGET_SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) { gemu_log("Unsupported ancillary data: %d/%d\n", cmsg->cmsg_level, cmsg->cmsg_type); memcpy(data, target_data, len); } else { int *fd = (int *)data; int *target_fd = (int *)target_data; int i, numfds = len / sizeof(int); for (i = 0; i < numfds; i++) fd[i] = tswap32(target_fd[i]); } cmsg = CMSG_NXTHDR(msgh, cmsg); target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg); } msgh->msg_controllen = space; } /* ??? Should this also swap msgh->name? */ static inline void host_to_target_cmsg(struct target_msghdr *target_msgh, struct msghdr *msgh) { struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh); struct target_cmsghdr *target_cmsg = TARGET_CMSG_FIRSTHDR(target_msgh); socklen_t space = 0; while (cmsg && target_cmsg) { void *data = CMSG_DATA(cmsg); void *target_data = TARGET_CMSG_DATA(target_cmsg); int len = cmsg->cmsg_len - CMSG_ALIGN(sizeof (struct cmsghdr)); space += TARGET_CMSG_SPACE(len); if (space > tswapl(target_msgh->msg_controllen)) { space -= TARGET_CMSG_SPACE(len); gemu_log("Target cmsg overflow\n"); break; } target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level); target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type); target_cmsg->cmsg_len = tswapl(TARGET_CMSG_LEN(len)); if (cmsg->cmsg_level != TARGET_SOL_SOCKET || cmsg->cmsg_type != SCM_RIGHTS) { gemu_log("Unsupported ancillary data: %d/%d\n", cmsg->cmsg_level, cmsg->cmsg_type); memcpy(target_data, data, len); } else { int *fd = (int *)data; int *target_fd = (int *)target_data; int i, numfds = len / sizeof(int); for (i = 0; i < numfds; i++) target_fd[i] = tswap32(fd[i]); } cmsg = CMSG_NXTHDR(msgh, cmsg); target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg); } msgh->msg_controllen = tswapl(space); } static long do_setsockopt(int sockfd, int level, int optname, target_ulong optval, socklen_t optlen) { int val, ret; switch(level) { case SOL_TCP: /* TCP options all take an 'int' value. */ if (optlen < sizeof(uint32_t)) return -EINVAL; val = tget32(optval); ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); break; case SOL_IP: switch(optname) { case IP_TOS: case IP_TTL: case IP_HDRINCL: case IP_ROUTER_ALERT: case IP_RECVOPTS: case IP_RETOPTS: case IP_PKTINFO: case IP_MTU_DISCOVER: case IP_RECVERR: case IP_RECVTOS: #ifdef IP_FREEBIND case IP_FREEBIND: #endif case IP_MULTICAST_TTL: case IP_MULTICAST_LOOP: val = 0; if (optlen >= sizeof(uint32_t)) { val = tget32(optval); } else if (optlen >= 1) { val = tget8(optval); } ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val))); break; default: goto unimplemented; } break; case TARGET_SOL_SOCKET: switch (optname) { /* Options with 'int' argument. */ case TARGET_SO_DEBUG: optname = SO_DEBUG; break; case TARGET_SO_REUSEADDR: optname = SO_REUSEADDR; break; case TARGET_SO_TYPE: optname = SO_TYPE; break; case TARGET_SO_ERROR: optname = SO_ERROR; break; case TARGET_SO_DONTROUTE: optname = SO_DONTROUTE; break; case TARGET_SO_BROADCAST: optname = SO_BROADCAST; break; case TARGET_SO_SNDBUF: optname = SO_SNDBUF; break; case TARGET_SO_RCVBUF: optname = SO_RCVBUF; break; case TARGET_SO_KEEPALIVE: optname = SO_KEEPALIVE; break; case TARGET_SO_OOBINLINE: optname = SO_OOBINLINE; break; case TARGET_SO_NO_CHECK: optname = SO_NO_CHECK; break; case TARGET_SO_PRIORITY: optname = SO_PRIORITY; break; #ifdef SO_BSDCOMPAT case TARGET_SO_BSDCOMPAT: optname = SO_BSDCOMPAT; break; #endif case TARGET_SO_PASSCRED: optname = SO_PASSCRED; break; case TARGET_SO_TIMESTAMP: optname = SO_TIMESTAMP; break; case TARGET_SO_RCVLOWAT: optname = SO_RCVLOWAT; break; case TARGET_SO_RCVTIMEO: optname = SO_RCVTIMEO; break; case TARGET_SO_SNDTIMEO: optname = SO_SNDTIMEO; break; break; default: goto unimplemented; } if (optlen < sizeof(uint32_t)) return -EINVAL; val = tget32(optval); ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val))); break; default: unimplemented: gemu_log("Unsupported setsockopt level=%d optname=%d \n", level, optname); ret = -ENOSYS; } return ret; } static long do_getsockopt(int sockfd, int level, int optname, target_ulong optval, target_ulong optlen) { int len, lv, val, ret; switch(level) { case TARGET_SOL_SOCKET: level = SOL_SOCKET; switch (optname) { case TARGET_SO_LINGER: case TARGET_SO_RCVTIMEO: case TARGET_SO_SNDTIMEO: case TARGET_SO_PEERCRED: case TARGET_SO_PEERNAME: /* These don't just return a single integer */ goto unimplemented; default: goto int_case; } break; case SOL_TCP: /* TCP options all take an 'int' value. */ int_case: len = tget32(optlen); if (len < 0) return -EINVAL; lv = sizeof(int); ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); if (ret < 0) return ret; val = tswap32(val); if (len > lv) len = lv; if (len == 4) tput32(optval, val); else tput8(optval, val); tput32(optlen, len); break; case SOL_IP: switch(optname) { case IP_TOS: case IP_TTL: case IP_HDRINCL: case IP_ROUTER_ALERT: case IP_RECVOPTS: case IP_RETOPTS: case IP_PKTINFO: case IP_MTU_DISCOVER: case IP_RECVERR: case IP_RECVTOS: #ifdef IP_FREEBIND case IP_FREEBIND: #endif case IP_MULTICAST_TTL: case IP_MULTICAST_LOOP: len = tget32(optlen); if (len < 0) return -EINVAL; lv = sizeof(int); ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv)); if (ret < 0) return ret; if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) { len = 1; tput32(optlen, len); tput8(optval, val); } else { if (len > sizeof(int)) len = sizeof(int); tput32(optlen, len); tput32(optval, val); } break; default: goto unimplemented; } break; default: unimplemented: gemu_log("getsockopt level=%d optname=%d not yet supported\n", level, optname); ret = -ENOSYS; break; } return ret; } static void lock_iovec(struct iovec *vec, target_ulong target_addr, int count, int copy) { struct target_iovec *target_vec; target_ulong base; int i; target_vec = lock_user(target_addr, count * sizeof(struct target_iovec), 1); for(i = 0;i < count; i++) { base = tswapl(target_vec[i].iov_base); vec[i].iov_len = tswapl(target_vec[i].iov_len); vec[i].iov_base = lock_user(base, vec[i].iov_len, copy); } unlock_user (target_vec, target_addr, 0); } static void unlock_iovec(struct iovec *vec, target_ulong target_addr, int count, int copy) { struct target_iovec *target_vec; target_ulong base; int i; target_vec = lock_user(target_addr, count * sizeof(struct target_iovec), 1); for(i = 0;i < count; i++) { base = tswapl(target_vec[i].iov_base); unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0); } unlock_user (target_vec, target_addr, 0); } static long do_socket(int domain, int type, int protocol) { #if defined(TARGET_MIPS) switch(type) { case TARGET_SOCK_DGRAM: type = SOCK_DGRAM; break; case TARGET_SOCK_STREAM: type = SOCK_STREAM; break; case TARGET_SOCK_RAW: type = SOCK_RAW; break; case TARGET_SOCK_RDM: type = SOCK_RDM; break; case TARGET_SOCK_SEQPACKET: type = SOCK_SEQPACKET; break; case TARGET_SOCK_PACKET: type = SOCK_PACKET; break; } #endif return get_errno(socket(domain, type, protocol)); } static long do_bind(int sockfd, target_ulong target_addr, socklen_t addrlen) { void *addr = alloca(addrlen); target_to_host_sockaddr(addr, target_addr, addrlen); return get_errno(bind(sockfd, addr, addrlen)); } static long do_connect(int sockfd, target_ulong target_addr, socklen_t addrlen) { void *addr = alloca(addrlen); target_to_host_sockaddr(addr, target_addr, addrlen); return get_errno(connect(sockfd, addr, addrlen)); } static long do_sendrecvmsg(int fd, target_ulong target_msg, int flags, int send) { long ret; struct target_msghdr *msgp; struct msghdr msg; int count; struct iovec *vec; target_ulong target_vec; lock_user_struct(msgp, target_msg, 1); if (msgp->msg_name) { msg.msg_namelen = tswap32(msgp->msg_namelen); msg.msg_name = alloca(msg.msg_namelen); target_to_host_sockaddr(msg.msg_name, tswapl(msgp->msg_name), msg.msg_namelen); } else { msg.msg_name = NULL; msg.msg_namelen = 0; } msg.msg_controllen = 2 * tswapl(msgp->msg_controllen); msg.msg_control = alloca(msg.msg_controllen); msg.msg_flags = tswap32(msgp->msg_flags); count = tswapl(msgp->msg_iovlen); vec = alloca(count * sizeof(struct iovec)); target_vec = tswapl(msgp->msg_iov); lock_iovec(vec, target_vec, count, send); msg.msg_iovlen = count; msg.msg_iov = vec; if (send) { target_to_host_cmsg(&msg, msgp); ret = get_errno(sendmsg(fd, &msg, flags)); } else { ret = get_errno(recvmsg(fd, &msg, flags)); if (!is_error(ret)) host_to_target_cmsg(msgp, &msg); } unlock_iovec(vec, target_vec, count, !send); return ret; } static long do_socketcall(int num, target_ulong vptr) { long ret; const int n = sizeof(target_ulong); switch(num) { case SOCKOP_socket: { int domain = tgetl(vptr); int type = tgetl(vptr + n); int protocol = tgetl(vptr + 2 * n); ret = do_socket(domain, type, protocol); } break; case SOCKOP_bind: { int sockfd = tgetl(vptr); target_ulong target_addr = tgetl(vptr + n); socklen_t addrlen = tgetl(vptr + 2 * n); ret = do_bind(sockfd, target_addr, addrlen); } break; case SOCKOP_connect: { int sockfd = tgetl(vptr); target_ulong target_addr = tgetl(vptr + n); socklen_t addrlen = tgetl(vptr + 2 * n); ret = do_connect(sockfd, target_addr, addrlen); } break; case SOCKOP_listen: { int sockfd = tgetl(vptr); int backlog = tgetl(vptr + n); ret = get_errno(listen(sockfd, backlog)); } break; case SOCKOP_accept: { int sockfd = tgetl(vptr); target_ulong target_addr = tgetl(vptr + n); target_ulong target_addrlen = tgetl(vptr + 2 * n); socklen_t addrlen = tget32(target_addrlen); void *addr = alloca(addrlen); ret = get_errno(accept(sockfd, addr, &addrlen)); if (!is_error(ret)) { host_to_target_sockaddr(target_addr, addr, addrlen); tput32(target_addrlen, addrlen); } } break; case SOCKOP_getsockname: { int sockfd = tgetl(vptr); target_ulong target_addr = tgetl(vptr + n); target_ulong target_addrlen = tgetl(vptr + 2 * n); socklen_t addrlen = tget32(target_addrlen); void *addr = alloca(addrlen); ret = get_errno(getsockname(sockfd, addr, &addrlen)); if (!is_error(ret)) { host_to_target_sockaddr(target_addr, addr, addrlen); tput32(target_addrlen, addrlen); } } break; case SOCKOP_getpeername: { int sockfd = tgetl(vptr); target_ulong target_addr = tgetl(vptr + n); target_ulong target_addrlen = tgetl(vptr + 2 * n); socklen_t addrlen = tget32(target_addrlen); void *addr = alloca(addrlen); ret = get_errno(getpeername(sockfd, addr, &addrlen)); if (!is_error(ret)) { host_to_target_sockaddr(target_addr, addr, addrlen); tput32(target_addrlen, addrlen); } } break; case