/* * Emulation of Linux signals * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include <stdlib.h> #include <stdio.h> #include <string.h> #include <stdarg.h> #include <unistd.h> #include <signal.h> #include <errno.h> #include <sys/ucontext.h> #include "qemu.h" #include "target_signal.h" //#define DEBUG_SIGNAL #define MAX_SIGQUEUE_SIZE 1024 struct sigqueue { struct sigqueue *next; target_siginfo_t info; }; struct emulated_sigaction { struct target_sigaction sa; int pending; /* true if signal is pending */ struct sigqueue *first; struct sigqueue info; /* in order to always have memory for the first signal, we put it here */ }; struct target_sigaltstack target_sigaltstack_used = { .ss_sp = 0, .ss_size = 0, .ss_flags = TARGET_SS_DISABLE, }; static struct emulated_sigaction sigact_table[TARGET_NSIG]; static struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ static struct sigqueue *first_free; /* first free siginfo queue entry */ static int signal_pending; /* non zero if a signal may be pending */ static void host_signal_handler(int host_signum, siginfo_t *info, void *puc); static uint8_t host_to_target_signal_table[65] = { [SIGHUP] = TARGET_SIGHUP, [SIGINT] = TARGET_SIGINT, [SIGQUIT] = TARGET_SIGQUIT, [SIGILL] = TARGET_SIGILL, [SIGTRAP] = TARGET_SIGTRAP, [SIGABRT] = TARGET_SIGABRT, /* [SIGIOT] = TARGET_SIGIOT,*/ [SIGBUS] = TARGET_SIGBUS, [SIGFPE] = TARGET_SIGFPE, [SIGKILL] = TARGET_SIGKILL, [SIGUSR1] = TARGET_SIGUSR1, [SIGSEGV] = TARGET_SIGSEGV, [SIGUSR2] = TARGET_SIGUSR2, [SIGPIPE] = TARGET_SIGPIPE, [SIGALRM] = TARGET_SIGALRM, [SIGTERM] = TARGET_SIGTERM, #ifdef SIGSTKFLT [SIGSTKFLT] = TARGET_SIGSTKFLT, #endif [SIGCHLD] = TARGET_SIGCHLD, [SIGCONT] = TARGET_SIGCONT, [SIGSTOP] = TARGET_SIGSTOP, [SIGTSTP] = TARGET_SIGTSTP, [SIGTTIN] = TARGET_SIGTTIN, [SIGTTOU] = TARGET_SIGTTOU, [SIGURG] = TARGET_SIGURG, [SIGXCPU] = TARGET_SIGXCPU, [SIGXFSZ] = TARGET_SIGXFSZ, [SIGVTALRM] = TARGET_SIGVTALRM, [SIGPROF] = TARGET_SIGPROF, [SIGWINCH] = TARGET_SIGWINCH, [SIGIO] = TARGET_SIGIO, [SIGPWR] = TARGET_SIGPWR, [SIGSYS] = TARGET_SIGSYS, /* next signals stay the same */ }; static uint8_t target_to_host_signal_table[65]; static inline int on_sig_stack(unsigned long sp) { return (sp - target_sigaltstack_used.ss_sp < target_sigaltstack_used.ss_size); } static inline int sas_ss_flags(unsigned long sp) { return (target_sigaltstack_used.ss_size == 0 ? SS_DISABLE : on_sig_stack(sp) ? SS_ONSTACK : 0); } static inline int host_to_target_signal(int sig) { return host_to_target_signal_table[sig]; } static inline int target_to_host_signal(int sig) { return target_to_host_signal_table[sig]; } static void host_to_target_sigset_internal(target_sigset_t *d, const sigset_t *s) { int i; unsigned long sigmask; uint32_t target_sigmask; sigmask = ((unsigned long *)s)[0]; target_sigmask = 0; for(i = 0; i < 32; i++) { if (sigmask & (1 << i)) target_sigmask |= 1 << (host_to_target_signal(i + 1) - 1); } #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 32 d->sig[0] = target_sigmask; for(i = 1;i < TARGET_NSIG_WORDS; i++) { d->sig[i] = ((unsigned long *)s)[i]; } #elif TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2 d->sig[0] = target_sigmask; d->sig[1] = sigmask >> 32; #else /* XXX: do it */ #endif } void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) { target_sigset_t d1; int i; host_to_target_sigset_internal(&d1, s); for(i = 0;i < TARGET_NSIG_WORDS; i++) d->sig[i] = tswapl(d1.sig[i]); } void target_to_host_sigset_internal(sigset_t *d, const target_sigset_t *s) { int i; unsigned long sigmask; abi_ulong target_sigmask; target_sigmask = s->sig[0]; sigmask = 0; for(i = 0; i < 32; i++) { if (target_sigmask & (1 << i)) sigmask |= 1 << (target_to_host_signal(i + 1) - 1); } #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 32 ((unsigned long *)d)[0] = sigmask; for(i = 1;i < TARGET_NSIG_WORDS; i++) { ((unsigned long *)d)[i] = s->sig[i]; } #elif TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64 && TARGET_NSIG_WORDS == 2 ((unsigned long *)d)[0] = sigmask | ((unsigned long)(s->sig[1]) << 32); #else /* XXX: do it */ #endif /* TARGET_ABI_BITS */ } void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) { target_sigset_t s1; int i; for(i = 0;i < TARGET_NSIG_WORDS; i++) s1.sig[i] = tswapl(s->sig[i]); target_to_host_sigset_internal(d, &s1); } void host_to_target_old_sigset(abi_ulong *old_sigset, const sigset_t *sigset) { target_sigset_t d; host_to_target_sigset(&d, sigset); *old_sigset = d.sig[0]; } void target_to_host_old_sigset(sigset_t *sigset, const abi_ulong *old_sigset) { target_sigset_t d; int i; d.sig[0] = *old_sigset; for(i = 1;i < TARGET_NSIG_WORDS; i++) d.sig[i] = 0; target_to_host_sigset(sigset, &d); } /* siginfo conversion */ static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, const siginfo_t *info) { int sig; sig = host_to_target_signal(info->si_signo); tinfo->si_signo = sig; tinfo->si_errno = 0; tinfo->si_code = 0; if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV || sig == SIGBUS || sig == SIGTRAP) { /* should never come here, but who knows. The information for the target is irrelevant */ tinfo->_sifields._sigfault._addr = 0; } else if (sig == SIGIO) { tinfo->_sifields._sigpoll._fd = info->si_fd; } else if (sig >= TARGET_SIGRTMIN) { tinfo->_sifields._rt._pid = info->si_pid; tinfo->_sifields._rt._uid = info->si_uid; /* XXX: potential problem if 64 bit */ tinfo->_sifields._rt._sigval.sival_ptr = (abi_ulong)(unsigned long)info->si_value.sival_ptr; } } static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info) { int sig; sig = info->si_signo; tinfo->si_signo = tswap32(sig); tinfo->si_errno = tswap32(info->si_errno); tinfo->si_code = tswap32(info->si_code); if (sig == SIGILL || sig == SIGFPE || sig == SIGSEGV || sig == SIGBUS || sig == SIGTRAP) { tinfo->_sifields._sigfault._addr = tswapl(info->_sifields._sigfault._addr); } else if (sig == SIGIO) { tinfo->_sifields._sigpoll._fd = tswap32(info->_sifields._sigpoll._fd); } else if (sig >= TARGET_SIGRTMIN) { tinfo->_sifields._rt._pid = tswap32(info->_sifields._rt._pid); tinfo->_sifields._rt._uid = tswap32(info->_sifields._rt._uid); tinfo->_sifields._rt._sigval.sival_ptr = tswapl(info->_sifields._rt._sigval.sival_ptr); } } void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) { host_to_target_siginfo_noswap(tinfo, info); tswap_siginfo(tinfo, tinfo); } /* XXX: we support only POSIX RT signals are used. */ /* XXX: find a solution for 64 bit (additional malloced data is needed) */ void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) { info->si_signo = tswap32(tinfo->si_signo); info->si_errno = tswap32(tinfo->si_errno); info->si_code = tswap32(tinfo->si_code); info->si_pid = tswap32(tinfo->_sifields._rt._pid); info->si_uid = tswap32(tinfo->_sifields._rt._uid); info->si_value.sival_ptr = (void *)(long)tswapl(tinfo->_sifields._rt._sigval.sival_ptr); } void signal_init(void) { struct sigaction act; int i, j; /* generate signal conversion tables */ for(i = 1; i <= 64; i++) { if (host_to_target_signal_table[i] == 0) host_to_target_signal_table[i] = i; } for(i = 1; i <= 64; i++) { j = host_to_target_signal_table[i]; target_to_host_signal_table[j] = i; } /* set all host signal handlers. ALL signals are blocked during the handlers to serialize them. */ sigfillset(&act.sa_mask); act.sa_flags = SA_SIGINFO; act.sa_sigaction = host_signal_handler; for(i = 1; i < NSIG; i++) { sigaction(i, &act, NULL); } memset(sigact_table, 0, sizeof(sigact_table)); first_free = &sigqueue_table[0]; for(i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) sigqueue_table[i].next = &sigqueue_table[i + 1]; sigqueue_table[MAX_SIGQUEUE_SIZE - 1].next = NULL; } /* signal queue handling */ static inline struct sigqueue *alloc_sigqueue(void) { struct sigqueue *q = first_free; if (!q) return NULL; first_free = q->next; return q; } static inline void free_sigqueue(struct sigqueue *q) { q->next = first_free; first_free = q; } /* abort execution with signal */ void __attribute((noreturn)) force_sig(int sig) { int host_sig; host_sig = target_to_host_signal(sig); fprintf(stderr, "qemu: uncaught target signal %d (%s) - exiting\n", sig, strsignal(host_sig)); #if 1 _exit(-host_sig); #else { struct sigaction act; sigemptyset(&act.sa_mask); act.sa_flags = SA_SIGINFO; act.sa_sigaction = SIG_DFL; sigaction(SIGABRT, &act, NULL); abort(); } #endif } /* queue a signal so that it will be send to the virtual CPU as soon as possible */ int queue_signal(int sig, target_siginfo_t *info) { struct emulated_sigaction *k; struct sigqueue *q, **pq; abi_ulong handler; #if defined(DEBUG_SIGNAL) fprintf(stderr, "queue_signal: sig=%d\n", sig); #endif k = &sigact_table[sig - 1]; handler = k->sa._sa_handler; if (handler == TARGET_SIG_DFL) { /* default handler : ignore some signal. The other are fatal */ if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && sig != TARGET_SIGWINCH) { force_sig(sig); } else { return 0; /* indicate ignored */ } } else if (handler == TARGET_SIG_IGN) { /* ignore signal */ return 0; } else if (handler == TARGET_SIG_ERR) { force_sig(sig); } else { pq = &k->first; if (sig < TARGET_SIGRTMIN) { /* if non real time signal, we queue exactly one signal */ if (!k->pending) q = &k->info; else return 0; } else { if (!k->pending) { /* first signal */ q = &k->info; } else { q = alloc_sigqueue(); if (!q) return -EAGAIN; while (*pq != NULL) pq = &(*pq)->next; } } *pq = q; q->info = *info; q->next = NULL; k->pending = 1; /* signal that a new signal is pending */ signal_pending = 1; return 1; /* indicates that the signal was queued */ } } static void host_signal_handler(int host_signum, siginfo_t *info, void *puc) { int sig; target_siginfo_t tinfo; /* the CPU emulator uses some host signals to detect exceptions, we we forward to it some signals */ if (host_signum == SIGSEGV || host_signum == SIGBUS) { if (cpu_signal_handler(host_signum, info, puc)) return; } /* get target signal number */ sig = host_to_target_signal(host_signum); if (sig < 1 || sig > TARGET_NSIG) return; #if defined(DEBUG_SIGNAL) fprintf(stderr, "qemu: got signal %d\n", sig); #endif host_to_target_siginfo_noswap(&tinfo, info); if (queue_signal(sig, &tinfo) == 1) { /* interrupt the virtual CPU as soon as possible */ cpu_interrupt(global_env, CPU_INTERRUPT_EXIT); } } /* do_sigaltstack() returns target values and errnos. */ /* compare linux/kernel/signal.c:do_sigaltstack() */ abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) { int ret; struct target_sigaltstack oss; /* XXX: test errors */ if(uoss_addr) { __put_user(target_sigaltstack_used.ss_sp, &oss.ss_sp); __put_user(target_sigaltstack_used.ss_size, &oss.ss_size); __put_user(sas_ss_flags(sp), &oss.ss_flags); } if(uss_addr) { struct target_sigaltstack *uss; struct target_sigaltstack ss; ret = -TARGET_EFAULT; if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1) || __get_user(ss.ss_sp, &uss->ss_sp) || __get_user(ss.ss_size, &uss->ss_size) || __get_user(ss.ss_flags, &uss->ss_flags)) goto out; unlock_user_struct(uss, uss_addr, 0); ret = -TARGET_EPERM; if (on_sig_stack(sp)) goto out; ret = -TARGET_EINVAL; if (ss.ss_flags != TARGET_SS_DISABLE && ss.ss_flags != TARGET_SS_ONSTACK && ss.ss_flags != 0) goto out; if (ss.ss_flags == TARGET_SS_DISABLE) { ss.ss_size = 0; ss.ss_sp = 0; } else { ret = -TARGET_ENOMEM; if (ss.ss_size < MINSIGSTKSZ) goto out; } target_sigaltstack_used.ss_sp = ss.ss_sp; target_sigaltstack_used.ss_size = ss.ss_size; } if (uoss_addr) { ret = -TARGET_EFAULT; if (copy_to_user(uoss_addr, &oss, sizeof(oss))) goto out; } ret = 0; out: return ret; } /* do_sigaction() return host values and errnos */ int do_sigaction(int sig, const struct target_sigaction *act, struct target_sigaction *oact) { struct emulated_sigaction *k; struct sigaction act1; int host_sig; int ret = 0; if (sig < 1 || sig > TARGET_NSIG || sig == SIGKILL || sig == SIGSTOP) return -EINVAL; k = &sigact_table[sig - 1]; #if defined(DEBUG_SIGNAL) fprintf(stderr, "sigaction sig=%d act=0x%08x, oact=0x%08x\n", sig, (int)act, (int)oact); #endif if (oact) { oact->_sa_handler = tswapl(k->sa._sa_handler); oact->sa_flags = tswapl(k->sa.sa_flags); #if !defined(TARGET_MIPS) oact->sa_restorer = tswapl(k->sa.sa_restorer); #endif oact->sa_mask = k->sa.sa_mask; } if (act) { k->sa._sa_handler = tswapl(act->_sa_handler); k->sa.sa_flags = tswapl(act->sa_flags); #if !defined(TARGET_MIPS) k->sa.sa_restorer = tswapl(act->sa_restorer); #endif k->sa.sa_mask = act->sa_mask; /* we update the host linux signal state */ host_sig = target_to_host_signal(sig); if (host_sig != SIGSEGV && host_sig != SIGBUS) { sigfillset(&act1.sa_mask); act1.sa_flags = SA_SIGINFO; if (k->sa.sa_flags & TARGET_SA_RESTART) act1.sa_flags |= SA_RESTART; /* NOTE: it is important to update the host kernel signal ignore state to avoid getting unexpected interrupted syscalls */ if (k->sa._sa_handler == TARGET_SIG_IGN) { act1.sa_sigaction = (void *)SIG_IGN; } else if (k->sa._sa_handler == TARGET_SIG_DFL) { act1.sa_sigaction = (void *)SIG_DFL; } else { act1.sa_sigaction = host_signal_handler; } ret = sigaction(host_sig, &act1, NULL); } } return ret; } #ifndef offsetof #define offsetof(type, field) ((size_t) &((type *)0)->field) #endif static inline int copy_siginfo_to_user(target_siginfo_t *tinfo, const target_siginfo_t *info) { tswap_siginfo(tinfo, info); return 0; } static inline int current_exec_domain_sig(int sig) { return /* current->exec_domain && current->exec_domain->signal_invmap && sig < 32 ? current->exec_domain->signal_invmap[sig] : */ sig; } #if defined(TARGET_I386) && TARGET_ABI_BITS == 32 /* from the Linux kernel */ struct target_fpreg { uint16_t significand[4]; uint16_t exponent; }; struct target_fpxreg { uint16_t significand[4]; uint16_t exponent; uint16_t padding[3]; }; struct target_xmmreg { abi_ulong element[4]; }; struct target_fpstate { /* Regular FPU environment */ abi_ulong cw; abi_ulong sw; abi_ulong tag; abi_ulong ipoff; abi_ulong cssel; abi_ulong dataoff; abi_ulong datasel; struct target_fpreg _st[8]; uint16_t status; uint16_t magic; /* 0xffff = regular FPU data only */ /* FXSR FPU environment */ abi_ulong _fxsr_env[6]; /* FXSR FPU env is ignored */ abi_ulong mxcsr; abi_ulong reserved; struct target_fpxreg _fxsr_st[8]; /* FXSR FPU reg data is ignored */ struct target_xmmreg _xmm[8]; abi_ulong padding[56]; }; #define X86_FXSR_MAGIC 0x0000 struct target_sigcontext { uint16_t gs, __gsh; uint16_t fs, __fsh; uint16_t es, __esh; uint16_t ds, __dsh; abi_ulong edi; abi_ulong esi; abi_ulong ebp; abi_ulong esp; abi_ulong ebx; abi_ulong edx; abi_ulong ecx; abi_ulong eax; abi_ulong trapno; abi_ulong err; abi_ulong eip; uint16_t cs, __csh; abi_ulong eflags; abi_ulong esp_at_signal; uint16_t ss, __ssh; abi_ulong fpstate; /* pointer */ abi_ulong oldmask; abi_ulong cr2; }; struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ }; struct sigframe { abi_ulong pretcode; int sig; struct target_sigcontext sc; struct target_fpstate fpstate; abi_ulong extramask[TARGET_NSIG_WORDS-1]; char retcode[8]; }; struct rt_sigframe { abi_ulong pretcode; int sig; abi_ulong pinfo; abi_ulong puc; struct target_siginfo info; struct target_ucontext uc; struct target_fpstate fpstate; char retcode[8]; }; /* * Set up a signal frame. */ /* XXX: save x87 state */ static int setup_sigcontext(struct target_sigcontext *sc, struct target_fpstate *fpstate, CPUX86State *env, abi_ulong mask, abi_ulong fpstate_addr) { int err = 0; uint16_t magic; /* already locked in setup_frame() */ err |= __put_user(env->segs[R_GS].selector, (unsigned int *)&sc->gs); err |= __put_user(env->segs[R_FS].selector, (unsigned int *)&sc->fs); err |= __put_user(env->segs[R_ES].selector, (unsigned int *)&sc->es); err |= __put_user(env->segs[R_DS].selector, (unsigned int *)&sc->ds); err |= __put_user(env->regs[R_EDI], &sc->edi); err |= __put_user(env->regs[R_ESI], &sc->esi); err |= __put_user(env->regs[R_EBP], &sc->ebp); err |= __put_user(env->regs[R_ESP], &sc->esp); err |= __put_user(env->regs[R_EBX], &sc->ebx); err |= __put_user(env->regs[R_EDX], &sc->edx); err |= __put_user(env->regs[R_ECX], &sc->ecx); err |= __put_user(env->regs[R_EAX], &sc->eax); err |= __put_user(env->exception_index, &sc->trapno); err |= __put_user(env->error_code, &sc->err); err |= __put_user(env->eip, &sc->eip); err |= __put_user(env->segs[R_CS].selector, (unsigned int *)&sc->cs); err |= __put_user(env->eflags, &sc->eflags); err |= __put_user(env->regs[R_ESP], &sc->esp_at_signal); err |= __put_user(env->segs[R_SS].selector, (unsigned int *)&sc->ss); cpu_x86_fsave(env, fpstate_addr, 1); fpstate->status = fpstate->sw; magic = 0xffff; err |= __put_user(magic, &fpstate->magic); err |= __put_user(fpstate_addr, &sc->fpstate); /* non-iBCS2 extensions.. */ err |= __put_user(mask, &sc->oldmask); err |= __put_user(env->cr[2], &sc->cr2); return err; } /* * Determine which stack to use.. */ static inline abi_ulong get_sigframe(struct emulated_sigaction *ka, CPUX86State *env, size_t frame_size) { unsigned long esp; /* Default to using normal stack */ esp = env->regs[R_ESP]; /* This is the X/Open sanctioned signal stack switching. */ if (ka->sa.sa_flags & TARGET_SA_ONSTACK) { if (sas_ss_flags(esp) == 0) esp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } /* This is the legacy signal stack switching. */ else if ((env->segs[R_SS].selector & 0xffff) != __USER_DS && !(ka->sa.sa_flags & TARGET_SA_RESTORER) && ka->sa.sa_restorer) { esp = (unsigned long) ka->sa.sa_restorer; } return (esp - frame_size) & -8ul; } /* compare linux/arch/i386/kernel/signal.c:setup_frame() */ static void setup_frame(int sig, struct emulated_sigaction *ka, target_sigset_t *set, CPUX86State *env) { abi_ulong frame_addr; struct sigframe *frame; int i, err = 0; frame_addr = get_sigframe(ka, env, sizeof(*frame)); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; err |= __put_user(current_exec_domain_sig(sig), &frame->sig); if (err) goto give_sigsegv; setup_sigcontext(&frame->sc, &frame->fpstate, env, set->sig[0], frame_addr + offsetof(struct sigframe, fpstate)); if (err) goto give_sigsegv; for(i = 1; i < TARGET_NSIG_WORDS; i++) { if (__put_user(set->sig[i], &frame->extramask[i - 1])) goto give_sigsegv; } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa.sa_flags & TARGET_SA_RESTORER) { err |= __put_user(ka->sa.sa_restorer, &frame->pretcode); } else { uint16_t val16; abi_ulong retcode_addr; retcode_addr = frame_addr + offsetof(struct sigframe, retcode); err |= __put_user(retcode_addr, &frame->pretcode); /* This is popl %eax ; movl $,%eax ; int $0x80 */ val16 = 0xb858; err |= __put_user(val16, (uint16_t *)(frame->retcode+0)); err |= __put_user(TARGET_NR_sigreturn, (int *)(frame->retcode+2)); val16 = 0x80cd; err |= __put_user(val16, (uint16_t *)(frame->retcode+6)); } if (err) goto give_sigsegv; /* Set up registers for signal handler */ env->regs[R_ESP] = frame_addr; env->eip = ka->sa._sa_handler; cpu_x86_load_seg(env, R_DS, __USER_DS); cpu_x86_load_seg(env, R_ES, __USER_DS); cpu_x86_load_seg(env, R_SS, __USER_DS); cpu_x86_load_seg(env, R_CS, __USER_CS); env->eflags &= ~TF_MASK; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); if (sig == TARGET_SIGSEGV) ka->sa._sa_handler = TARGET_SIG_DFL; force_sig(TARGET_SIGSEGV /* , current */); } /* compare linux/arch/i386/kernel/signal.c:setup_rt_frame() */ static void setup_rt_frame(int sig, struct emulated_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUX86State *env) { abi_ulong frame_addr, addr; struct rt_sigframe *frame; int i, err = 0; frame_addr = get_sigframe(ka, env, sizeof(*frame)); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; err |= __put_user(current_exec_domain_sig(sig), &frame->sig); addr = frame_addr + offsetof(struct rt_sigframe, info); err |= __put_user(addr, &frame->pinfo); addr = frame_addr + offsetof(struct rt_sigframe, uc); err |= __put_user(addr, &frame->puc); err |= copy_siginfo_to_user(&frame->info, info); if (err) goto give_sigsegv; /* Create the ucontext. */ err |= __put_user(0, &frame->uc.tuc_flags); err |= __put_user(0, &frame->uc.tuc_link); err |= __put_user(target_sigaltstack_used.ss_sp, &frame->uc.tuc_stack.ss_sp); err |= __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &frame->uc.tuc_stack.ss_flags); err |= __put_user(target_sigaltstack_used.ss_size, &frame->uc.tuc_stack.ss_size); err |= setup_sigcontext(&frame->uc.tuc_mcontext, &frame->fpstate, env, set->sig[0], frame_addr + offsetof(struct rt_sigframe, fpstate)); for(i = 0; i < TARGET_NSIG_WORDS; i++) { if (__put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i])) goto give_sigsegv; } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa.sa_flags & TARGET_SA_RESTORER) { err |= __put_user(ka->sa.sa_restorer, &frame->pretcode); } else { uint16_t val16; addr = frame_addr + offsetof(struct rt_sigframe, retcode); err |= __put_user(addr, &frame->pretcode); /* This is movl $,%eax ; int $0x80 */ err |= __put_user(0xb8, (char *)(frame->retcode+0)); err |= __put_user(TARGET_NR_rt_sigreturn, (int *)(frame->retcode+1)); val16 = 0x80cd; err |= __put_user(val16, (uint16_t *)(frame->retcode+5)); } if (err) goto give_sigsegv; /* Set up registers for signal handler */ env->regs[R_ESP] = frame_addr; env->eip = ka->sa._sa_handler; cpu_x86_load_seg(env, R_DS, __USER_DS); cpu_x86_load_seg(env, R_ES, __USER_DS); cpu_x86_load_seg(env, R_SS, __USER_DS); cpu_x86_load_seg(env, R_CS, __USER_CS); env->eflags &= ~TF_MASK; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); if (sig == TARGET_SIGSEGV) ka->sa._sa_handler = TARGET_SIG_DFL; force_sig(TARGET_SIGSEGV /* , current */); } static int restore_sigcontext(CPUX86State *env, struct target_sigcontext *sc, int *peax) { unsigned int err = 0; abi_ulong fpstate_addr; unsigned int tmpflags; cpu_x86_load_seg(env, R_GS, tswap16(sc->gs)); cpu_x86_load_seg(env, R_FS, tswap16(sc->fs)); cpu_x86_load_seg(env, R_ES, tswap16(sc->es)); cpu_x86_load_seg(env, R_DS, tswap16(sc->ds)); env->regs[R_EDI] = tswapl(sc->edi); env->regs[R_ESI] = tswapl(sc->esi); env->regs[R_EBP] = tswapl(sc->ebp); env->regs[R_ESP] = tswapl(sc->esp); env->regs[R_EBX] = tswapl(sc->ebx); env->regs[R_EDX] = tswapl(sc->edx); env->regs[R_ECX] = tswapl(sc->ecx); env->eip = tswapl(sc->eip); cpu_x86_load_seg(env, R_CS, lduw(&sc->cs) | 3); cpu_x86_load_seg(env, R_SS, lduw(&sc->ss) | 3); tmpflags = tswapl(sc->eflags); env->eflags = (env->eflags & ~0x40DD5) | (tmpflags & 0x40DD5); // regs->orig_eax = -1; /* disable syscall checks */ fpstate_addr = tswapl(sc->fpstate); if (fpstate_addr != 0) { if (!access_ok(VERIFY_READ, fpstate_addr, sizeof(struct target_fpstate))) goto badframe; cpu_x86_frstor(env, fpstate_addr, 1); } *peax = tswapl(sc->eax); return err; badframe: return 1; } long do_sigreturn(CPUX86State *env) { struct sigframe *frame; abi_ulong frame_addr = env->regs[R_ESP] - 8; target_sigset_t target_set; sigset_t set; int eax, i; #if defined(DEBUG_SIGNAL) fprintf(stderr, "do_sigreturn\n"); #endif if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; /* set blocked signals */ if (__get_user(target_set.sig[0], &frame->sc.oldmask)) goto badframe; for(i = 1; i < TARGET_NSIG_WORDS; i++) { if (__get_user(target_set.sig[i], &frame->extramask[i - 1])) goto badframe; } target_to_host_sigset_internal(&set, &target_set); sigprocmask(SIG_SETMASK, &set, NULL); /* restore registers */ if (restore_sigcontext(env, &frame->sc, &eax)) goto badframe; unlock_user_struct(frame, frame_addr, 0); return eax; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return 0; } long do_rt_sigreturn(CPUX86State *env) { abi_ulong frame_addr; struct rt_sigframe *frame; sigset_t set; int eax; frame_addr = env->regs[R_ESP] - 4; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; target_to_host_sigset(&set, &frame->uc.tuc_sigmask); sigprocmask(SIG_SETMASK, &set, NULL); if (restore_sigcontext(env, &frame->uc.tuc_mcontext, &eax)) goto badframe; if (do_sigaltstack(frame_addr + offsetof(struct rt_sigframe, uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) goto badframe; unlock_user_struct(frame, frame_addr, 0); return eax; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return 0; } #elif defined(TARGET_ARM) struct target_sigcontext { abi_ulong trap_no; abi_ulong error_code; abi_ulong oldmask; abi_ulong arm_r0; abi_ulong arm_r1; abi_ulong arm_r2; abi_ulong arm_r3; abi_ulong arm_r4; abi_ulong arm_r5; abi_ulong arm_r6; abi_ulong arm_r7; abi_ulong arm_r8; abi_ulong arm_r9; abi_ulong arm_r10; abi_ulong arm_fp; abi_ulong arm_ip; abi_ulong arm_sp; abi_ulong arm_lr; abi_ulong arm_pc; abi_ulong arm_cpsr; abi_ulong fault_address; }; struct target_ucontext { abi_ulong tuc_flags; abi_ulong tuc_link; target_stack_t tuc_stack; struct target_sigcontext tuc_mcontext; target_sigset_t tuc_sigmask; /* mask last for extensibility */ }; struct sigframe { struct target_sigcontext sc; abi_ulong extramask[TARGET_NSIG_WORDS-1]; abi_ulong retcode; }; struct rt_sigframe { abi_ulong pinfo; abi_ulong puc; struct target_siginfo info; struct target_ucontext uc; abi_ulong retcode; }; #define TARGET_CONFIG_CPU_32 1 /* * For ARM syscalls, we encode the syscall number into the instruction. */ #define SWI_SYS_SIGRETURN (0xef000000|(TARGET_NR_sigreturn + ARM_SYSCALL_BASE)) #define SWI_SYS_RT_SIGRETURN (0xef000000|(TARGET_NR_rt_sigreturn + ARM_SYSCALL_BASE)) /* * For Thumb syscalls, we pass the syscall number via r7. We therefore * need two 16-bit instructions. */ #define SWI_THUMB_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_sigreturn)) #define SWI_THUMB_RT_SIGRETURN (0xdf00 << 16 | 0x2700 | (TARGET_NR_rt_sigreturn)) static const abi_ulong retcodes[4] = { SWI_SYS_SIGRETURN, SWI_THUMB_SIGRETURN, SWI_SYS_RT_SIGRETURN, SWI_THUMB_RT_SIGRETURN }; #define __put_user_error(x,p,e) __put_user(x, p) #define __get_user_error(x,p,e) __get_user(x, p) static inline int valid_user_regs(CPUState *regs) { return 1; } static int setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ CPUState *env, abi_ulong mask) { int err = 0; __put_user_error(env->regs[0], &sc->arm_r0, err); __put_user_error(env->regs[1], &sc->arm_r1, err); __put_user_error(env->regs[2], &sc->arm_r2, err); __put_user_error(env->regs[3], &sc->arm_r3, err); __put_user_error(env->regs[4], &sc->arm_r4, err); __put_user_error(env->regs[5], &sc->arm_r5, err); __put_user_error(env->regs[6], &sc->arm_r6, err); __put_user_error(env->regs[7], &sc->arm_r7, err); __put_user_error(env->regs[8], &sc->arm_r8, err); __put_user_error(env->regs[9], &sc->arm_r9, err); __put_user_error(env->regs[10], &sc->arm_r10, err); __put_user_error(env->regs[11], &sc->arm_fp, err); __put_user_error(env->regs[12], &sc->arm_ip, err); __put_user_error(env->regs[13], &sc->arm_sp, err); __put_user_error(env->regs[14], &sc->arm_lr, err); __put_user_error(env->regs[15], &sc->arm_pc, err); #ifdef TARGET_CONFIG_CPU_32 __put_user_error(cpsr_read(env), &sc->arm_cpsr, err); #endif __put_user_error(/* current->thread.trap_no */ 0, &sc->trap_no, err); __put_user_error(/* current->thread.error_code */ 0, &sc->error_code, err); __put_user_error(/* current->thread.address */ 0, &sc->fault_address, err); __put_user_error(mask, &sc->oldmask, err); return err; } static inline abi_ulong get_sigframe(struct emulated_sigaction *ka, CPUState *regs, int framesize) { unsigned long sp = regs->regs[13]; /* * This is the X/Open sanctioned signal stack switching. */ if ((ka->sa.sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; /* * ATPCS B01 mandates 8-byte alignment */ return (sp - framesize) & ~7; } static int setup_return(CPUState *env, struct emulated_sigaction *ka, abi_ulong *rc, abi_ulong frame_addr, int usig, abi_ulong rc_addr) { abi_ulong handler = ka->sa._sa_handler; abi_ulong retcode; int thumb = 0; #if defined(TARGET_CONFIG_CPU_32) #if 0 abi_ulong cpsr = env->cpsr; /* * Maybe we need to deliver a 32-bit signal to a 26-bit task. */ if (ka->sa.sa_flags & SA_THIRTYTWO) cpsr = (cpsr & ~MODE_MASK) | USR_MODE; #ifdef CONFIG_ARM_THUMB if (elf_hwcap & HWCAP_THUMB) { /* * The LSB of the handler determines if we're going to * be using THUMB or ARM mode for this signal handler. */ thumb = handler & 1; if (thumb) cpsr |= T_BIT; else cpsr &= ~T_BIT; } #endif /* CONFIG_ARM_THUMB */ #endif /* 0 */ #endif /* TARGET_CONFIG_CPU_32 */ if (ka->sa.sa_flags & TARGET_SA_RESTORER) { retcode = ka->sa.sa_restorer; } else { unsigned int idx = thumb; if (ka->sa.sa_flags & TARGET_SA_SIGINFO) idx += 2; if (__put_user(retcodes[idx], rc)) return 1; #if 0 flush_icache_range((abi_ulong)rc, (abi_ulong)(rc + 1)); #endif retcode = rc_addr + thumb; } env->regs[0] = usig; env->regs[13] = frame_addr; env->regs[14] = retcode; env->regs[15] = handler & (thumb ? ~1 : ~3); #if 0 #ifdef TARGET_CONFIG_CPU_32 env->cpsr = cpsr; #endif #endif return 0; } /* compare linux/arch/arm/kernel/signal.c:setup_frame() */ static void setup_frame(int usig, struct emulated_sigaction *ka, target_sigset_t *set, CPUState *regs) { struct sigframe *frame; abi_ulong frame_addr = get_sigframe(ka, regs, sizeof(*frame)); int i, err = 0; if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) return; err |= setup_sigcontext(&frame->sc, /*&frame->fpstate,*/ regs, set->sig[0]); for(i = 1; i < TARGET_NSIG_WORDS; i++) { if (__put_user(set->sig[i], &frame->extramask[i - 1])) goto end; } if (err == 0) err = setup_return(regs, ka, &frame->retcode, frame_addr, usig, frame_addr + offsetof(struct sigframe, retcode)); end: unlock_user_struct(frame, frame_addr, 1); // return err; } /* compare linux/arch/arm/kernel/signal.c:setup_rt_frame() */ static void setup_rt_frame(int usig, struct emulated_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { struct rt_sigframe *frame; abi_ulong frame_addr = get_sigframe(ka, env, sizeof(*frame)); struct target_sigaltstack stack; int i, err = 0; abi_ulong info_addr, uc_addr; if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) return /* 1 */; info_addr = frame_addr + offsetof(struct rt_sigframe, info); __put_user_error(info_addr, &frame->pinfo, err); uc_addr = frame_addr + offsetof(struct rt_sigframe, uc); __put_user_error(uc_addr, &frame->puc, err); err |= copy_siginfo_to_user(&frame->info, info); /* Clear all the bits of the ucontext we don't use. */ memset(&frame->uc, 0, offsetof(struct target_ucontext, tuc_mcontext)); memset(&stack, 0, sizeof(stack)); __put_user(target_sigaltstack_used.ss_sp, &stack.ss_sp); __put_user(target_sigaltstack_used.ss_size, &stack.ss_size); __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &stack.ss_flags); memcpy(&frame->uc.tuc_stack, &stack, sizeof(stack)); err |= setup_sigcontext(&frame->uc.tuc_mcontext, /*&frame->fpstate,*/ env, set->sig[0]); for(i = 0; i < TARGET_NSIG_WORDS; i++) { if (__put_user(set->sig[i], &frame->uc.tuc_sigmask.sig[i])) goto end; } if (err == 0) err = setup_return(env, ka, &frame->retcode, frame_addr, usig, frame_addr + offsetof(struct rt_sigframe, retcode)); if (err == 0) { /* * For realtime signals we must also set the second and third * arguments for the signal handler. * -- Peter Maydell <pmaydell@chiark.greenend.org.uk> 2000-12-06 */ env->regs[1] = info_addr; env->regs[2] = uc_addr; } end: unlock_user_struct(frame, frame_addr, 1); // return err; } static int restore_sigcontext(CPUState *env, struct target_sigcontext *sc) { int err = 0; uint32_t cpsr; __get_user_error(env->regs[0], &sc->arm_r0, err); __get_user_error(env->regs[1], &sc->arm_r1, err); __get_user_error(env->regs[2], &sc->arm_r2, err); __get_user_error(env->regs[3], &sc->arm_r3, err); __get_user_error(env->regs[4], &sc->arm_r4, err); __get_user_error(env->regs[5], &sc->arm_r5, err); __get_user_error(env->regs[6], &sc->arm_r6, err); __get_user_error(env->regs[7], &sc->arm_r7, err); __get_user_error(env->regs[8], &sc->arm_r8, err); __get_user_error(env->regs[9], &sc->arm_r9, err); __get_user_error(env->regs[10], &sc->arm_r10, err); __get_user_error(env->regs[11], &sc->arm_fp, err); __get_user_error(env->regs[12], &sc->arm_ip, err); __get_user_error(env->regs[13], &sc->arm_sp, err); __get_user_error(env->regs[14], &sc->arm_lr, err); __get_user_error(env->regs[15], &sc->arm_pc, err); #ifdef TARGET_CONFIG_CPU_32 __get_user_error(cpsr, &sc->arm_cpsr, err); cpsr_write(env, cpsr, 0xffffffff); #endif err |= !valid_user_regs(env); return err; } long do_sigreturn(CPUState *env) { abi_ulong frame_addr; struct sigframe *frame; target_sigset_t set; sigset_t host_set; int i; /* * Since we stacked the signal on a 64-bit boundary, * then 'sp' should be word aligned here. If it's * not, then the user is trying to mess with us. */ if (env->regs[13] & 7) goto badframe; frame_addr = env->regs[13]; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; if (__get_user(set.sig[0], &frame->sc.oldmask)) goto badframe; for(i = 1; i < TARGET_NSIG_WORDS; i++) { if (__get_user(set.sig[i], &frame->extramask[i - 1])) goto badframe; } target_to_host_sigset_internal(&host_set, &set); sigprocmask(SIG_SETMASK, &host_set, NULL); if (restore_sigcontext(env, &frame->sc)) goto badframe; #if 0 /* Send SIGTRAP if we're single-stepping */ if (ptrace_cancel_bpt(current)) send_sig(SIGTRAP, current, 1); #endif unlock_user_struct(frame, frame_addr, 0); return env->regs[0]; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(SIGSEGV /* , current */); return 0; } long do_rt_sigreturn(CPUState *env) { abi_ulong frame_addr; struct rt_sigframe *frame; sigset_t host_set; /* * Since we stacked the signal on a 64-bit boundary, * then 'sp' should be word aligned here. If it's * not, then the user is trying to mess with us. */ if (env->regs[13] & 7) goto badframe; frame_addr = env->regs[13]; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; target_to_host_sigset(&host_set, &frame->uc.tuc_sigmask); sigprocmask(SIG_SETMASK, &host_set, NULL); if (restore_sigcontext(env, &frame->uc.tuc_mcontext)) goto badframe; if (do_sigaltstack(frame_addr + offsetof(struct rt_sigframe, uc.tuc_stack), 0, get_sp_from_cpustate(env)) == -EFAULT) goto badframe; #if 0 /* Send SIGTRAP if we're single-stepping */ if (ptrace_cancel_bpt(current)) send_sig(SIGTRAP, current, 1); #endif unlock_user_struct(frame, frame_addr, 0); return env->regs[0]; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(SIGSEGV /* , current */); return 0; } #elif defined(TARGET_SPARC) #define __SUNOS_MAXWIN 31 /* This is what SunOS does, so shall I. */ struct target_sigcontext { abi_ulong sigc_onstack; /* state to restore */ abi_ulong sigc_mask; /* sigmask to restore */ abi_ulong sigc_sp; /* stack pointer */ abi_ulong sigc_pc; /* program counter */ abi_ulong sigc_npc; /* next program counter */ abi_ulong sigc_psr; /* for condition codes etc */ abi_ulong sigc_g1; /* User uses these two registers */ abi_ulong sigc_o0; /* within the trampoline code. */ /* Now comes information regarding the users window set * at the time of the signal. */ abi_ulong sigc_oswins; /* outstanding windows */ /* stack ptrs for each regwin buf */ char *sigc_spbuf[__SUNOS_MAXWIN]; /* Windows to restore after signal */ struct { abi_ulong locals[8]; abi_ulong ins[8]; } sigc_wbuf[__SUNOS_MAXWIN]; }; /* A Sparc stack frame */ struct sparc_stackf { abi_ulong locals[8]; abi_ulong ins[6]; struct sparc_stackf *fp; abi_ulong callers_pc; char *structptr; abi_ulong xargs[6]; abi_ulong xxargs[1]; }; typedef struct { struct { abi_ulong psr; abi_ulong pc; abi_ulong npc; abi_ulong y; abi_ulong u_regs[16]; /* globals and ins */ } si_regs; int si_mask; } __siginfo_t; typedef struct { unsigned long si_float_regs [32]; unsigned long si_fsr; unsigned long si_fpqdepth; struct { unsigned long *insn_addr; unsigned long insn; } si_fpqueue [16]; } qemu_siginfo_fpu_t; struct target_signal_frame { struct sparc_stackf ss; __siginfo_t info; abi_ulong fpu_save; abi_ulong insns[2] __attribute__ ((aligned (8))); abi_ulong extramask[TARGET_NSIG_WORDS - 1]; abi_ulong extra_size; /* Should be 0 */ qemu_siginfo_fpu_t fpu_state; }; struct target_rt_signal_frame { struct sparc_stackf ss; siginfo_t info; abi_ulong regs[20]; sigset_t mask; abi_ulong fpu_save; unsigned int insns[2]; stack_t stack; unsigned int extra_size; /* Should be 0 */ qemu_siginfo_fpu_t fpu_state; }; #define UREG_O0 16 #define UREG_O6 22 #define UREG_I0 0 #define UREG_I1 1 #define UREG_I2 2 #define UREG_I3 3 #define UREG_I4 4 #define UREG_I5 5 #define UREG_I6 6 #define UREG_I7 7 #define UREG_L0 8 #define UREG_FP UREG_I6 #define UREG_SP UREG_O6 static inline abi_ulong get_sigframe(struct emulated_sigaction *sa, CPUState *env, unsigned long framesize) { abi_ulong sp; sp = env->regwptr[UREG_FP]; /* This is the X/Open sanctioned signal stack switching. */ if (sa->sa.sa_flags & TARGET_SA_ONSTACK) { if (!on_sig_stack(sp) && !((target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size) & 7)) sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } return sp - framesize; } static int setup___siginfo(__siginfo_t *si, CPUState *env, abi_ulong mask) { int err = 0, i; err |= __put_user(env->psr, &si->si_regs.psr); err |= __put_user(env->pc, &si->si_regs.pc); err |= __put_user(env->npc, &si->si_regs.npc); err |= __put_user(env->y, &si->si_regs.y); for (i=0; i < 8; i++) { err |= __put_user(env->gregs[i], &si->si_regs.u_regs[i]); } for (i=0; i < 8; i++) { err |= __put_user(env->regwptr[UREG_I0 + i], &si->si_regs.u_regs[i+8]); } err |= __put_user(mask, &si->si_mask); return err; } #if 0 static int setup_sigcontext(struct target_sigcontext *sc, /*struct _fpstate *fpstate,*/ CPUState *env, unsigned long mask) { int err = 0; err |= __put_user(mask, &sc->sigc_mask); err |= __put_user(env->regwptr[UREG_SP], &sc->sigc_sp); err |= __put_user(env->pc, &sc->sigc_pc); err |= __put_user(env->npc, &sc->sigc_npc); err |= __put_user(env->psr, &sc->sigc_psr); err |= __put_user(env->gregs[1], &sc->sigc_g1); err |= __put_user(env->regwptr[UREG_O0], &sc->sigc_o0); return err; } #endif #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7))) static void setup_frame(int sig, struct emulated_sigaction *ka, target_sigset_t *set, CPUState *env) { abi_ulong sf_addr; struct target_signal_frame *sf; int sigframe_size, err, i; /* 1. Make sure everything is clean */ //synchronize_user_stack(); sigframe_size = NF_ALIGNEDSZ; sf_addr = get_sigframe(ka, env, sigframe_size); sf = lock_user(VERIFY_WRITE, sf_addr, sizeof(struct target_signal_frame), 0); if (!sf) goto sigsegv; //fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]); #if 0 if (invalid_frame_pointer(sf, sigframe_size)) goto sigill_and_return; #endif /* 2. Save the current process state */ err = setup___siginfo(&sf->info, env, set->sig[0]); err |= __put_user(0, &sf->extra_size); //err |= save_fpu_state(regs, &sf->fpu_state); //err |= __put_user(&sf->fpu_state, &sf->fpu_save); err |= __put_user(set->sig[0], &sf->info.si_mask); for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { err |= __put_user(set->sig[i + 1], &sf->extramask[i]); } for (i = 0; i < 8; i++) { err |= __put_user(env->regwptr[i + UREG_L0], &sf->ss.locals[i]); } for (i = 0; i < 8; i++) { err |= __put_user(env->regwptr[i + UREG_I0], &sf->ss.ins[i]); } if (err) goto sigsegv; /* 3. signal handler back-trampoline and parameters */ env->regwptr[UREG_FP] = sf_addr; env->regwptr[UREG_I0] = sig; env->regwptr[UREG_I1] = sf_addr + offsetof(struct target_signal_frame, info); env->regwptr[UREG_I2] = sf_addr + offsetof(struct target_signal_frame, info); /* 4. signal handler */ env->pc = ka->sa._sa_handler; env->npc = (env->pc + 4); /* 5. return to kernel instructions */ if (ka->sa.sa_restorer) env->regwptr[UREG_I7] = ka->sa.sa_restorer; else { uint32_t val32; env->regwptr[UREG_I7] = sf_addr + offsetof(struct target_signal_frame, insns) - 2 * 4; /* mov __NR_sigreturn, %g1 */ val32 = 0x821020d8; err |= __put_user(val32, &sf->insns[0]); /* t 0x10 */ val32 = 0x91d02010; err |= __put_user(val32, &sf->insns[1]); if (err) goto sigsegv; /* Flush instruction space. */ //flush_sig_insns(current->mm, (unsigned long) &(sf->insns[0])); // tb_flush(env); } unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); return; #if 0 sigill_and_return: force_sig(TARGET_SIGILL); #endif sigsegv: //fprintf(stderr, "force_sig\n"); unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); force_sig(TARGET_SIGSEGV); } static inline int restore_fpu_state(CPUState *env, qemu_siginfo_fpu_t *fpu) { int err; #if 0 #ifdef CONFIG_SMP if (current->flags & PF_USEDFPU) regs->psr &= ~PSR_EF; #else if (current == last_task_used_math) { last_task_used_math = 0; regs->psr &= ~PSR_EF; } #endif current->used_math = 1; current->flags &= ~PF_USEDFPU; #endif #if 0 if (verify_area (VERIFY_READ, fpu, sizeof(*fpu))) return -EFAULT; #endif #if 0 /* XXX: incorrect */ err = __copy_from_user(&env->fpr[0], &fpu->si_float_regs[0], (sizeof(unsigned long) * 32)); #endif err |= __get_user(env->fsr, &fpu->si_fsr); #if 0 err |= __get_user(current->thread.fpqdepth, &fpu->si_fpqdepth); if (current->thread.fpqdepth != 0) err |= __copy_from_user(¤t->thread.fpqueue[0], &fpu->si_fpqueue[0], ((sizeof(unsigned long) + (sizeof(unsigned long *)))*16)); #endif return err; } static void setup_rt_frame(int sig, struct emulated_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUState *env) { abi_ulong sf_addr; struct target_signal_frame *sf; uint32_t up_psr, pc, npc; target_sigset_t set; sigset_t host_set; abi_ulong fpu_save_addr; int err, i; sf_addr = env->regwptr[UREG_FP]; if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) goto segv_and_exit; #if 0 fprintf(stderr, "sigreturn\n"); fprintf(stderr, "sf: %x pc %x fp %x sp %x\n", sf, env->pc, env->regwptr[UREG_FP], env->regwptr[UREG_SP]); #endif //cpu_dump_state(env, stderr, fprintf, 0); /* 1. Make sure we are not getting garbage from the user */ if (sf_addr & 3) goto segv_and_exit; err = __get_user(pc, &sf->info.si_regs.pc); err |= __get_user(npc, &sf->info.si_regs.npc); if ((pc | npc) & 3) goto segv_and_exit; /* 2. Restore the state */ err |= __get_user(up_psr, &sf->info.si_regs.psr); /* User can only change condition codes and FPU enabling in %psr. */ env->psr = (up_psr & (PSR_ICC /* | PSR_EF */)) | (env->psr & ~(PSR_ICC /* | PSR_EF */)); env->pc = pc; env->npc = npc; err |= __get_user(env->y, &sf->info.si_regs.y); for (i=0; i < 8; i++) { err |= __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]); } for (i=0; i < 8; i++) { err |= __get_user(env->regwptr[i + UREG_I0], &sf->info.si_regs.u_regs[i+8]); } err |= __get_user(fpu_save_addr, &sf->fpu_save); //if (fpu_save) // err |= restore_fpu_state(env, fpu_save); /* This is pretty much atomic, no amount locking would prevent * the races which exist anyways. */ err |= __get_user(set.sig[0], &sf->info.si_mask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { err |= (__get_user(set.sig[i], &sf->extramask[i - 1])); } target_to_host_sigset_internal(&host_set, &set); sigprocmask(SIG_SETMASK, &host_set, NULL); if (err) goto segv_and_exit; unlock_user_struct(sf, sf_addr, 0); return env->regwptr[0]; segv_and_exit: unlock_user_struct(sf, sf_addr, 0); force_sig(TARGET_SIGSEGV); } long do_rt_sigreturn(CPUState *env) { fprintf(stderr, "do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) #define MC_TSTATE 0 #define MC_PC 1 #define MC_NPC 2 #define MC_Y 3 #define MC_G1 4 #define MC_G2 5 #define MC_G3 6 #define MC_G4 7 #define MC_G5 8 #define MC_G6 9 #define MC_G7 10 #define MC_O0 11 #define MC_O1 12 #define MC_O2 13 #define MC_O3 14 #define MC_O4 15 #define MC_O5 16 #define MC_O6 17 #define MC_O7 18 #define MC_NGREG 19 typedef abi_ulong target_mc_greg_t; typedef target_mc_greg_t target_mc_gregset_t[MC_NGREG]; struct target_mc_fq { abi_ulong *mcfq_addr; uint32_t mcfq_insn; }; struct target_mc_fpu { union { uint32_t sregs[32]; uint64_t dregs[32]; //uint128_t qregs[16]; } mcfpu_fregs; abi_ulong mcfpu_fsr; abi_ulong mcfpu_fprs; abi_ulong mcfpu_gsr; struct target_mc_fq *mcfpu_fq; unsigned char mcfpu_qcnt; unsigned char mcfpu_qentsz; unsigned char mcfpu_enab; }; typedef struct target_mc_fpu target_mc_fpu_t; typedef struct { target_mc_gregset_t mc_gregs; target_mc_greg_t mc_fp; target_mc_greg_t mc_i7; target_mc_fpu_t mc_fpregs; } target_mcontext_t; struct target_ucontext { struct target_ucontext *uc_link; abi_ulong uc_flags; target_sigset_t uc_sigmask; target_mcontext_t uc_mcontext; }; /* A V9 register window */ struct target_reg_window { abi_ulong locals[8]; abi_ulong ins[8]; }; #define TARGET_STACK_BIAS 2047 /* {set, get}context() needed for 64-bit SparcLinux userland. */ void sparc64_set_context(CPUSPARCState *env) { abi_ulong ucp_addr; struct target_ucontext *ucp; target_mc_gregset_t *grp; abi_ulong pc, npc, tstate; abi_ulong fp, i7, w_addr; unsigned char fenab; int err; unsigned int i; ucp_addr = env->regwptr[UREG_I0]; if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) goto do_sigsegv; grp = &ucp->uc_mcontext.mc_gregs; err = __get_user(pc, &((*grp)[MC_PC])); err |= __get_user(npc, &((*grp)[MC_NPC])); if (err || ((pc | npc) & 3)) goto do_sigsegv; if (env->regwptr[UREG_I1]) { target_sigset_t target_set; sigset_t set; if (TARGET_NSIG_WORDS == 1) { if (__get_user(target_set.sig[0], &ucp->uc_sigmask.sig[0])) goto do_sigsegv; } else { abi_ulong *src, *dst; src = ucp->uc_sigmask.sig; dst = target_set.sig; for (i = 0; i < sizeof(target_sigset_t) / sizeof(abi_ulong); i++, dst++, src++) err |= __get_user(*dst, src); if (err) goto do_sigsegv; } target_to_host_sigset_internal(&set, &target_set); sigprocmask(SIG_SETMASK, &set, NULL); } env->pc = pc; env->npc = npc; err |= __get_user(env->y, &((*grp)[MC_Y])); err |= __get_user(tstate, &((*grp)[MC_TSTATE])); env->asi = (tstate >> 24) & 0xff; PUT_CCR(env, tstate >> 32); PUT_CWP64(env, tstate & 0x1f); err |= __get_user(env->gregs[1], (&(*grp)[MC_G1])); err |= __get_user(env->gregs[2], (&(*grp)[MC_G2])); err |= __get_user(env->gregs[3], (&(*grp)[MC_G3])); err |= __get_user(env->gregs[4], (&(*grp)[MC_G4])); err |= __get_user(env->gregs[5], (&(*grp)[MC_G5])); err |= __get_user(env->gregs[6], (&(*grp)[MC_G6])); err |= __get_user(env->gregs[7], (&(*grp)[MC_G7])); err |= __get_user(env->regwptr[UREG_I0], (&(*grp)[MC_O0])); err |= __get_user(env->regwptr[UREG_I1], (&(*grp)[MC_O1])); err |= __get_user(env->regwptr[UREG_I2], (&(*grp)[MC_O2])); err |= __get_user(env->regwptr[UREG_I3], (&(*grp)[MC_O3])); err |= __get_user(env->regwptr[UREG_I4], (&(*grp)[MC_O4])); err |= __get_user(env->regwptr[UREG_I5], (&(*grp)[MC_O5])); err |= __get_user(env->regwptr[UREG_I6], (&(*grp)[MC_O6])); err |= __get_user(env->regwptr[UREG_I7], (&(*grp)[MC_O7])); err |= __get_user(fp, &(ucp->uc_mcontext.mc_fp)); err |= __get_user(i7, &(ucp->uc_mcontext.mc_i7)); w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6]; if (put_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), abi_ulong) != 0) goto do_sigsegv; if (put_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), abi_ulong) != 0) goto do_sigsegv; err |= __get_user(fenab, &(ucp->uc_mcontext.mc_fpregs.mcfpu_enab)); err |= __get_user(env->fprs, &(ucp->uc_mcontext.mc_fpregs.mcfpu_fprs)); { uint32_t *src, *dst; src = ucp->uc_mcontext.mc_fpregs.mcfpu_fregs.sregs; dst = env->fpr; /* XXX: check that the CPU storage is the same as user context */ for (i = 0; i < 64; i++, dst++, src++) err |= __get_user(*dst, src); } err |= __get_user(env->fsr, &(ucp->uc_mcontext.mc_fpregs.mcfpu_fsr)); err |= __get_user(env->gsr, &(ucp->uc_mcontext.mc_fpregs.mcfpu_gsr)); if (err) goto