/* * Emulation of Linux signals * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu.h" #include "signal-common.h" #include "linux-user/trace.h" #define __SUNOS_MAXWIN 31 /* This is what SunOS does, so shall I. */ struct target_sigcontext { abi_ulong sigc_onstack; /* state to restore */ abi_ulong sigc_mask; /* sigmask to restore */ abi_ulong sigc_sp; /* stack pointer */ abi_ulong sigc_pc; /* program counter */ abi_ulong sigc_npc; /* next program counter */ abi_ulong sigc_psr; /* for condition codes etc */ abi_ulong sigc_g1; /* User uses these two registers */ abi_ulong sigc_o0; /* within the trampoline code. */ /* Now comes information regarding the users window set * at the time of the signal. */ abi_ulong sigc_oswins; /* outstanding windows */ /* stack ptrs for each regwin buf */ char *sigc_spbuf[__SUNOS_MAXWIN]; /* Windows to restore after signal */ struct { abi_ulong locals[8]; abi_ulong ins[8]; } sigc_wbuf[__SUNOS_MAXWIN]; }; /* A Sparc stack frame */ struct sparc_stackf { abi_ulong locals[8]; abi_ulong ins[8]; /* It's simpler to treat fp and callers_pc as elements of ins[] * since we never need to access them ourselves. */ char *structptr; abi_ulong xargs[6]; abi_ulong xxargs[1]; }; typedef struct { struct { abi_ulong psr; abi_ulong pc; abi_ulong npc; abi_ulong y; abi_ulong u_regs[16]; /* globals and ins */ } si_regs; int si_mask; } __siginfo_t; typedef struct { abi_ulong si_float_regs[32]; unsigned long si_fsr; unsigned long si_fpqdepth; struct { unsigned long *insn_addr; unsigned long insn; } si_fpqueue [16]; } qemu_siginfo_fpu_t; struct target_signal_frame { struct sparc_stackf ss; __siginfo_t info; abi_ulong fpu_save; abi_ulong insns[2] __attribute__ ((aligned (8))); abi_ulong extramask[TARGET_NSIG_WORDS - 1]; abi_ulong extra_size; /* Should be 0 */ qemu_siginfo_fpu_t fpu_state; }; struct target_rt_signal_frame { struct sparc_stackf ss; siginfo_t info; abi_ulong regs[20]; sigset_t mask; abi_ulong fpu_save; unsigned int insns[2]; stack_t stack; unsigned int extra_size; /* Should be 0 */ qemu_siginfo_fpu_t fpu_state; }; #define UREG_O0 16 #define UREG_O6 22 #define UREG_I0 0 #define UREG_I1 1 #define UREG_I2 2 #define UREG_I3 3 #define UREG_I4 4 #define UREG_I5 5 #define UREG_I6 6 #define UREG_I7 7 #define UREG_L0 8 #define UREG_FP UREG_I6 #define UREG_SP UREG_O6 static inline abi_ulong get_sigframe(struct target_sigaction *sa, CPUSPARCState *env, unsigned long framesize) { abi_ulong sp = get_sp_from_cpustate(env); /* * If we are on the alternate signal stack and would overflow it, don't. * Return an always-bogus address instead so we will die with SIGSEGV. */ if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) { return -1; } /* This is the X/Open sanctioned signal stack switching. */ sp = target_sigsp(sp, sa) - framesize; /* Always align the stack frame. This handles two cases. First, * sigaltstack need not be mindful of platform specific stack * alignment. Second, if we took this signal because the stack * is not aligned properly, we'd like to take the signal cleanly * and report that. */ sp &= ~15UL; return sp; } static int setup___siginfo(__siginfo_t *si, CPUSPARCState *env, abi_ulong mask) { int err = 0, i; __put_user(env->psr, &si->si_regs.psr); __put_user(env->pc, &si->si_regs.pc); __put_user(env->npc, &si->si_regs.npc); __put_user(env->y, &si->si_regs.y); for (i=0; i < 8; i++) { __put_user(env->gregs[i], &si->si_regs.u_regs[i]); } for (i=0; i < 8; i++) { __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]); } __put_user(mask, &si->si_mask); return err; } #if 0 static int setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ CPUSPARCState *env, unsigned long mask) { int err = 0; __put_user(mask, &sc->sigc_mask); __put_user(env->regwptr[UREG_SP], &sc->sigc_sp); __put_user(env->pc, &sc->sigc_pc); __put_user(env->npc, &sc->sigc_npc); __put_user(env->psr, &sc->sigc_psr); __put_user(env->gregs[1], &sc->sigc_g1); __put_user(env->regwptr[UREG_O0], &sc->sigc_o0); return