SOCKOP_socketpair: { int domain = tgetl(vptr); int type = tgetl(vptr + n); int protocol = tgetl(vptr + 2 * n); target_ulong target_tab = tgetl(vptr + 3 * n); int tab[2]; ret = get_errno(socketpair(domain, type, protocol, tab)); if (!is_error(ret)) { tput32(target_tab, tab[0]); tput32(target_tab + 4, tab[1]); } } break; case SOCKOP_send: { int sockfd = tgetl(vptr); target_ulong msg = tgetl(vptr + n); size_t len = tgetl(vptr + 2 * n); int flags = tgetl(vptr + 3 * n); void *host_msg; host_msg = lock_user(msg, len, 1); ret = get_errno(send(sockfd, host_msg, len, flags)); unlock_user(host_msg, msg, 0); } break; case SOCKOP_recv: { int sockfd = tgetl(vptr); target_ulong msg = tgetl(vptr + n); size_t len = tgetl(vptr + 2 * n); int flags = tgetl(vptr + 3 * n); void *host_msg; host_msg = lock_user(msg, len, 0); ret = get_errno(recv(sockfd, host_msg, len, flags)); unlock_user(host_msg, msg, ret); } break; case SOCKOP_sendto: { int sockfd = tgetl(vptr); target_ulong msg = tgetl(vptr + n); size_t len = tgetl(vptr + 2 * n); int flags = tgetl(vptr + 3 * n); target_ulong target_addr = tgetl(vptr + 4 * n); socklen_t addrlen = tgetl(vptr + 5 * n); void *addr = alloca(addrlen); void *host_msg; host_msg = lock_user(msg, len, 1); target_to_host_sockaddr(addr, target_addr, addrlen); ret = get_errno(sendto(sockfd, host_msg, len, flags, addr, addrlen)); unlock_user(host_msg, msg, 0); } break; case SOCKOP_recvfrom: { int sockfd = tgetl(vptr); target_ulong msg = tgetl(vptr + n); size_t len = tgetl(vptr + 2 * n); int flags = tgetl(vptr + 3 * n); target_ulong target_addr = tgetl(vptr + 4 * n); target_ulong target_addrlen = tgetl(vptr + 5 * n); socklen_t addrlen = tget32(target_addrlen); void *addr = alloca(addrlen); void *host_msg; host_msg = lock_user(msg, len, 0); ret = get_errno(recvfrom(sockfd, host_msg, len, flags, addr, &addrlen)); if (!is_error(ret)) { host_to_target_sockaddr(target_addr, addr, addrlen); tput32(target_addrlen, addrlen); unlock_user(host_msg, msg, len); } else { unlock_user(host_msg, msg, 0); } } break; case SOCKOP_shutdown: { int sockfd = tgetl(vptr); int how = tgetl(vptr + n); ret = get_errno(shutdown(sockfd, how)); } break; case SOCKOP_sendmsg: case SOCKOP_recvmsg: { int fd; target_ulong target_msg; int flags; fd = tgetl(vptr); target_msg = tgetl(vptr + n); flags = tgetl(vptr + 2 * n); ret = do_sendrecvmsg(fd, target_msg, flags, (num == SOCKOP_sendmsg)); } break; case SOCKOP_setsockopt: { int sockfd = tgetl(vptr); int level = tgetl(vptr + n); int optname = tgetl(vptr + 2 * n); target_ulong optval = tgetl(vptr + 3 * n); socklen_t optlen = tgetl(vptr + 4 * n); ret = do_setsockopt(sockfd, level, optname, optval, optlen); } break; case SOCKOP_getsockopt: { int sockfd = tgetl(vptr); int level = tgetl(vptr + n); int optname = tgetl(vptr + 2 * n); target_ulong optval = tgetl(vptr + 3 * n); target_ulong poptlen = tgetl(vptr + 4 * n); ret = do_getsockopt(sockfd, level, optname, optval, poptlen); } break; default: gemu_log("Unsupported socketcall: %d\n", num); ret = -ENOSYS; break; } return ret; } /* XXX: suppress this function and call directly the related socket functions */ static long do_socketcallwrapper(int num, long arg1, long arg2, long arg3, long arg4, long arg5, long arg6) { target_long args[6]; tputl(args, arg1); tputl(args+1, arg2); tputl(args+2, arg3); tputl(args+3, arg4); tputl(args+4, arg5); tputl(args+5, arg6); return do_socketcall(num, (target_ulong) args); } #define N_SHM_REGIONS 32 static struct shm_region { uint32_t start; uint32_t size; } shm_regions[N_SHM_REGIONS]; /* ??? This only works with linear mappings. */ static long do_ipc(long call, long first, long second, long third, long ptr, long fifth) { int version; long ret = 0; unsigned long raddr; struct shmid_ds shm_info; int i; version = call >> 16; call &= 0xffff; switch (call) { case IPCOP_shmat: /* SHM_* flags are the same on all linux platforms */ ret = get_errno((long) shmat(first, (void *) ptr, second)); if (is_error(ret)) break; raddr = ret; /* find out the length of the shared memory segment */ ret = get_errno(shmctl(first, IPC_STAT, &shm_info)); if (is_error(ret)) { /* can't get length, bail out */ shmdt((void *) raddr); break; } page_set_flags(raddr, raddr + shm_info.shm_segsz, PAGE_VALID | PAGE_READ | ((second & SHM_RDONLY)? 0: PAGE_WRITE)); for (i = 0; i < N_SHM_REGIONS; ++i) { if (shm_regions[i].start == 0) { shm_regions[i].start = raddr; shm_regions[i].size = shm_info.shm_segsz; break; } } if (put_user(raddr, (uint32_t *)third)) return -EFAULT; ret = 0; break; case IPCOP_shmdt: for (i = 0; i < N_SHM_REGIONS; ++i) { if (shm_regions[i].start == ptr) { shm_regions[i].start = 0; page_set_flags(ptr, shm_regions[i].size, 0); break; } } ret = get_errno(shmdt((void *) ptr)); break; case IPCOP_shmget: /* IPC_* flag values are the same on all linux platforms */ ret = get_errno(shmget(first, second, third)); break; /* IPC_* and SHM_* command values are the same on all linux platforms */ case IPCOP_shmctl: switch(second) { case IPC_RMID: case SHM_LOCK: case SHM_UNLOCK: ret = get_errno(shmctl(first, second, NULL)); break; default: goto unimplemented; } break; default: unimplemented: gemu_log("Unsupported ipc call: %ld (version %d)\n", call, version); ret = -ENOSYS; break; } return ret; } /* kernel structure types definitions */ #define IFNAMSIZ 16 #define STRUCT(name, list...) STRUCT_ ## name, #define STRUCT_SPECIAL(name) STRUCT_ ## name, enum { #include "syscall_types.h" }; #undef STRUCT #undef STRUCT_SPECIAL #define STRUCT(name, list...) const argtype struct_ ## name ## _def[] = { list, TYPE_NULL }; #define STRUCT_SPECIAL(name) #include "syscall_types.h" #undef STRUCT #undef STRUCT_SPECIAL typedef struct IOCTLEntry { unsigned int target_cmd; unsigned int host_cmd; const char *name; int access; const argtype arg_type[5]; } IOCTLEntry; #define IOC_R 0x0001 #define IOC_W 0x0002 #define IOC_RW (IOC_R | IOC_W) #define MAX_STRUCT_SIZE 4096 IOCTLEntry ioctl_entries[] = { #define IOCTL(cmd, access, types...) \ { TARGET_ ## cmd, cmd, #cmd, access, { types } }, #include "ioctls.h" { 0, 0, }, }; /* ??? Implement proper locking for ioctls. */ static long do_ioctl(long fd, long cmd, long arg) { const IOCTLEntry *ie; const argtype *arg_type; long ret; uint8_t buf_temp[MAX_STRUCT_SIZE]; int target_size; void *argptr; ie = ioctl_entries; for(;;) { if (ie->target_cmd == 0) { gemu_log("Unsupported ioctl: cmd=0x%04lx\n", cmd); return -ENOSYS; } if (ie->target_cmd == cmd) break; ie++; } arg_type = ie->arg_type; #if defined(DEBUG) gemu_log("ioctl: cmd=0x%04lx (%s)\n", cmd, ie->name); #endif switch(arg_type[0]) { case TYPE_NULL: /* no argument */ ret = get_errno(ioctl(fd, ie->host_cmd)); break; case TYPE_PTRVOID: case TYPE_INT: /* int argment */ ret = get_errno(ioctl(fd, ie->host_cmd, arg)); break; case TYPE_PTR: arg_type++; target_size = thunk_type_size(arg_type, 0); switch(ie->access) { case IOC_R: ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); if (!is_error(ret)) { argptr = lock_user(arg, target_size, 0); thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); unlock_user(argptr, arg, target_size); } break; case IOC_W: argptr = lock_user(arg, target_size, 1); thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); unlock_user(argptr, arg, 0); ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); break; default: case IOC_RW: argptr = lock_user(arg, target_size, 1); thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST); unlock_user(argptr, arg, 0); ret = get_errno(ioctl(fd, ie->host_cmd, buf_temp)); if (!is_error(ret)) { argptr = lock_user(arg, target_size, 0); thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET); unlock_user(argptr, arg, target_size); } break; } break; default: gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n", cmd, arg_type[0]); ret = -ENOSYS; break; } return ret; } bitmask_transtbl iflag_tbl[] = { { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK }, { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT }, { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR }, { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK }, { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK }, { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP }, { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR }, { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR }, { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL }, { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC }, { TARGET_IXON, TARGET_IXON, IXON, IXON }, { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY }, { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF }, { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL }, { 0, 0, 0, 0 } }; bitmask_transtbl oflag_tbl[] = { { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST }, { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC }, { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR }, { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL }, { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR }, { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET }, { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL }, { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL }, { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 }, { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 }, { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 }, { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 }, { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 }, { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 }, { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 }, { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 }, { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 }, { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 }, { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 }, { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 }, { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 }, { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 }, { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 }, { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 }, { 0, 0, 0, 0 } }; bitmask_transtbl cflag_tbl[] = { { TARGET_CBAUD, TARGET_B0, CBAUD, B0 }, { TARGET_CBAUD, TARGET_B50, CBAUD, B50 }, { TARGET_CBAUD, TARGET_B75, CBAUD, B75 }, { TARGET_CBAUD, TARGET_B110, CBAUD, B110 }, { TARGET_CBAUD, TARGET_B134, CBAUD, B134 }, { TARGET_CBAUD, TARGET_B150, CBAUD, B150 }, { TARGET_CBAUD, TARGET_B200, CBAUD, B200 }, { TARGET_CBAUD, TARGET_B300, CBAUD, B300 }, { TARGET_CBAUD, TARGET_B600, CBAUD, B600 }, { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 }, { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 }, { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 }, { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 }, { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 }, { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 }, { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 }, { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 }, { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 }, { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 }, { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 }, { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 }, { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 }, { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 }, { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 }, { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB }, { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD }, { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB }, { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD }, { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL }, { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL }, { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS }, { 0, 0, 0, 0 } }; bitmask_transtbl lflag_tbl[] = { { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG }, { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON }, { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE }, { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO }, { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE }, { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK }, { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL }, { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH }, { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP }, { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL }, { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT }, { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE }, { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO }, { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN }, { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN }, { 0, 0, 0, 0 } }; static void target_to_host_termios (void *dst, const void *src) { struct host_termios *host = dst; const struct target_termios *target = src; host->c_iflag = target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl); host->c_oflag = target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl); host->c_cflag = target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl); host->c_lflag = target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl); host->c_line = target->c_line; host->c_cc[VINTR] = target->c_cc[TARGET_VINTR]; host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT]; host->c_cc[VERASE] = target->c_cc[TARGET_VERASE]; host->c_cc[VKILL] = target->c_cc[TARGET_VKILL]; host->c_cc[VEOF] = target->c_cc[TARGET_VEOF]; host->c_cc[VTIME] = target->c_cc[TARGET_VTIME]; host->c_cc[VMIN] = target->c_cc[TARGET_VMIN]; host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC]; host->c_cc[VSTART] = target->c_cc[TARGET_VSTART]; host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP]; host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP]; host->c_cc[VEOL] = target->c_cc[TARGET_VEOL]; host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT]; host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD]; host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE]; host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT]; host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2]; } static void host_to_target_termios (void *dst, const void *src) { struct target_termios *target = dst; const struct host_termios *host = src; target->c_iflag = tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl)); target->c_oflag = tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl)); target->c_cflag = tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl)); target->c_lflag = tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl)); target->c_line = host->c_line; target->c_cc[TARGET_VINTR] = host->c_cc[VINTR]; target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT]; target->c_cc[TARGET_VERASE] = host->c_cc[VERASE]; target->c_cc[TARGET_VKILL] = host->c_cc[VKILL]; target->c_cc[TARGET_VEOF] = host->c_cc[VEOF]; target->c_cc[TARGET_VTIME] = host->c_cc[VTIME]; target->c_cc[TARGET_VMIN] = host->c_cc[VMIN]; target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC]; target->c_cc[TARGET_VSTART] = host->c_cc[VSTART]; target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP]; target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP]; target->c_cc[TARGET_VEOL] = host->c_cc[VEOL]; target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT]; target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD]; target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE]; target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT]; target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2]; } StructEntry struct_termios_def = { .convert = { host_to_target_termios, target_to_host_termios }, .size = { sizeof(struct target_termios), sizeof(struct host_termios) }, .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) }, }; static bitmask_transtbl mmap_flags_tbl[] = { { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED }, { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE }, { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED }, { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, MAP_ANONYMOUS, MAP_ANONYMOUS }, { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, MAP_GROWSDOWN, MAP_GROWSDOWN }, { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, MAP_DENYWRITE, MAP_DENYWRITE }, { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, MAP_EXECUTABLE, MAP_EXECUTABLE }, { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED }, { 0, 0, 0, 0 } }; static bitmask_transtbl fcntl_flags_tbl[] = { { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, }, { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, }, { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, }, { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, }, { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, }, { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, }, { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, }, { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, }, { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, }, { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, }, { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, }, { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, }, { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, }, #if defined(O_DIRECT) { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, }, #endif { 0, 0, 0, 0 } }; #if defined(TARGET_I386) /* NOTE: there is really one LDT for all the threads */ uint8_t *ldt_table; static int read_ldt(target_ulong ptr, unsigned long bytecount) { int size; void *p; if (!ldt_table) return 0; size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE; if (size > bytecount) size = bytecount; p = lock_user(ptr, size, 0); /* ??? Shoudl this by byteswapped? */ memcpy(p, ldt_table, size); unlock_user(p, ptr, size); return size; } /* XXX: add locking support */ static int write_ldt(CPUX86State *env, target_ulong ptr, unsigned long bytecount, int oldmode) { struct target_modify_ldt_ldt_s ldt_info; struct target_modify_ldt_ldt_s *target_ldt_info; int seg_32bit, contents, read_exec_only, limit_in_pages; int seg_not_present, useable; uint32_t *lp, entry_1, entry_2; if (bytecount != sizeof(ldt_info)) return -EINVAL; lock_user_struct(target_ldt_info, ptr, 1); ldt_info.entry_number = tswap32(target_ldt_info->entry_number); ldt_info.base_addr = tswapl(target_ldt_info->base_addr); ldt_info.limit = tswap32(target_ldt_info->limit); ldt_info.flags = tswap32(target_ldt_info->flags); unlock_user_struct(target_ldt_info, ptr, 0); if (ldt_info.entry_number >= TARGET_LDT_ENTRIES) return -EINVAL; seg_32bit = ldt_info.flags & 1; contents = (ldt_info.flags >> 1) & 3; read_exec_only = (ldt_info.flags >> 3) & 1; limit_in_pages = (ldt_info.flags >> 4) & 1; seg_not_present = (ldt_info.flags >> 5) & 1; useable = (ldt_info.flags >> 6) & 1; if (contents == 3) { if (oldmode) return -EINVAL; if (seg_not_present == 0) return -EINVAL; } /* allocate the LDT */ if (!ldt_table) { ldt_table = malloc(TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); if (!ldt_table) return -ENOMEM; memset(ldt_table, 0, TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE); env->ldt.base = h2g(ldt_table); env->ldt.limit = 0xffff; } /* NOTE: same code as Linux kernel */ /* Allow LDTs to be cleared by the user. */ if (ldt_info.base_addr == 0 && ldt_info.limit == 0) { if (oldmode || (contents == 0 && read_exec_only == 1 && seg_32bit == 0 && limit_in_pages == 0 && seg_not_present == 1 && useable == 0 )) { entry_1 = 0; entry_2 = 0; goto install; } } entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) | (ldt_info.limit & 0x0ffff); entry_2 = (ldt_info.base_addr & 0xff000000) | ((ldt_info.base_addr & 0x00ff0000) >> 16) | (ldt_info.limit & 0xf0000) | ((read_exec_only ^ 1) << 9) | (contents << 10) | ((seg_not_present ^ 1) << 15) | (seg_32bit << 22) | (limit_in_pages << 23) | 0x7000; if (!oldmode) entry_2 |= (useable << 20); /* Install the new entry ... */ install: lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3)); lp[0] = tswap32(entry_1); lp[1] = tswap32(entry_2); return 0; } /* specific and weird i386 syscalls */ int do_modify_ldt(CPUX86State *env, int func, target_ulong ptr, unsigned long bytecount) { int ret = -ENOSYS; switch (func) { case 0: ret = read_ldt(ptr, bytecount); break; case 1: ret = write_ldt(env, ptr, bytecount, 1); break; case 0x11: ret = write_ldt(env, ptr, bytecount, 0); break; } return ret; } #endif /* defined(TARGET_I386) */ /* this stack is the equivalent of the kernel stack associated with a thread/process */ #define NEW_STACK_SIZE 8192 static int clone_func(void *arg) { CPUState *env = arg; cpu_loop(env); /* never exits */ return 0; } int do_fork(CPUState *env, unsigned int flags, unsigned long newsp) { int ret; TaskState *ts; uint8_t *new_stack; CPUState *new_env; if (flags & CLONE_VM) { ts = malloc(sizeof(TaskState) + NEW_STACK_SIZE); memset(ts, 0, sizeof(TaskState)); new_stack = ts->stack; ts->used = 1; /* add in task state list */ ts->next = first_task_state; first_task_state = ts; /* we create a new CPU instance. */ new_env = cpu_init(); memcpy(new_env, env, sizeof(CPUState)); #if defined(TARGET_I386) if (!newsp) newsp = env->regs[R_ESP]; new_env->regs[R_ESP] = newsp; new_env->regs[R_EAX] = 0; #elif defined(TARGET_ARM) if (!newsp) newsp = env->regs[13]; new_env->regs[13] = newsp; new_env->regs[0] = 0; #elif defined(TARGET_SPARC) if (!newsp) newsp = env->regwptr[22]; new_env->regwptr[22] = newsp; new_env->regwptr[0] = 0; /* XXXXX */ printf ("HELPME: %s:%d\n", __FILE__, __LINE__); #elif defined(TARGET_M68K) if (!newsp) newsp = env->aregs[7]; new_env->aregs[7] = newsp; new_env->dregs[0] = 0; /* ??? is this sufficient? */ #elif defined(TARGET_MIPS) printf ("HELPME: %s:%d\n", __FILE__, __LINE__); #elif defined(TARGET_PPC) if (!newsp) newsp = env->gpr[1]; new_env->gpr[1] = newsp; { int i; for (i = 7; i < 32; i++) new_env->gpr[i] = 0; } #elif defined(TARGET_SH4) if (!newsp) newsp = env->gregs[15]; new_env->gregs[15] = newsp; /* XXXXX */ #else #error unsupported target CPU #endif new_env->opaque = ts; #ifdef __ia64__ ret = __clone2(clone_func, new_stack + NEW_STACK_SIZE, flags, new_env); #else ret = clone(clone_func, new_stack + NEW_STACK_SIZE, flags, new_env); #endif } else { /* if no CLONE_VM, we consider it is a fork */ if ((flags & ~CSIGNAL) != 0) return -EINVAL; ret = fork(); } return ret; } static long do_fcntl(int fd, int cmd, target_ulong arg) { struct flock fl; struct target_flock *target_fl; long ret; switch(cmd) { case TARGET_F_GETLK: ret = fcntl(fd, cmd, &fl); if (ret == 0) { lock_user_struct(target_fl, arg, 0); target_fl->l_type = tswap16(fl.l_type); target_fl->l_whence = tswap16(fl.l_whence); target_fl->l_start = tswapl(fl.l_start); target_fl->l_len = tswapl(fl.l_len); target_fl->l_pid = tswapl(fl.l_pid); unlock_user_struct(target_fl, arg, 1); } break; case TARGET_F_SETLK: case TARGET_F_SETLKW: lock_user_struct(target_fl, arg, 1); fl.l_type = tswap16(target_fl->l_type); fl.l_whence = tswap16(target_fl->l_whence); fl.l_start = tswapl(target_fl->l_start); fl.l_len = tswapl(target_fl->l_len); fl.l_pid = tswapl(target_fl->l_pid); unlock_user_struct(target_fl, arg, 0); ret = fcntl(fd, cmd, &fl); break; case TARGET_F_GETLK64: case TARGET_F_SETLK64: case TARGET_F_SETLKW64: ret = -1; errno = EINVAL; break; case F_GETFL: ret = fcntl(fd, cmd, arg); ret = host_to_target_bitmask(ret, fcntl_flags_tbl); break; case F_SETFL: ret = fcntl(fd, cmd, target_to_host_bitmask(arg, fcntl_flags_tbl)); break; default: ret = fcntl(fd, cmd, arg); break; } return ret; } #ifdef USE_UID16 static inline int high2lowuid(int uid) { if (uid > 65535) return 65534; else return uid; } static inline int high2lowgid(int gid) { if (gid > 65535) return 65534; else return gid; } static inline int low2highuid(int uid) { if ((int16_t)uid == -1) return -1; else return uid; } static inline int low2highgid(int gid) { if ((int16_t)gid == -1) return -1; else return gid; } #endif /* USE_UID16 */ void syscall_init(void) { IOCTLEntry *ie; const argtype *arg_type; int size; #define STRUCT(name, list...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def); #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def); #include "syscall_types.h" #undef STRUCT #undef STRUCT_SPECIAL /* we patch the ioctl size if necessary. We rely on the fact that no ioctl has all the bits at '1' in the size field */ ie = ioctl_entries; while (ie->target_cmd != 0) { if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) == TARGET_IOC_SIZEMASK) { arg_type = ie->arg_type; if (arg_type[0] != TYPE_PTR) { fprintf(stderr, "cannot patch size for ioctl 0x%x\n", ie->target_cmd); exit(1); } arg_type++; size = thunk_type_size(arg_type, 0); ie->target_cmd = (ie->target_cmd & ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) | (size << TARGET_IOC_SIZESHIFT); } /* automatic consistency check if same arch */ #if defined(__i386__) && defined(TARGET_I386) if (ie->target_cmd != ie->host_cmd) { fprintf(stderr, "ERROR: ioctl: target=0x%x host=0x%x\n", ie->target_cmd, ie->host_cmd); } #endif ie++; } } static inline uint64_t target_offset64(uint32_t word0, uint32_t word1) { #ifdef TARGET_WORDS_BIG_ENDIAN return ((uint64_t)word0 << 32) | word1; #else return ((uint64_t)word1 << 32) | word0; #endif } #ifdef TARGET_NR_truncate64 static inline long target_truncate64(void *cpu_env, const char *arg1, long arg2, long arg3, long arg4) { #ifdef TARGET_ARM if (((CPUARMState *)cpu_env)->eabi) { arg2 = arg3; arg3 = arg4; } #endif return get_errno(truncate64(arg1, target_offset64(arg2, arg3))); } #endif #ifdef TARGET_NR_ftruncate64 static inline long target_ftruncate64(void *cpu_env, long arg1, long arg2, long arg3, long arg4) { #ifdef TARGET_ARM if (((CPUARMState *)cpu_env)->eabi) { arg2 = arg3; arg3 = arg4; } #endif return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3))); } #endif static inline void target_to_host_timespec(struct timespec *host_ts, target_ulong target_addr) { struct target_timespec *target_ts; lock_user_struct(target_ts, target_addr, 1); host_ts->tv_sec = tswapl(target_ts->tv_sec); host_ts->tv_nsec = tswapl(target_ts->tv_nsec); unlock_user_struct(target_ts, target_addr, 0); } static inline void host_to_target_timespec(target_ulong target_addr, struct timespec *host_ts) { struct target_timespec *target_ts; lock_user_struct(target_ts, target_addr, 0); target_ts->tv_sec = tswapl(host_ts->tv_sec); target_ts->tv_nsec = tswapl(host_ts->tv_nsec); unlock_user_struct(target_ts, target_addr, 1); } long do_syscall(void *cpu_env, int num, long arg1, long arg2, long arg3, long arg4, long arg5, long arg6) { long ret; struct stat st; struct statfs stfs; void *p; #ifdef DEBUG gemu_log("syscall %d", num); #endif switch(num) { case TARGET_NR_exit: #ifdef HAVE_GPROF _mcleanup(); #endif gdb_exit(cpu_env, arg1); /* XXX: should free thread stack and CPU env */ _exit(arg1); ret = 0; /* avoid warning */ break; case TARGET_NR_read: page_unprotect_range(arg2, arg3); p = lock_user(arg2, arg3, 0); ret = get_errno(read(arg1, p, arg3)); unlock_user(p, arg2, ret); break; case TARGET_NR_write: p = lock_user(arg2, arg3, 1); ret = get_errno(write(arg1, p, arg3)); unlock_user(p, arg2, 0); break; case TARGET_NR_open: p = lock_user_string(arg1); ret = get_errno(open(path(p), target_to_host_bitmask(arg2, fcntl_flags_tbl), arg3)); unlock_user(p, arg1, 0); break; case TARGET_NR_close: ret = get_errno(close(arg1)); break; case TARGET_NR_brk: ret = do_brk(arg1); break; case TARGET_NR_fork: ret = get_errno(do_fork(cpu_env, SIGCHLD, 0)); break; case TARGET_NR_waitpid: { int status; ret = get_errno(waitpid(arg1, &status, arg3)); if (!is_error(ret) && arg2) tput32(arg2, status); } break; case TARGET_NR_creat: p = lock_user_string(arg1); ret = get_errno(creat(p, arg2)); unlock_user(p, arg1, 0); break; case TARGET_NR_link: { void * p2; p = lock_user_string(arg1); p2 = lock_user_string(arg2); ret = get_errno(link(p, p2)); unlock_user(p2, arg2, 0); unlock_user(p, arg1, 0); } break; case TARGET_NR_unlink: p = lock_user_string(arg1); ret = get_errno(unlink(p)); unlock_user(p, arg1, 0); break; case TARGET_NR_execve: { char **argp, **envp; int argc, envc; target_ulong gp; target_ulong guest_argp; target_ulong guest_envp; target_ulong addr; char **q; argc = 0; guest_argp = arg2; for (gp = guest_argp; tgetl(gp); gp++) argc++; envc = 0; guest_envp = arg3; for (gp = guest_envp; tgetl(gp); gp++) envc++; argp = alloca((argc + 1) * sizeof(void *)); envp = alloca((envc + 1) * sizeof(void *)); for (gp = guest_argp, q = argp; ; gp += sizeof(target_ulong), q++) { addr = tgetl(gp); if (!addr) break; *q = lock_user_string(addr); } *q = NULL; for (gp = guest_envp, q = envp; ; gp += sizeof(target_ulong), q++) { addr = tgetl(gp); if (!addr) break; *q = lock_user_string(addr); } *q = NULL; p = lock_user_string(arg1); ret = get_errno(execve(p, argp, envp)); unlock_user(p, arg1, 0); for (gp = guest_argp, q = argp; *q; gp += sizeof(target_ulong), q++) { addr = tgetl(gp); unlock_user(*q, addr, 0); } for (gp = guest_envp, q = envp; *q; gp += sizeof(target_ulong), q++) { addr = tgetl(gp); unlock_user(*q, addr, 0); } } break; case TARGET_NR_chdir: p = lock_user_string(arg1); ret = get_errno(chdir(p)); unlock_user(p, arg1, 0); break; #ifdef TARGET_NR_time case TARGET_NR_time: { time_t host_time; ret = get_errno(time(&host_time)); if (!is_error(ret) && arg1) tputl(arg1, host_time); } break; #endif case TARGET_NR_mknod: p = lock_user_string(arg1); ret = get_errno(mknod(p, arg2, arg3)); unlock_user(p, arg1, 0); break; case TARGET_NR_chmod: p = lock_user_string(arg1); ret = get_errno(chmod(p, arg2)); unlock_user(p, arg1, 0); break; #ifdef TARGET_NR_break case TARGET_NR_break: goto unimplemented; #endif #ifdef TARGET_NR_oldstat case TARGET_NR_oldstat: goto unimplemented; #endif case TARGET_NR_lseek: ret = get_errno(lseek(arg1, arg2, arg3)); break; case TARGET_NR_getpid: ret = get_errno(getpid()); break; case TARGET_NR_mount: /* need to look at the data field */ goto unimplemented; case TARGET_NR_umount: p = lock_user_string(arg1); ret = get_errno(umount(p)); unlock_user(p, arg1, 0); break; case TARGET_NR_stime: { time_t host_time; host_time = tgetl(arg1); ret = get_errno(stime(&host_time)); } break; case TARGET_NR_ptrace: goto unimplemented; case TARGET_NR_alarm: ret = alarm(arg1); break; #ifdef TARGET_NR_oldfstat case TARGET_NR_oldfstat: goto unimplemented; #endif case TARGET_NR_pause: ret = get_errno(pause()); break; case TARGET_NR_utime: { struct utimbuf tbuf, *host_tbuf; struct target_utimbuf *target_tbuf; if (arg2) { lock_user_struct(target_tbuf, arg2, 1); tbuf.actime = tswapl(target_tbuf->actime); tbuf.modtime = tswapl(target_tbuf->modtime); unlock_user_struct(target_tbuf, arg2, 0); host_tbuf = &tbuf; } else { host_tbuf = NULL; } p = lock_user_string(arg1); ret = get_errno(utime(p, host_tbuf)); unlock_user(p, arg1, 0); } break; case TARGET_NR_utimes: { struct timeval *tvp, tv[2]; if (arg2) { target_to_host_timeval(&tv[0], arg2); target_to_host_timeval(&tv[1], arg2 + sizeof (struct target_timeval)); tvp = tv; } else { tvp = NULL; } p = lock_user_string(arg1); ret = get_errno(utimes(p, tvp)); unlock_user(p, arg1, 0); } break; #ifdef TARGET_NR_stty case TARGET_NR_stty: goto unimplemented; #endif #ifdef TARGET_NR_gtty case TARGET_NR_gtty: goto unimplemented; #endif case TARGET_NR_access: p = lock_user_string(arg1); ret = get_errno(access(p, arg2)); unlock_user(p, arg1, 0); break; case TARGET_NR_nice: ret = get_errno(nice(arg1)); break; #ifdef TARGET_NR_ftime case TARGET_NR_ftime: goto unimplemented; #endif case TARGET_NR_sync: sync(); ret = 0; break; case TARGET_NR_kill: ret = get_errno(kill(arg1, arg2)); break; case TARGET_NR_rename: { void *p2; p = lock_user_string(arg1); p2 = lock_user_string(arg2); ret = get_errno(rename(p, p2)); unlock_user(p2, arg2, 0); unlock_user(p, arg1, 0); } break; case TARGET_NR_mkdir: p = lock_user_string(arg1); ret = get_errno(mkdir(p, arg2)); unlock_user(p, arg1, 0); break; case TARGET_NR_rmdir: p = lock_user_string(arg1); ret = get_errno(rmdir(p)); unlock_user(p, arg1, 0); break; case TARGET_NR_dup: ret = get_errno(dup(arg1)); break; case TARGET_NR_pipe: { int host_pipe[2]; ret = get_errno(pipe(host_pipe)); if (!is_error(ret)) { tput32(arg1, host_pipe[0]); tput32(arg1 + 4, host_pipe[1]); } } break; case TARGET_NR_times: { struct target_tms *tmsp; struct tms tms; ret = get_errno(times(&tms)); if (arg1) { tmsp = lock_user(arg1, sizeof(struct target_tms), 0); tmsp->tms_utime = tswapl(host_to_target_clock_t(tms.tms_utime)); tmsp->tms_stime = tswapl(host_to_target_clock_t(tms.tms_stime)); tmsp->tms_cutime = tswapl(host_to_target_clock_t(tms.tms_cutime)); tmsp->tms_cstime = tswapl(host_to_target_clock_t(tms.tms_cstime)); } if (!is_error(ret)) ret = host_to_target_clock_t(ret); } break; #ifdef TARGET_NR_prof case TARGET_NR_prof: goto unimplemented; #endif case TARGET_NR_signal: goto unimplemented; case TARGET_NR_acct: p = lock_user_string(arg1); ret = get_errno(acct(path(p))); unlock_user(p, arg1, 0); break; case TARGET_NR_umount2: p = lock_user_string(arg1); ret = get_errno(umount2(p, arg2)); unlock_user(p, arg1, 0); break; #ifdef TARGET_NR_lock case TARGET_NR_lock: goto unimplemented; #endif case TARGET_NR_ioctl: ret = do_ioctl(arg1, arg2, arg3); break; case TARGET_NR_fcntl: ret = get_errno(do_fcntl(arg1, arg2, arg3)); break; #ifdef TARGET_NR_mpx case TARGET_NR_mpx: goto unimplemented; #endif case TARGET_NR_setpgid: ret = get_errno(setpgid(arg1, arg2)); break; #ifdef TARGET_NR_ulimit case TARGET_NR_ulimit: goto unimplemented; #endif #ifdef TARGET_NR_oldolduname case TARGET_NR_oldolduname: goto unimplemented; #endif case TARGET_NR_umask: ret = get_errno(umask(arg1)); break; case TARGET_NR_chroot: p = lock_user_string(arg1); ret = get_errno(chroot(p)); unlock_user(p, arg1, 0); break; case TARGET_NR_ustat: goto unimplemented; case TARGET_NR_dup2: ret = get_errno(dup2(arg1, arg2)); break; case TARGET_NR_getppid: ret = get_errno(getppid()); break; case TARGET_NR_getpgrp: ret = get_errno(getpgrp()); break; case TARGET_NR_setsid: ret = get_errno(setsid()); break; case TARGET_NR_sigaction: { #if !defined(TARGET_MIPS) struct target_old_sigaction *old_act; struct target_sigaction act, oact, *pact; if (arg2) { lock_user_struct(old_act, arg2, 1); act._sa_handler = old_act->_sa_handler; target_siginitset(&act.sa_mask, old_act->sa_mask); act.sa_flags = old_act->sa_flags; act.sa_restorer = old_act->sa_restorer; unlock_user_struct(old_act, arg2, 0); pact = &act; } else { pact = NULL; } ret = get_errno(do_sigaction(arg1, pact, &oact)); if (!is_error(ret) && arg3) { lock_user_struct(old_act, arg3, 0); old_act->_sa_handler = oact._sa_handler; old_act->sa_mask = oact.sa_mask.sig[0]; old_act->sa_flags = oact.sa_flags; old_act->sa_restorer = oact.sa_restorer; unlock_user_struct(old_act, arg3, 1); } #else struct target_sigaction act, oact, *pact, *old_act; if (arg2) { lock_user_struct(old_act, arg2, 1); act._sa_handler = old_act->_sa_handler; target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]); act.sa_flags = old_act->sa_flags; unlock_user_struct(old_act, arg2, 0); pact = &act; } else { pact = NULL; } ret = get_errno(do_sigaction(arg1, pact, &oact)); if (!is_error(ret) && arg3) { lock_user_struct(old_act, arg3, 0); old_act->_sa_handler = oact._sa_handler; old_act->sa_flags = oact.sa_flags; old_act->sa_mask.sig[0] = oact.sa_mask.sig[0]; old_act->sa_mask.sig[1] = 0; old_act->sa_mask.sig[2] = 0; old_act->sa_mask.sig[3] = 0; unlock_user_struct(old_act, arg3, 1); } #endif } break; case TARGET_NR_rt_sigaction: { struct target_sigaction *act; struct target_sigaction *oact; if (arg2) lock_user_struct(act, arg2, 1); else act = NULL; if (arg3) lock_user_struct(oact, arg3, 0); else oact = NULL; ret = get_errno(do_sigaction(arg1, act, oact)); if (arg2) unlock_user_struct(act, arg2, 0); if (arg3) unlock_user_struct(oact, arg3, 1); } break; case TARGET_NR_sgetmask: { sigset_t cur_set; target_ulong target_set; sigprocmask(0, NULL, &cur_set); host_to_target_old_sigset(&target_set, &cur_set); ret = target_set; } break; case TARGET_NR_ssetmask: { sigset_t set, oset, cur_set; target_ulong target_set = arg1; sigprocmask(0, NULL, &cur_set); target_to_host_old_sigset(&set, &target_set); sigorset(&set, &set, &cur_set); sigprocmask(SIG_SETMASK, &set, &oset); host_to_target_old_sigset(&target_set, &oset); ret = target_set; } break; case TARGET_NR_sigprocmask: { int how = arg1; sigset_t set, oldset, *set_ptr; if (arg2) { switch(how) { case TARGET_SIG_BLOCK: how = SIG_BLOCK; break; case TARGET_SIG_UNBLOCK: how = SIG_UNBLOCK; break; case TARGET_SIG_SETMASK: how = SIG_SETMASK; break; default: ret = -EINVAL; goto fail; } p = lock_user(arg2, sizeof(target_sigset_t), 1); target_to_host_old_sigset(&set, p); unlock_user(p, arg2, 0); set_ptr = &set; } else { how = 0; set_ptr = NULL; } ret = get_errno(sigprocmask(arg1, set_ptr, &oldset)); if (!is_error(ret) && arg3) { p = lock_user(arg3, sizeof(target_sigset_t), 0); host_to_target_old_sigset(p, &oldset); unlock_user(p, arg3, sizeof(target_sigset_t)); } } break; case TARGET_NR_rt_sigprocmask: { int how = arg1; sigset_t set, oldset, *set_ptr; if (arg2) { switch(how) { case TARGET_SIG_BLOCK: how = SIG_BLOCK; break; case TARGET_SIG_UNBLOCK: how = SIG_UNBLOCK; break; case TARGET_SIG_SETMASK: how = SIG_SETMASK; break; default: ret = -EINVAL; goto fail; } p = lock_user(arg2, sizeof(target_sigset_t), 1); target_to_host_sigset(&set, p); unlock_user(p, arg2, 0); set_ptr = &set; } else { how = 0; set_ptr = NULL; } ret = get_errno(sigprocmask(how, set_ptr, &oldset)); if (!is_error(ret) && arg3) { p = lock_user(arg3, sizeof(target_sigset_t), 0); host_to_target_sigset(p, &oldset); unlock_user(p, arg3, sizeof(target_sigset_t)); } } break; case TARGET_NR_sigpending: { sigset_t set; ret = get_errno(sigpending(&set)); if (!is_error(ret)) { p = lock_user(arg1, sizeof(target_sigset_t), 0); host_to_target_old_sigset(p, &set); unlock_user(p, arg1, sizeof(target_sigset_t)); } } break; case TARGET_NR_rt_sigpending: { sigset_t set; ret = get_errno(sigpending(&set)); if (!is_error(ret)) { p = lock_user(arg1, sizeof(target_sigset_t), 0); host_to_target_sigset(p, &set); unlock_user(p, arg1, sizeof(target_sigset_t)); } } break; case TARGET_NR_sigsuspend: { sigset_t set; p = lock_user(arg1, sizeof(target_sigset_t), 1); target_to_host_old_sigset(&set, p); unlock_user(p, arg1, 0); ret = get_errno(sigsuspend(&set)); } break; case TARGET_NR_rt_sigsuspend: { sigset_t set; p = lock_user(arg1, sizeof(target_sigset_t), 1); target_to_host_sigset(&set, p); unlock_user(p, arg1, 0); ret = get_errno(sigsuspend(&set)); } break; case TARGET_NR_rt_sigtimedwait: { sigset_t set; struct timespec uts, *puts; siginfo_t uinfo; p = lock_user(arg1, sizeof(target_sigset_t), 1); target_to_host_sigset(&set, p); unlock_user(p, arg1, 0); if (arg3) { puts = &uts; target_to_host_timespec(puts, arg3); } else { puts = NULL; } ret = get_errno(sigtimedwait(&set, &uinfo, puts)); if (!is_error(ret) && arg2) { p = lock_user(arg2, sizeof(target_sigset_t), 0); host_to_target_siginfo(p, &uinfo); unlock_user(p, arg2, sizeof(target_sigset_t)); } } break; case TARGET_NR_rt_sigqueueinfo: { siginfo_t uinfo; p = lock_user(arg3, sizeof(target_sigset_t), 1); target_to_host_siginfo(&uinfo, p); unlock_user(p, arg1, 0); ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo)); } break; case TARGET_NR_sigreturn: /* NOTE: ret is eax, so not transcoding must be done */ ret = do_sigreturn(cpu_env); break; case TARGET_NR_rt_sigreturn: /* NOTE: ret is eax, so not transcoding must be done */ ret = do_rt_sigreturn(cpu_env); break; case TARGET_NR_sethostname: p = lock_user_string(arg1); ret = get_errno(sethostname(p, arg2)); unlock_user(p, arg1, 0); break; case TARGET_NR_setrlimit: { /* XXX: convert resource ? */ int resource = arg1; struct target_rlimit *target_rlim; struct rlimit rlim; lock_user_struct(target_rlim, arg2, 1); rlim.rlim_cur = tswapl(target_rlim->rlim_cur); rlim.rlim_max = tswapl(target_rlim->rlim_max); unlock_user_struct(target_rlim, arg2, 0); ret = get_errno(setrlimit(resource, &rlim)); } break; case TARGET_NR_getrlimit: { /* XXX: convert resource ? */ int resource = arg1; struct target_rlimit *target_rlim; struct rlimit rlim; ret = get_errno(getrlimit(resource, &rlim)); if (!is_error(ret)) { lock_user_struct(target_rlim, arg2, 0); rlim.rlim_cur = tswapl(target_rlim->rlim_cur); rlim.rlim_max = tswapl(target_rlim->rlim_max); unlock_user_struct(target_rlim, arg2, 1); } } break; case TARGET_NR_getrusage: { struct rusage rusage; ret = get_errno(getrusage(arg1, &rusage)); if (!is_error(ret)) { host_to_target_rusage(arg2, &rusage); } } break; case TARGET_NR_gettimeofday: { struct timeval tv; ret = get_errno(gettimeofday(&tv, NULL)); if (!is_error(ret)) { host_to_target_timeval(arg1, &tv); } } break; case TARGET_NR_settimeofday: { struct timeval tv; target_to_host_timeval(&tv, arg1); ret = get_errno(settimeofday(&tv, NULL)); } break; #ifdef TARGET_NR_select case TARGET_NR_select: { struct target_sel_arg_struct *sel; target_ulong inp, outp, exp, tvp; long nsel; lock_user_struct(sel, arg1, 1); nsel = tswapl(sel->n); inp = tswapl(sel->inp); outp = tswapl(sel->outp); exp = tswapl(sel->exp); tvp = tswapl(sel->tvp); unlock_user_struct(sel, arg1, 0); ret = do_select(nsel, inp, outp, exp, tvp); } break; #endif case TARGET_NR_symlink: { void *p2; p = lock_user_string(arg1); p2 = lock_user_string(arg2); ret = get_errno(symlink(p, p2)); unlock_user(p2, arg2, 0); unlock_user(p, arg1, 0); } break; #ifdef