err; } #endif #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7))) void setup_frame(int sig, struct target_sigaction *ka, target_sigset_t *set, CPUSPARCState *env) { abi_ulong sf_addr; struct target_signal_frame *sf; int sigframe_size, err, i; /* 1. Make sure everything is clean */ //synchronize_user_stack(); sigframe_size = NF_ALIGNEDSZ; sf_addr = get_sigframe(ka, env, sigframe_size); trace_user_setup_frame(env, sf_addr); sf = lock_user(VERIFY_WRITE, sf_addr, sizeof(struct target_signal_frame), 0); if (!sf) { goto sigsegv; } #if 0 if (invalid_frame_pointer(sf, sigframe_size)) goto sigill_and_return; #endif /* 2. Save the current process state */ err = setup___siginfo(&sf->info, env, set->sig[0]); __put_user(0, &sf->extra_size); //save_fpu_state(regs, &sf->fpu_state); //__put_user(&sf->fpu_state, &sf->fpu_save); __put_user(set->sig[0], &sf->info.si_mask); for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { __put_user(set->sig[i + 1], &sf->extramask[i]); } for (i = 0; i < 8; i++) { __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]); } for (i = 0; i < 8; i++) { __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]); } if (err) goto sigsegv; /* 3. signal handler back-trampoline and parameters */ env->regwptr[UREG_FP] = sf_addr; env->regwptr[UREG_I0] = sig; env->regwptr[UREG_I1] = sf_addr + offsetof(struct target_signal_frame, info); env->regwptr[UREG_I2] = sf_addr + offsetof(struct target_signal_frame, info); /* 4. signal handler */ env->pc = ka->_sa_handler; env->npc = (env->pc + 4); /* 5. return to kernel instructions */ if (ka->ka_restorer) { env->regwptr[UREG_I7] = ka->ka_restorer; } else { uint32_t val32; env->regwptr[UREG_I7] = sf_addr + offsetof(struct target_signal_frame, insns) - 2 * 4; /* mov __NR_sigreturn, %g1 */ val32 = 0x821020d8; __put_user(val32, &sf->insns[0]); /* t 0x10 */ val32 = 0x91d02010; __put_user(val32, &sf->insns[1]); } unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); return; #if 0 sigill_and_return: force_sig(TARGET_SIGILL); #endif sigsegv: unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); force_sigsegv(sig); } void setup_rt_frame(int sig, struct target_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUSPARCState *env) { qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUSPARCState *env) { abi_ulong sf_addr; struct target_signal_frame *sf; uint32_t up_psr, pc, npc; target_sigset_t set; sigset_t host_set; int err=0, i; sf_addr = env->regwptr[UREG_FP]; trace_user_do_sigreturn(env, sf_addr); if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { goto segv_and_exit; } /* 1. Make sure we are not getting garbage from the user */ if (sf_addr & 3) goto segv_and_exit; __get_user(pc, &sf->info.si_regs.pc); __get_user(npc, &sf->info.si_regs.npc); if ((pc | npc) & 3) { goto segv_and_exit; } /* 2. Restore the state */ __get_user(up_psr, &sf->info.si_regs.psr); /* User can only change condition codes and FPU enabling in %psr. */ env->psr = (up_psr & (PSR_ICC /* | PSR_EF */)) | (env->psr & ~(PSR_ICC /* | PSR_EF */)); env->pc = pc; env->npc = npc; __get_user(env->y, &sf->info.si_regs.y); for (i=0; i < 8; i++) { __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]); } for (i=0; i < 8; i++) { __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]); } /* FIXME: implement FPU save/restore: * __get_user(fpu_save, &sf->fpu_save); * if (fpu_save) * err |= restore_fpu_state(env, fpu_save); */ /* This is pretty much atomic, no amount locking would prevent * the races which exist anyways. */ __get_user(set.sig[0], &sf->info.si_mask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { __get_user(set.sig[i], &sf->extramask[i - 1]); } target_to_host_sigset_internal(&host_set, &set); set_sigmask(&host_set); if (err) { goto segv_and_exit; } unlock_user_struct(sf, sf_addr, 0); return -TARGET_QEMU_ESIGRETURN; segv_and_exit: unlock_user_struct(sf, sf_addr, 0); force_sig(TARGET_SIGSEGV); return -TARGET_QEMU_ESIGRETURN; } long do_rt_sigreturn(CPUSPARCState *env) { trace_user_do_rt_sigreturn(env, 0); qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) #define SPARC_MC_TSTATE 0 #define SPARC_MC_PC 1 #define SPARC_MC_NPC 2 #define SPARC_MC_Y 3 #define SPARC_MC_G1 4 #define SPARC_MC_G2 5 #define SPARC_MC_G3 6 #define SPARC_MC_G4 7 #define SPARC_MC_G5 8 #define SPARC_MC_G6 9 #define SPARC_MC_G7 10 #define SPARC_MC_O0 11 #define SPARC_MC_O1 12 #define SPARC_MC_O2 13 #define SPARC_MC_O3 14 #define SPARC_MC_O4 15 #define SPARC_MC_O5 16 #define SPARC_MC_O6 17 #define SPARC_MC_O7 18 #define SPARC_MC_NGREG 19 typedef abi_ulong target_mc_greg_t; typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG]; struct target_mc_fq { abi_ulong *mcfq_addr; uint32_t mcfq_insn; }; struct target_mc_fpu { union { uint32_t sregs[32]; uint64_t dregs[32]; //uint128_t qregs[16]; } mcfpu_fregs; abi_ulong mcfpu_fsr; abi_ulong mcfpu_fprs; abi_ulong mcfpu_gsr; struct target_mc_fq *mcfpu_fq; unsigned char mcfpu_qcnt; unsigned char mcfpu_qentsz; unsigned char mcfpu_enab; }; typedef struct target_mc_fpu target_mc_fpu_t; typedef struct { target_mc_gregset_t mc_gregs; target_mc_greg_t mc_fp; target_mc_greg_t mc_i7; target_mc_fpu_t mc_fpregs; } target_mcontext_t; struct target_ucontext { struct target_ucontext *tuc_link; abi_ulong tuc_flags; target_sigset_t tuc_sigmask; target_mcontext_t tuc_mcontext; }; /* A V9 register window */ struct target_reg_window { abi_ulong locals[8]; abi_ulong ins[8]; }; #define TARGET_STACK_BIAS 2047 /* {set, get}context() needed for 64-bit SparcLinux userland. */ void sparc64_set_context(CPUSPARCState *env) { abi_ulong ucp_addr; struct target_ucontext *ucp; target_mc_gregset_t *grp; abi_ulong pc, npc, tstate; abi_ulong fp, i7, w_addr; unsigned int i; ucp_addr = env->regwptr[UREG_I0]; if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) { goto do_sigsegv; } grp = &ucp->tuc_mcontext.mc_gregs; __get_user(pc, &((*grp)[SPARC_MC_PC])); __get_user(npc, &((*grp)[SPARC_MC_NPC])); if ((pc | npc) & 3) { goto do_sigsegv; } if (env->regwptr[UREG_I1]) { target_sigset_t target_set; sigset_t set; if (TARGET_NSIG_WORDS == 1) { __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]); } else { abi_ulong *src, *dst; src = ucp->tuc_sigmask.sig; dst = target_set.sig; for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { __get_user(*dst, src); } } target_to_host_sigset_internal(&set, &target_set); set_sigmask(&set); } env->pc = pc; env->npc = npc; __get_user(env->y, &((*grp)[SPARC_MC_Y])); __get_user(tstate, &((*grp)[SPARC_MC_TSTATE])); env->asi = (tstate >> 24) & 0xff; cpu_put_ccr(env, tstate >> 32); cpu_put_cwp64(env, tstate & 0x1f); __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1])); __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2])); __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3])); __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4])); __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5])); __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6])); __get_user(env->gregs[7], (&(*grp)[SPARC_MC_G7])); __get_user(env->regwptr[UREG_I0], (&(*grp)[SPARC_MC_O0])); __get_user(env->regwptr[UREG_I1], (&(*grp)[SPARC_MC_O1])); __get_user(env->regwptr[UREG_I2], (&(*grp)[SPARC_MC_O2])); __get_user(env->regwptr[UREG_I3], (&(*grp)[SPARC_MC_O3])); __get_user(env->regwptr[UREG_I4], (&(*grp)[SPARC_MC_O4])); __get_user(env->regwptr[UREG_I5], (&(*grp)[SPARC_MC_O5])); __get_user(env->regwptr[UREG_I6], (&(*grp)[SPARC_MC_O6])); __get_user(env->regwptr[UREG_I7], (&(*grp)[SPARC_MC_O7])); __get_user(fp, &(ucp->tuc_mcontext.mc_fp)); __get_user(i7, &(ucp->tuc_mcontext.mc_i7)); w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6]; if (put_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), abi_ulong) != 0) { goto do_sigsegv; } if (put_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), abi_ulong) != 0) { goto do_sigsegv; } /* FIXME