TARGET_NR_oldlstat case TARGET_NR_oldlstat: goto unimplemented; #endif case TARGET_NR_readlink: { void *p2; p = lock_user_string(arg1); p2 = lock_user(arg2, arg3, 0); ret = get_errno(readlink(path(p), p2, arg3)); unlock_user(p2, arg2, ret); unlock_user(p, arg1, 0); } break; case TARGET_NR_uselib: goto unimplemented; case TARGET_NR_swapon: p = lock_user_string(arg1); ret = get_errno(swapon(p, arg2)); unlock_user(p, arg1, 0); break; case TARGET_NR_reboot: goto unimplemented; case TARGET_NR_readdir: goto unimplemented; case TARGET_NR_mmap: #if defined(TARGET_I386) || defined(TARGET_ARM) || defined(TARGET_M68K) { target_ulong *v; target_ulong v1, v2, v3, v4, v5, v6; v = lock_user(arg1, 6 * sizeof(target_ulong), 1); v1 = tswapl(v[0]); v2 = tswapl(v[1]); v3 = tswapl(v[2]); v4 = tswapl(v[3]); v5 = tswapl(v[4]); v6 = tswapl(v[5]); unlock_user(v, arg1, 0); ret = get_errno(target_mmap(v1, v2, v3, target_to_host_bitmask(v4, mmap_flags_tbl), v5, v6)); } #else ret = get_errno(target_mmap(arg1, arg2, arg3, target_to_host_bitmask(arg4, mmap_flags_tbl), arg5, arg6)); #endif break; #ifdef TARGET_NR_mmap2 case TARGET_NR_mmap2: #if defined(TARGET_SPARC) #define MMAP_SHIFT 12 #else #define MMAP_SHIFT TARGET_PAGE_BITS #endif ret = get_errno(target_mmap(arg1, arg2, arg3, target_to_host_bitmask(arg4, mmap_flags_tbl), arg5, arg6 << MMAP_SHIFT)); break; #endif case TARGET_NR_munmap: ret = get_errno(target_munmap(arg1, arg2)); break; case TARGET_NR_mprotect: ret = get_errno(target_mprotect(arg1, arg2, arg3)); break; case TARGET_NR_mremap: ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5)); break; /* ??? msync/mlock/munlock are broken for softmmu. */ case TARGET_NR_msync: ret = get_errno(msync(g2h(arg1), arg2, arg3)); break; case TARGET_NR_mlock: ret = get_errno(mlock(g2h(arg1), arg2)); break; case TARGET_NR_munlock: ret = get_errno(munlock(g2h(arg1), arg2)); break; case TARGET_NR_mlockall: ret = get_errno(mlockall(arg1)); break; case TARGET_NR_munlockall: ret = get_errno(munlockall()); break; case TARGET_NR_truncate: p = lock_user_string(arg1); ret = get_errno(truncate(p, arg2)); unlock_user(p, arg1, 0); break; case TARGET_NR_ftruncate: ret = get_errno(ftruncate(arg1, arg2)); break; case TARGET_NR_fchmod: ret = get_errno(fchmod(arg1, arg2)); break; case TARGET_NR_getpriority: ret = get_errno(getpriority(arg1, arg2)); break; case TARGET_NR_setpriority: ret = get_errno(setpriority(arg1, arg2, arg3)); break; #ifdef TARGET_NR_profil case TARGET_NR_profil: goto unimplemented; #endif case TARGET_NR_statfs: p = lock_user_string(arg1); ret = get_errno(statfs(path(p), &stfs)); unlock_user(p, arg1, 0); convert_statfs: if (!is_error(ret)) { struct target_statfs *target_stfs; lock_user_struct(target_stfs, arg2, 0); /* ??? put_user is probably wrong. */ put_user(stfs.f_type, &target_stfs->f_type); put_user(stfs.f_bsize, &target_stfs->f_bsize); put_user(stfs.f_blocks, &target_stfs->f_blocks); put_user(stfs.f_bfree, &target_stfs->f_bfree); put_user(stfs.f_bavail, &target_stfs->f_bavail); put_user(stfs.f_files, &target_stfs->f_files); put_user(stfs.f_ffree, &target_stfs->f_ffree); put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid); put_user(stfs.f_namelen, &target_stfs->f_namelen); unlock_user_struct(target_stfs, arg2, 1); } break; case TARGET_NR_fstatfs: ret = get_errno(fstatfs(arg1, &stfs)); goto convert_statfs; #ifdef TARGET_NR_statfs64 case TARGET_NR_statfs64: p = lock_user_string(arg1); ret = get_errno(statfs(path(p), &stfs)); unlock_user(p, arg1, 0); convert_statfs64: if (!is_error(ret)) { struct target_statfs64 *target_stfs; lock_user_struct(target_stfs, arg3, 0); /* ??? put_user is probably wrong. */ put_user(stfs.f_type, &target_stfs->f_type); put_user(stfs.f_bsize, &target_stfs->f_bsize); put_user(stfs.f_blocks, &target_stfs->f_blocks); put_user(stfs.f_bfree, &target_stfs->f_bfree); put_user(stfs.f_bavail, &target_stfs->f_bavail); put_user(stfs.f_files, &target_stfs->f_files); put_user(stfs.f_ffree, &target_stfs->f_ffree); put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid); put_user(stfs.f_namelen, &target_stfs->f_namelen); unlock_user_struct(target_stfs, arg3, 0); } break; case TARGET_NR_fstatfs64: ret = get_errno(fstatfs(arg1, &stfs)); goto convert_statfs64; #endif #ifdef TARGET_NR_ioperm case TARGET_NR_ioperm: goto unimplemented; #endif case TARGET_NR_socketcall: ret = do_socketcall(arg1, arg2); break; #ifdef TARGET_NR_accept case TARGET_NR_accept: ret = do_socketcallwrapper(SOCKOP_accept, arg1, arg2, arg3, arg4, arg5, arg6); break; #endif #ifdef TARGET_NR_bind case TARGET_NR_bind: ret = do_bind(arg1, arg2, arg3); break; #endif #ifdef TARGET_NR_connect case TARGET_NR_connect: ret = do_connect(arg1, arg2, arg3); break; #endif #ifdef TARGET_NR_getpeername case TARGET_NR_getpeername: ret = do_socketcallwrapper(SOCKOP_getpeername, arg1, arg2, arg3, arg4, arg5, arg6); break; #endif #ifdef TARGET_NR_getsockname case TARGET_NR_getsockname: ret = do_socketcallwrapper(SOCKOP_getsockname, arg1, arg2, arg3, arg4, arg5, arg6); break; #endif #ifdef TARGET_NR_getsockopt case TARGET_NR_getsockopt: ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5); break; #endif #ifdef TARGET_NR_listen case TARGET_NR_listen: ret = do_socketcallwrapper(SOCKOP_listen, arg1, arg2, arg3, arg4, arg5, arg6); break; #endif #ifdef TARGET_NR_recv case TARGET_NR_recv: ret = do_socketcallwrapper(SOCKOP_recv, arg1, arg2, arg3, arg4, arg5, arg6); break; #endif #ifdef TARGET_NR_recvfrom case TARGET_NR_recvfrom: ret = do_socketcallwrapper(SOCKOP_recvfrom, arg1, arg2, arg3, arg4, arg5, arg6); break; #endif #ifdef TARGET_NR_recvmsg case TARGET_NR_recvmsg: ret = do_sendrecvmsg(arg1, arg2, arg3, 0); break; #endif #ifdef TARGET_NR_send case TARGET_NR_send: ret = do_socketcallwrapper(SOCKOP_send, arg1, arg2, arg3, arg4, arg5, arg6); break; #endif #ifdef TARGET_NR_sendmsg case TARGET_NR_sendmsg: ret = do_sendrecvmsg(arg1, arg2, arg3, 1); break; #endif #ifdef TARGET_NR_sendto case TARGET_NR_sendto: ret = do_socketcallwrapper(SOCKOP_sendto, arg1, arg2, arg3, arg4, arg5, arg6); break; #endif #ifdef TARGET_NR_shutdown case TARGET_NR_shutdown: ret = do_socketcallwrapper(SOCKOP_shutdown, arg1, arg2, arg3, arg4, arg5, arg6); break; #endif #ifdef TARGET_NR_socket case TARGET_NR_socket: ret = do_socket(arg1, arg2, arg3); break; #endif #ifdef TARGET_NR_socketpair case TARGET_NR_socketpair: ret = do_socketcallwrapper(SOCKOP_socketpair, arg1, arg2, arg3, arg4, arg5, arg6); break; #endif #ifdef TARGET_NR_setsockopt case TARGET_NR_setsockopt: ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5); break; #endif case TARGET_NR_syslog: goto unimplemented; case TARGET_NR_setitimer: { struct itimerval value, ovalue, *pvalue; if (arg2) { pvalue = &value; target_to_host_timeval(&pvalue->it_interval, arg2); target_to_host_timeval(&pvalue->it_value, arg2 + sizeof(struct target_timeval)); } else { pvalue = NULL; } ret = get_errno(setitimer(arg1, pvalue, &ovalue)); if (!is_error(ret) && arg3) { host_to_target_timeval(arg3, &ovalue.it_interval); host_to_target_timeval(arg3 + sizeof(struct target_timeval), &ovalue.it_value); } } break; case TARGET_NR_getitimer: { struct itimerval value; ret = get_errno(getitimer(arg1, &value)); if (!is_error(ret) && arg2) { host_to_target_timeval(arg2, &value.it_interval); host_to_target_timeval(arg2 + sizeof(struct target_timeval), &value.it_value); } } break; case TARGET_NR_stat: p = lock_user_string(arg1); ret = get_errno(stat(path(p), &st)); unlock_user(p, arg1, 0); goto do_stat; case TARGET_NR_lstat: p = lock_user_string(arg1); ret = get_errno(lstat(path(p), &st)); unlock_user(p, arg1, 0); goto do_stat; case TARGET_NR_fstat: { ret = get_errno(fstat(arg1, &st)); do_stat: if (!is_error(ret)) { struct target_stat *target_st; lock_user_struct(target_st, arg2, 0); target_st->st_dev = tswap16(st.st_dev); target_st->st_ino = tswapl(st.st_ino); #if defined(TARGET_PPC) target_st->st_mode = tswapl(st.st_mode); /* XXX: check this */ target_st->st_uid = tswap32(st.st_uid); target_st->st_gid = tswap32(st.st_gid); #else target_st->st_mode = tswap16(st.st_mode); target_st->st_uid = tswap16(st.st_uid); target_st->st_gid = tswap16(st.st_gid); #endif target_st->st_nlink = tswap16(st.st_nlink); target_st->st_rdev = tswap16(st.st_rdev); target_st->st_size = tswapl(st.st_size); target_st->st_blksize = tswapl(st.st_blksize); target_st->st_blocks = tswapl(st.st_blocks); target_st->target_st_atime = tswapl(st.st_atime); target_st->target_st_mtime = tswapl(st.st_mtime); target_st->target_st_ctime = tswapl(st.st_ctime); unlock_user_struct(target_st, arg2, 1); } } break; #ifdef TARGET_NR_olduname case TARGET_NR_olduname: goto unimplemented; #endif #ifdef TARGET_NR_iopl case TARGET_NR_iopl: goto unimplemented; #endif case TARGET_NR_vhangup: ret = get_errno(vhangup()); break; #ifdef TARGET_NR_idle case TARGET_NR_idle: goto unimplemented; #endif #ifdef TARGET_NR_syscall case TARGET_NR_syscall: ret = do_syscall(cpu_env,arg1 & 0xffff,arg2,arg3,arg4,arg5,arg6,0); break; #endif case TARGET_NR_wait4: { int status; target_long status_ptr = arg2; struct rusage rusage, *rusage_ptr; target_ulong target_rusage = arg4; if (target_rusage) rusage_ptr = &rusage; else rusage_ptr = NULL; ret = get_errno(wait4(arg1, &status, arg3, rusage_ptr)); if (!is_error(ret)) { if (status_ptr) tputl(status_ptr, status); if (target_rusage) { host_to_target_rusage(target_rusage, &rusage); } } } break; case TARGET_NR_swapoff: p = lock_user_string(arg1); ret = get_errno(swapoff(p)); unlock_user(p, arg1, 0); break; case TARGET_NR_sysinfo: { struct target_sysinfo *target_value; struct sysinfo value; ret = get_errno(sysinfo(&value)); if (!is_error(ret) && arg1) { /* ??? __put_user is probably wrong. */ lock_user_struct(target_value, arg1, 0); __put_user(value.uptime, &target_value->uptime); __put_user(value.loads[0], &target_value->loads[0]); __put_user(value.loads[1], &target_value->loads[1]); __put_user(value.loads[2], &target_value->loads[2]); __put_user(value.totalram, &target_value->totalram); __put_user(value.freeram, &target_value->freeram); __put_user(value.sharedram, &target_value->sharedram); __put_user(value.bufferram, &target_value->bufferram); __put_user(value.totalswap, &target_value->totalswap); __put_user(value.freeswap, &target_value->freeswap); __put_user(value.procs, &target_value->procs); __put_user(value.totalhigh, &target_value->totalhigh); __put_user(value.freehigh, &target_value->freehigh); __put_user(value.mem_unit, &target_value->mem_unit); unlock_user_struct(target_value, arg1, 1); } } break; case TARGET_NR_ipc: ret = do_ipc(arg1, arg2, arg3, arg4, arg5, arg6); break; case TARGET_NR_fsync: ret = get_errno(fsync(arg1)); break; case TARGET_NR_clone: ret = get_errno(do_fork(cpu_env, arg1, arg2)); break; #ifdef __NR_exit_group /* new thread calls */ case TARGET_NR_exit_group: gdb_exit(cpu_env, arg1); ret = get_errno(exit_group(arg1)); break; #endif case TARGET_NR_setdomainname: p = lock_user_string(arg1); ret = get_errno(setdomainname(p, arg2)); unlock_user(p, arg1, 0); break; case TARGET_NR_uname: /* no need to transcode because we use the linux syscall */ { struct new_utsname * buf; lock_user_struct(buf, arg1, 0); ret = get_errno(sys_uname(buf)); if (!is_error(ret)) { /* Overrite the native machine name with whatever is being emulated. */ strcpy (buf->machine, UNAME_MACHINE); /* Allow the user to override the reported release. */ if (qemu_uname_release && *qemu_uname_release) strcpy (buf->release, qemu_uname_release); } unlock_user_struct(buf, arg1, 1); } break; #ifdef TARGET_I386 case TARGET_NR_modify_ldt: ret = get_errno(do_modify_ldt(cpu_env, arg1, arg2, arg3)); break; case TARGET_NR_vm86old: goto unimplemented; case TARGET_NR_vm86: ret = do_vm86(cpu_env, arg1, arg2); break; #endif case TARGET_NR_adjtimex: goto unimplemented; case TARGET_NR_create_module: case TARGET_NR_init_module: case TARGET_NR_delete_module: case TARGET_NR_get_kernel_syms: goto unimplemented; case TARGET_NR_quotactl: goto unimplemented; case TARGET_NR_getpgid: ret = get_errno(getpgid(arg1)); break; case TARGET_NR_fchdir: ret = get_errno(fchdir(arg1)); break; case TARGET_NR_bdflush: goto unimplemented; case TARGET_NR_sysfs: goto unimplemented; case TARGET_NR_personality: ret = get_errno(personality(arg1)); break; case TARGET_NR_afs_syscall: goto unimplemented; case TARGET_NR__llseek: { #if defined (__x86_64__) ret = get_errno(lseek(arg1, ((uint64_t )arg2 << 32) | arg3, arg5)); tput64(arg4, ret); #else int64_t res; ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5)); tput64(arg4, res); #endif } break; case TARGET_NR_getdents: #if TARGET_LONG_SIZE != 4 goto unimplemented; #warning not supported #elif TARGET_LONG_SIZE == 4 && HOST_LONG_SIZE == 8 { struct target_dirent *target_dirp; struct dirent *dirp; long count = arg3; dirp = malloc(count); if (!dirp) return -ENOMEM; ret = get_errno(sys_getdents(arg1, dirp, count)); if (!is_error(ret)) { struct dirent *de; struct target_dirent *tde; int len = ret; int reclen, treclen; int count1, tnamelen; count1 = 0; de = dirp; target_dirp = lock_user(arg2, count, 0); tde = target_dirp; while (len > 0) { reclen = de->d_reclen; treclen = reclen - (2 * (sizeof(long) - sizeof(target_long))); tde->d_reclen = tswap16(treclen); tde->d_ino = tswapl(de->d_ino); tde->d_off = tswapl(de->d_off); tnamelen = treclen - (2 * sizeof(target_long) + 2); if (tnamelen > 256) tnamelen = 256; /* XXX: may not be correct */ strncpy(tde->d_name, de->d_name, tnamelen); de = (struct dirent *)((char *)de + reclen); len -= reclen; tde = (struct dirent *)((char *)tde + treclen); count1 += treclen; } ret = count1; } unlock_user(target_dirp, arg2, ret); free(dirp); } #else { struct dirent *dirp; long count = arg3; dirp = lock_user(arg2, count, 0); ret = get_errno(sys_getdents(arg1, dirp, count)); if (!is_error(ret)) { struct dirent *de; int len = ret; int reclen; de = dirp; while (len > 0) { reclen = de->d_reclen; if (reclen > len) break; de->d_reclen = tswap16(reclen); tswapls(&de->d_ino); tswapls(&de->d_off); de = (struct dirent *)((char *)de + reclen); len -= reclen; } } unlock_user(dirp, arg2, ret); } #endif break; #ifdef TARGET_NR_getdents64 case TARGET_NR_getdents64: { struct dirent64 *dirp; long count = arg3; dirp = lock_user(arg2, count, 0); ret = get_errno(sys_getdents64(arg1, dirp, count)); if (!is_error(ret)) { struct dirent64 *de; int len = ret; int reclen; de = dirp; while (len > 0) { reclen = de->d_reclen; if (reclen > len) break; de->d_reclen = tswap16(reclen); tswap64s(&de->d_ino); tswap64s(&de->d_off); de = (struct dirent64 *)((char *)de + reclen); len -= reclen; } } unlock_user(dirp, arg2, ret); } break; #endif /* TARGET_NR_getdents64 */ case TARGET_NR__newselect: ret = do_select(arg1, arg2, arg3, arg4, arg5); break; case TARGET_NR_poll: { struct target_pollfd *target_pfd; unsigned int nfds = arg2; int timeout = arg3; struct pollfd *pfd; unsigned int i; target_pfd = lock_user(arg1, sizeof(struct target_pollfd) * nfds, 1); pfd = alloca(sizeof(struct pollfd) * nfds); for(i = 0; i < nfds; i++) { pfd[i].fd = tswap32(target_pfd[i].fd); pfd[i].events = tswap16(target_pfd[i].events); } ret = get_errno(poll(pfd, nfds, timeout)); if (!is_error(ret)) { for(i = 0; i < nfds; i++) { target_pfd[i].revents = tswap16(pfd[i].revents); } ret += nfds * (sizeof(struct target_pollfd) - sizeof(struct pollfd)); } unlock_user(target_pfd, arg1, ret); } break; case TARGET_NR_flock: /* NOTE: the flock constant seems to be the same for every Linux platform */ ret = get_errno(flock(arg1, arg2)); break; case TARGET_NR_readv: { int count = arg3; struct iovec *vec; vec = alloca(count * sizeof(struct iovec)); lock_iovec(vec, arg2, count, 0); ret = get_errno(readv(arg1, vec, count)); unlock_iovec(vec, arg2, count, 1); } break; case TARGET_NR_writev: { int count = arg3; struct iovec *vec; vec = alloca(count * sizeof(struct iovec)); lock_iovec(vec, arg2, count, 1); ret = get_errno(writev(arg1, vec, count)); unlock_iovec(vec, arg2, count, 0); } break; case TARGET_NR_getsid: ret = get_errno(getsid(arg1)); break; case TARGET_NR_fdatasync: ret = get_errno(fdatasync(arg1)); break; case TARGET_NR__sysctl: /* We don't implement this, but ENODIR is always a safe return value. */ return -ENOTDIR; case TARGET_NR_sched_setparam: { struct sched_param *target_schp; struct sched_param schp; lock_user_struct(target_schp, arg2, 1); schp.sched_priority = tswap32(target_schp->sched_priority); unlock_user_struct(target_schp, arg2, 0); ret = get_errno(sched_setparam(arg1, &schp)); } break; case TARGET_NR_sched_getparam: { struct sched_param *target_schp; struct sched_param schp; ret = get_errno(sched_getparam(arg1, &schp)); if (!is_error(ret)) { lock_user_struct(target_schp, arg2, 0); target_schp->sched_priority = tswap32(schp.sched_priority); unlock_user_struct(target_schp, arg2, 1); } } break; case TARGET_NR_sched_setscheduler: { struct sched_param *target_schp; struct sched_param schp; lock_user_struct(target_schp, arg3, 1); schp.sched_priority = tswap32(target_schp->sched_priority); unlock_user_struct(target_schp, arg3, 0); ret = get_errno(sched_setscheduler(arg1, arg2, &schp)); } break; case TARGET_NR_sched_getscheduler: ret = get_errno(sched_getscheduler(arg1)); break; case TARGET_NR_sched_yield: ret = get_errno(sched_yield()); break; case TARGET_NR_sched_get_priority_max: ret = get_errno(sched_get_priority_max(arg1)); break; case TARGET_NR_sched_get_priority_min: ret = get_errno(sched_get_priority_min(arg1)); break; case TARGET_NR_sched_rr_get_interval: { struct timespec ts; ret = get_errno(sched_rr_get_interval(arg1, &ts)); if (!is_error(ret)) { host_to_target_timespec(arg2, &ts); } } break; case TARGET_NR_nanosleep: { struct timespec req, rem; target_to_host_timespec(&req, arg1); ret = get_errno(nanosleep(&req, &rem)); if (is_error(ret) && arg2) { host_to_target_timespec(arg2, &rem); } } break; case TARGET_NR_query_module: goto unimplemented; case TARGET_NR_nfsservctl: goto unimplemented; case TARGET_NR_prctl: goto unimplemented; #ifdef TARGET_NR_pread case TARGET_NR_pread: page_unprotect_range(arg2, arg3); p = lock_user(arg2, arg3, 0); ret = get_errno(pread(arg1, p, arg3, arg4)); unlock_user(p, arg2, ret); break; case TARGET_NR_pwrite: p = lock_user(arg2, arg3, 1); ret = get_errno(pwrite(arg1, p, arg3, arg4)); unlock_user(p, arg2, 0); break; #endif case TARGET_NR_getcwd: p = lock_user(arg1, arg2, 0); ret = get_errno(sys_getcwd1(p, arg2)); unlock_user(p, arg1, ret); break; case TARGET_NR_capget: goto unimplemented; case TARGET_NR_capset: goto unimplemented; case TARGET_NR_sigaltstack: goto unimplemented; case TARGET_NR_sendfile: goto unimplemented; #ifdef TARGET_NR_getpmsg case TARGET_NR_getpmsg: goto unimplemented; #endif #ifdef TARGET_NR_putpmsg case TARGET_NR_putpmsg: goto unimplemented; #endif #ifdef TARGET_NR_vfork case TARGET_NR_vfork: ret = get_errno(do_fork(cpu_env, CLONE_VFORK | CLONE_VM | SIGCHLD, 0)); break; #endif #ifdef TARGET_NR_ugetrlimit case TARGET_NR_ugetrlimit: { struct rlimit rlim; ret = get_errno(getrlimit(arg1, &rlim)); if (!is_error(ret)) { struct target_rlimit *target_rlim; lock_user_struct(target_rlim, arg2, 0); target_rlim->rlim_cur = tswapl(rlim.rlim_cur); target_rlim->rlim_max = tswapl(rlim.rlim_max); unlock_user_struct(target_rlim, arg2, 1); } break; } #endif #ifdef TARGET_NR_truncate64 case TARGET_NR_truncate64: p = lock_user_string(arg1); ret = target_truncate64(cpu_env, p, arg2, arg3, arg4); unlock_user(p, arg1, 0); break; #endif #ifdef TARGET_NR_ftruncate64 case TARGET_NR_ftruncate64: ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4); break; #endif #ifdef TARGET_NR_stat64 case TARGET_NR_stat64: p = lock_user_string(arg1); ret = get_errno(stat(path(p), &st)); unlock_user(p, arg1, 0); goto do_stat64; #endif #ifdef TARGET_NR_lstat64 case TARGET_NR_lstat64: p = lock_user_string(arg1); ret = get_errno(lstat(path(p), &st)); unlock_user(p, arg1, 0); goto do_stat64; #endif #ifdef TARGET_NR_fstat64 case TARGET_NR_fstat64: { ret = get_errno(fstat(arg1, &st)); do_stat64: if (!is_error(ret)) { #ifdef TARGET_ARM if (((CPUARMState *)cpu_env)->eabi) { struct target_eabi_stat64 *target_st; lock_user_struct(target_st, arg2, 1); memset(target_st, 0, sizeof(struct target_eabi_stat64)); /* put_user is probably wrong. */ put_user(st.st_dev, &target_st->st_dev); put_user(st.st_ino, &target_st->st_ino); #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO put_user(st.st_ino, &target_st->__st_ino); #endif put_user(st.st_mode, &target_st->st_mode); put_user(st.st_nlink, &target_st->st_nlink); put_user(st.st_uid, &target_st->st_uid); put_user(st.st_gid, &target_st->st_gid); put_user(st.st_rdev, &target_st->st_rdev); /* XXX: better use of kernel struct */ put_user(st.st_size, &target_st->st_size); put_user(st.st_blksize, &target_st->st_blksize); put_user(st.st_blocks, &target_st->st_blocks); put_user(st.st_atime, &target_st->target_st_atime); put_user(st.st_mtime, &target_st->target_st_mtime); put_user(st.st_ctime, &target_st->target_st_ctime); unlock_user_struct(target_st, arg2, 0); } else #endif { struct target_stat64 *target_st; lock_user_struct(target_st, arg2, 1); memset(target_st, 0, sizeof(struct target_stat64)); /* ??? put_user is probably wrong. */ put_user(st.st_dev, &target_st->st_dev); put_user(st.st_ino, &target_st->st_ino); #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO put_user(st.st_ino, &target_st->__st_ino); #endif put_user(st.st_mode, &target_st->st_mode); put_user(st.st_nlink, &target_st->st_nlink); put_user(st.st_uid, &target_st->st_uid); put_user(st.st_gid, &target_st->st_gid); put_user(st.st_rdev, &target_st->st_rdev); /* XXX: better use of kernel struct */ put_user(st.st_size, &target_st->st_size); put_user(st.st_blksize, &target_st->st_blksize); put_user(st.st_blocks, &target_st->st_blocks); put_user(st.st_atime, &target_st->target_st_atime); put_user(st.st_mtime, &target_st->target_st_mtime); put_user(st.st_ctime, &target_st->target_st_ctime); unlock_user_struct(target_st, arg2, 0); } } } break; #endif #ifdef USE_UID16 case TARGET_NR_lchown: p = lock_user_string(arg1); ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3))); unlock_user(p, arg1, 0); break; case TARGET_NR_getuid: ret = get_errno(high2lowuid(getuid())); break; case TARGET_NR_getgid: ret = get_errno(high2lowgid(getgid())); break; case TARGET_NR_geteuid: ret = get_errno(high2lowuid(geteuid())); break; case TARGET_NR_getegid: ret = get_errno(high2lowgid(getegid())); break; case TARGET_NR_setreuid: ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2))); break; case TARGET_NR_setregid: ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2))); break; case TARGET_NR_getgroups: { int gidsetsize = arg1; uint16_t *target_grouplist; gid_t *grouplist; int i; grouplist = alloca(gidsetsize * sizeof(gid_t)); ret = get_errno(getgroups(gidsetsize, grouplist)); if (!is_error(ret)) { target_grouplist = lock_user(arg2, gidsetsize * 2, 0); for(i = 0;i < gidsetsize; i++) target_grouplist[i] = tswap16(grouplist[i]); unlock_user(target_grouplist, arg2, gidsetsize * 2); } } break; case TARGET_NR_setgroups: { int gidsetsize = arg1; uint16_t *target_grouplist; gid_t *grouplist; int i; grouplist = alloca(gidsetsize * sizeof(gid_t)); target_grouplist = lock_user(arg2, gidsetsize * 2, 1); for(i = 0;i < gidsetsize; i++) grouplist[i] = tswap16(target_grouplist[i]); unlock_user(target_grouplist, arg2, 0); ret = get_errno(setgroups(gidsetsize, grouplist)); } break; case TARGET_NR_fchown: ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3))); break; #ifdef TARGET_NR_setresuid case TARGET_NR_setresuid: ret = get_errno(setresuid(low2highuid(arg1), low2highuid(arg2), low2highuid(arg3))); break; #endif #ifdef TARGET_NR_getresuid case TARGET_NR_getresuid: { uid_t ruid, euid, suid; ret = get_errno(getresuid(&ruid, &euid, &suid)); if (!is_error(ret)) { tput16(arg1, tswap16(high2lowuid(ruid))); tput16(arg2, tswap16(high2lowuid(euid))); tput16(arg3, tswap16(high2lowuid(suid))); } } break; #endif #ifdef TARGET_NR_getresgid case TARGET_NR_setresgid: ret = get_errno(setresgid(low2highgid(arg1), low2highgid(arg2), low2highgid(arg3))); break; #endif #ifdef TARGET_NR_getresgid case TARGET_NR_getresgid: { gid_t rgid, egid, sgid; ret = get_errno(getresgid(&rgid, &egid, &sgid)); if (!is_error(ret)) { tput16(arg1, tswap16(high2lowgid(rgid))); tput16(arg2, tswap16(high2lowgid(egid))); tput16(arg3, tswap16(high2lowgid(sgid))); } } break; #endif case TARGET_NR_chown: p = lock_user_string(arg1); ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3))); unlock_user(p, arg1, 0); break; case TARGET_NR_setuid: ret = get_errno(setuid(low2highuid(arg1))); break; case TARGET_NR_setgid: ret = get_errno(setgid(low2highgid(arg1))); break; case TARGET_NR_setfsuid: ret = get_errno(setfsuid(arg1)); break; case TARGET_NR_setfsgid: ret = get_errno(setfsgid(arg1)); break; #endif /* USE_UID16 */ #ifdef TARGET_NR_lchown32 case TARGET_NR_lchown32: p = lock_user_string(arg1); ret = get_errno(lchown(p, arg2, arg3)); unlock_user(p, arg1, 0); break; #endif #ifdef TARGET_NR_getuid32 case TARGET_NR_getuid32: ret = get_errno(getuid()); break; #endif #ifdef TARGET_NR_getgid32 case TARGET_NR_getgid32: ret = get_errno(getgid()); break; #endif #ifdef TARGET_NR_geteuid32 case TARGET_NR_geteuid32: ret = get_errno(geteuid()); break; #endif #ifdef TARGET_NR_getegid32 case TARGET_NR_getegid32: ret = get_errno(getegid()); break; #endif #ifdef TARGET_NR_setreuid32 case TARGET_NR_setreuid32: ret = get_errno(setreuid(arg1, arg2)); break; #endif #ifdef TARGET_NR_setregid32 case TARGET_NR_setregid32: ret = get_errno(setregid(arg1, arg2)); break; #endif #ifdef TARGET_NR_getgroups32 case TARGET_NR_getgroups32: { int gidsetsize = arg1; uint32_t *target_grouplist; gid_t *grouplist; int i; grouplist = alloca(gidsetsize * sizeof(gid_t)); ret = get_errno(getgroups(gidsetsize, grouplist)); if (!is_error(ret)) { target_grouplist = lock_user(arg2, gidsetsize * 4, 0); for(i = 0;i < gidsetsize; i++) target_grouplist[i] = tswap32(grouplist[i]); unlock_user(target_grouplist, arg2, gidsetsize * 4); } } break; #endif #ifdef TARGET_NR_setgroups32 case TARGET_NR_setgroups32: { int gidsetsize = arg1; uint32_t *target_grouplist; gid_t *grouplist; int i; grouplist = alloca(gidsetsize * sizeof(gid_t)); target_grouplist = lock_user(arg2, gidsetsize * 4, 1); for(i = 0;i < gidsetsize; i++) grouplist[i] = tswap32(target_grouplist[i]); unlock_user(target_grouplist, arg2, 0); ret = get_errno(setgroups(gidsetsize, grouplist)); } break; #endif #ifdef TARGET_NR_fchown32 case TARGET_NR_fchown32: ret = get_errno(fchown(arg1, arg2, arg3)); break; #endif #ifdef TARGET_NR_setresuid32 case TARGET_NR_setresuid32: ret = get_errno(setresuid(arg1, arg2, arg3)); break; #endif #ifdef TARGET_NR_getresuid32 case TARGET_NR_getresuid32: { uid_t ruid, euid, suid; ret = get_errno(getresuid(&ruid, &euid, &suid)); if (!is_error(ret)) { tput32(arg1, tswap32(ruid)); tput32(arg2, tswap32(euid)); tput32(arg3, tswap32(suid)); } } break; #endif #ifdef TARGET_NR_setresgid32 case TARGET_NR_setresgid32: ret = get_errno(setresgid(arg1, arg2, arg3)); break; #endif #ifdef TARGET_NR_getresgid32 case TARGET_NR_getresgid32: { gid_t rgid, egid, sgid; ret = get_errno(getresgid(&rgid, &egid, &sgid)); if (!is_error(ret)) { tput32(arg1, tswap32(rgid)); tput32(arg2, tswap32(egid)); tput32(arg3, tswap32(sgid)); } } break; #endif #ifdef TARGET_NR_chown32 case TARGET_NR_chown32: p = lock_user_string(arg1); ret = get_errno(chown(p, arg2, arg3)); unlock_user(p, arg1, 0); break; #endif #ifdef TARGET_NR_setuid32 case TARGET_NR_setuid32: ret = get_errno(setuid(arg1)); break; #endif #ifdef TARGET_NR_setgid32 case TARGET_NR_setgid32: ret = get_errno(setgid(arg1)); break; #endif #ifdef TARGET_NR_setfsuid32 case TARGET_NR_setfsuid32: ret = get_errno(setfsuid(arg1)); break; #endif #ifdef TARGET_NR_setfsgid32 case TARGET_NR_setfsgid32: ret = get_errno(setfsgid(arg1)); break; #endif case TARGET_NR_pivot_root: goto unimplemented; #ifdef TARGET_NR_mincore case TARGET_NR_mincore: goto unimplemented; #endif #ifdef TARGET_NR_madvise case TARGET_NR_madvise: /* A straight passthrough may not be safe because qemu sometimes turns private flie-backed mappings into anonymous mappings. This will break MADV_DONTNEED. This is a hint, so ignoring and returning success is ok. */ ret = get_errno(0); break; #endif #if TARGET_LONG_BITS == 32 case TARGET_NR_fcntl64: { struct flock64 fl; struct target_flock64 *target_fl; #ifdef TARGET_ARM struct target_eabi_flock64 *target_efl; #endif switch(arg2) { case F_GETLK64: ret = get_errno(fcntl(arg1, arg2, &fl)); if (ret == 0) { #ifdef TARGET_ARM if (((CPUARMState *)cpu_env)->eabi) { lock_user_struct(target_efl, arg3, 0); target_efl->l_type = tswap16(fl.l_type); target_efl->l_whence = tswap16(fl.l_whence); target_efl->l_start = tswap64(fl.l_start); target_efl->l_len = tswap64(fl.l_len); target_efl->l_pid = tswapl(fl.l_pid); unlock_user_struct(target_efl, arg3, 1); } else #endif { lock_user_struct(target_fl, arg3, 0); target_fl->l_type = tswap16(fl.l_type); target_fl->l_whence = tswap16(fl.l_whence); target_fl->l_start = tswap64(fl.l_start); target_fl->l_len = tswap64(fl.l_len); target_fl->l_pid = tswapl(fl.l_pid); unlock_user_struct(target_fl, arg3, 1); } } break; case F_SETLK64: case F_SETLKW64: #ifdef TARGET_ARM if (((CPUARMState *)cpu_env)->eabi) { lock_user_struct(target_efl, arg3, 1); fl.l_type = tswap16(target_efl->l_type); fl.l_whence = tswap16(target_efl->l_whence); fl.l_start = tswap64(target_efl->l_start); fl.l_len = tswap64(target_efl->l_len); fl.l_pid = tswapl(target_efl->l_pid); unlock_user_struct(target_efl, arg3, 0); } else #endif { lock_user_struct(target_fl, arg3, 1); fl.l_type = tswap16(target_fl->l_type); fl.l_whence = tswap16(target_fl->l_whence); fl.l_start = tswap64(target_fl->l_start); fl.l_len = tswap64(target_fl->l_len); fl.l_pid = tswapl(target_fl->l_pid); unlock_user_struct(target_fl, arg3, 0); } ret = get_errno(fcntl(arg1, arg2, &fl)); break; default: ret = get_errno(do_fcntl(arg1, arg2, arg3)); break; } break; } #endif #ifdef TARGET_NR_security case TARGET_NR_security: goto unimplemented; #endif #ifdef TARGET_NR_getpagesize case TARGET_NR_getpagesize: ret = TARGET_PAGE_SIZE; break; #endif case TARGET_NR_gettid: ret = get_errno(gettid()); break; case TARGET_NR_readahead: goto unimplemented; #ifdef TARGET_NR_setxattr case TARGET_NR_setxattr: case TARGET_NR_lsetxattr: case TARGET_NR_fsetxattr: case TARGET_NR_getxattr: case TARGET_NR_lgetxattr: case TARGET_NR_fgetxattr: case TARGET_NR_listxattr: case TARGET_NR_llistxattr: case TARGET_NR_flistxattr: case TARGET_NR_removexattr: case TARGET_NR_lremovexattr: case TARGET_NR_fremovexattr: goto unimplemented_nowarn; #endif #ifdef TARGET_NR_set_thread_area case TARGET_NR_set_thread_area: case TARGET_NR_get_thread_area: goto unimplemented_nowarn; #endif #ifdef TARGET_NR_getdomainname case TARGET_NR_getdomainname: goto unimplemented_nowarn; #endif default: unimplemented: gemu_log("qemu: Unsupported syscall: %d\n", num); #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_set_thread_area) || defined(TARGET_NR_getdomainname) unimplemented_nowarn: #endif ret = -ENOSYS; break; } fail: #ifdef DEBUG gemu_log(" = %ld\n", ret); #endif return ret; }