this does not match how the kernel handles the FPU in * its sparc64_set_context implementation. In particular the FPU * is only restored if fenab is non-zero in: * __get_user(fenab, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_enab)); */ __get_user(env->fprs, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fprs)); { uint32_t *src = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs; for (i = 0; i < 64; i++, src++) { if (i & 1) { __get_user(env->fpr[i/2].l.lower, src); } else { __get_user(env->fpr[i/2].l.upper, src); } } } __get_user(env->fsr, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fsr)); __get_user(env->gsr, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_gsr)); unlock_user_struct(ucp, ucp_addr, 0); return; do_sigsegv: unlock_user_struct(ucp, ucp_addr, 0); force_sig(TARGET_SIGSEGV); } void sparc64_get_context(CPUSPARCState *env) { abi_ulong ucp_addr; struct target_ucontext *ucp; target_mc_gregset_t *grp; target_mcontext_t *mcp; abi_ulong fp, i7, w_addr; int err; unsigned int i; target_sigset_t target_set; sigset_t set; ucp_addr = env->regwptr[UREG_I0]; if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) { goto do_sigsegv; } mcp = &ucp->tuc_mcontext; grp = &mcp->mc_gregs; /* Skip over the trap instruction, first. */ env->pc = env->npc; env->npc += 4; /* If we're only reading the signal mask then do_sigprocmask() * is guaranteed not to fail, which is important because we don't * have any way to signal a failure or restart this operation since * this is not a normal syscall. */ err = do_sigprocmask(0, NULL, &set); assert(err == 0); host_to_target_sigset_internal(&target_set, &set); if (TARGET_NSIG_WORDS == 1) { __put_user(target_set.sig[0], (abi_ulong *)&ucp->tuc_sigmask); } else { abi_ulong *src, *dst; src = target_set.sig; dst = ucp->tuc_sigmask.sig; for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { __put_user(*src, dst); } if (err) goto do_sigsegv; } /* XXX: tstate must be saved properly */ // __put_user(env->tstate, &((*grp)[SPARC_MC_TSTATE])); __put_user(env->pc, &((*grp)[SPARC_MC_PC])); __put_user(env->npc, &((*grp)[SPARC_MC_NPC])); __put_user(env->y, &((*grp)[SPARC_MC_Y])); __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1])); __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2])); __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3])); __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4])); __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5])); __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6])); __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7])); __put_user(env->regwptr[UREG_I0], &((*grp)[SPARC_MC_O0])); __put_user(env->regwptr[UREG_I1], &((*grp)[SPARC_MC_O1])); __put_user(env->regwptr[UREG_I2], &((*grp)[SPARC_MC_O2])); __put_user(env->regwptr[UREG_I3], &((*grp)[SPARC_MC_O3])); __put_user(env->regwptr[UREG_I4], &((*grp)[SPARC_MC_O4])); __put_user(env->regwptr[UREG_I5], &((*grp)[SPARC_MC_O5])); __put_user(env->regwptr[UREG_I6], &((*grp)[SPARC_MC_O6])); __put_user(env->regwptr[UREG_I7], &((*grp)[SPARC_MC_O7])); w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6]; fp = i7 = 0; if (get_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), abi_ulong) != 0) { goto do_sigsegv; } if (get_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), abi_ulong) != 0) { goto do_sigsegv; } __put_user(fp, &(mcp->mc_fp)); __put_user(i7, &(mcp->mc_i7)); { uint32_t *dst = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs; for (i = 0; i < 64; i++, dst++) { if (i & 1) { __put_user(env->fpr[i/2].l.lower, dst); } else { __put_user(env->fpr[i/2].l.upper, dst); } } } __put_user(env->fsr, &(mcp->mc_fpregs.mcfpu_fsr)); __put_user(env->gsr, &(mcp->mc_fpregs.mcfpu_gsr)); __put_user(env->fprs, &(mcp->mc_fpregs.mcfpu_fprs)); if (err) goto do_sigsegv; unlock_user_struct(ucp, ucp_addr, 1); return; do_sigsegv: unlock_user_struct(ucp, ucp_addr, 1); force_sig(TARGET_SIGSEGV); } #endif