do_sigsegv; unlock_user_struct(ucp, ucp_addr, 0); return; do_sigsegv: unlock_user_struct(ucp, ucp_addr, 0); force_sig(SIGSEGV); } void sparc64_get_context(CPUSPARCState *env) { abi_ulong ucp_addr; struct target_ucontext *ucp; target_mc_gregset_t *grp; target_mcontext_t *mcp; abi_ulong fp, i7, w_addr; int err; unsigned int i; target_sigset_t target_set; sigset_t set; ucp_addr = env->regwptr[UREG_I0]; if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) goto do_sigsegv; mcp = &ucp->uc_mcontext; grp = &mcp->mc_gregs; /* Skip over the trap instruction, first. */ env->pc = env->npc; env->npc += 4; err = 0; sigprocmask(0, NULL, &set); host_to_target_sigset_internal(&target_set, &set); if (TARGET_NSIG_WORDS == 1) { err |= __put_user(target_set.sig[0], (abi_ulong *)&ucp->uc_sigmask); } else { abi_ulong *src, *dst; src = target_set.sig; dst = ucp->uc_sigmask.sig; for (i = 0; i < sizeof(target_sigset_t) / sizeof(abi_ulong); i++, dst++, src++) err |= __put_user(*src, dst); if (err) goto do_sigsegv; } /* XXX: tstate must be saved properly */ // err |= __put_user(env->tstate, &((*grp)[MC_TSTATE])); err |= __put_user(env->pc, &((*grp)[MC_PC])); err |= __put_user(env->npc, &((*grp)[MC_NPC])); err |= __put_user(env->y, &((*grp)[MC_Y])); err |= __put_user(env->gregs[1], &((*grp)[MC_G1])); err |= __put_user(env->gregs[2], &((*grp)[MC_G2])); err |= __put_user(env->gregs[3], &((*grp)[MC_G3])); err |= __put_user(env->gregs[4], &((*grp)[MC_G4])); err |= __put_user(env->gregs[5], &((*grp)[MC_G5])); err |= __put_user(env->gregs[6], &((*grp)[MC_G6])); err |= __put_user(env->gregs[7], &((*grp)[MC_G7])); err |= __put_user(env->regwptr[UREG_I0], &((*grp)[MC_O0])); err |= __put_user(env->regwptr[UREG_I1], &((*grp)[MC_O1])); err |= __put_user(env->regwptr[UREG_I2], &((*grp)[MC_O2])); err |= __put_user(env->regwptr[UREG_I3], &((*grp)[MC_O3])); err |= __put_user(env->regwptr[UREG_I4], &((*grp)[MC_O4])); err |= __put_user(env->regwptr[UREG_I5], &((*grp)[MC_O5])); err |= __put_user(env->regwptr[UREG_I6], &((*grp)[MC_O6])); err |= __put_user(env->regwptr[UREG_I7], &((*grp)[MC_O7])); w_addr = TARGET_STACK_BIAS+env->regwptr[UREG_I6]; fp = i7 = 0; if (get_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), abi_ulong) != 0) goto do_sigsegv; if (get_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), abi_ulong) != 0) goto do_sigsegv; err |= __put_user(fp, &(mcp->mc_fp)); err |= __put_user(i7, &(mcp->mc_i7)); { uint32_t *src, *dst; src = env->fpr; dst = ucp->uc_mcontext.mc_fpregs.mcfpu_fregs.sregs; /* XXX: check that the CPU storage is the same as user context */ for (i = 0; i < 64; i++, dst++, src++) err |= __put_user(*src, dst); } err |= __put_user(env->fsr, &(mcp->mc_fpregs.mcfpu_fsr)); err |= __put_user(env->gsr, &(mcp->mc_fpregs.mcfpu_gsr)); err |= __put_user(env->fprs, &(mcp->mc_fpregs.mcfpu_fprs)); if (err) goto do_sigsegv; unlock_user_struct(ucp, ucp_addr, 1); return; do_sigsegv: unlock_user_struct(ucp, ucp_addr, 1); force_sig(SIGSEGV); } #endif #elif defined(TARGET_ABI_MIPSN64) # warning signal handling not implemented static void setup_frame(int sig, struct emulated_sigaction *ka, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_frame: not implemented\n"); } static void setup_rt_frame(int sig, struct emulated_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUState *env) { fprintf(stderr, "do_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } long do_rt_sigreturn(CPUState *env) { fprintf(stderr, "do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #elif defined(TARGET_ABI_MIPSN32) # warning signal handling not implemented static void setup_frame(int sig, struct emulated_sigaction *ka, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_frame: not implemented\n"); } static void setup_rt_frame(int sig, struct emulated_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUState *env) { fprintf(stderr, "do_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } long do_rt_sigreturn(CPUState *env) { fprintf(stderr, "do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #elif defined(TARGET_ABI_MIPSO32) struct target_sigcontext { uint32_t sc_regmask; /* Unused */ uint32_t sc_status; uint64_t sc_pc; uint64_t sc_regs[32]; uint64_t sc_fpregs[32]; uint32_t sc_ownedfp; /* Unused */ uint32_t sc_fpc_csr; uint32_t sc_fpc_eir; /* Unused */ uint32_t sc_used_math; uint32_t sc_dsp; /* dsp status, was sc_ssflags */ uint64_t sc_mdhi; uint64_t sc_mdlo; target_ulong sc_hi1; /* Was sc_cause */ target_ulong sc_lo1; /* Was sc_badvaddr */ target_ulong sc_hi2; /* Was sc_sigset[4] */ target_ulong sc_lo2; target_ulong sc_hi3; target_ulong sc_lo3; }; struct sigframe { uint32_t sf_ass[4]; /* argument save space for o32 */ uint32_t sf_code[2]; /* signal trampoline */ struct target_sigcontext sf_sc; target_sigset_t sf_mask; }; /* Install trampoline to jump back from signal handler */ static inline int install_sigtramp(unsigned int *tramp, unsigned int syscall) { int err; /* * Set up the return code ... * * li v0, __NR__foo_sigreturn * syscall */ err = __put_user(0x24020000 + syscall, tramp + 0); err |= __put_user(0x0000000c , tramp + 1); /* flush_cache_sigtramp((unsigned long) tramp); */ return err; } static inline int setup_sigcontext(CPUState *regs, struct target_sigcontext *sc) { int err = 0; err |= __put_user(regs->PC[regs->current_tc], &sc->sc_pc); #define save_gp_reg(i) do { \ err |= __put_user(regs->gpr[i][regs->current_tc], &sc->sc_regs[i]); \ } while(0) __put_user(0, &sc->sc_regs[0]); save_gp_reg(1); save_gp_reg(2); save_gp_reg(3); save_gp_reg(4); save_gp_reg(5); save_gp_reg(6); save_gp_reg(7); save_gp_reg(8); save_gp_reg(9); save_gp_reg(10); save_gp_reg(11); save_gp_reg(12); save_gp_reg(13); save_gp_reg(14); save_gp_reg(15); save_gp_reg(16); save_gp_reg(17); save_gp_reg(18); save_gp_reg(19); save_gp_reg(20); save_gp_reg(21); save_gp_reg(22); save_gp_reg(23); save_gp_reg(24); save_gp_reg(25); save_gp_reg(26); save_gp_reg(27); save_gp_reg(28); save_gp_reg(29); save_gp_reg(30); save_gp_reg(31); #undef save_gp_reg err |= __put_user(regs->HI[0][regs->current_tc], &sc->sc_mdhi); err |= __put_user(regs->LO[0][regs->current_tc], &sc->sc_mdlo); /* Not used yet, but might be useful if we ever have DSP suppport */ #if 0 if (cpu_has_dsp) { err |= __put_user(mfhi1(), &sc->sc_hi1); err |= __put_user(mflo1(), &sc->sc_lo1); err |= __put_user(mfhi2(), &sc->sc_hi2); err |= __put_user(mflo2(), &sc->sc_lo2); err |= __put_user(mfhi3(), &sc->sc_hi3); err |= __put_user(mflo3(), &sc->sc_lo3); err |= __put_user(rddsp(DSP_MASK), &sc->sc_dsp); } /* same with 64 bit */ #ifdef CONFIG_64BIT err |= __put_user(regs->hi, &sc->sc_hi[0]); err |= __put_user(regs->lo, &sc->sc_lo[0]); if (cpu_has_dsp) { err |= __put_user(mfhi1(), &sc->sc_hi[1]); err |= __put_user(mflo1(), &sc->sc_lo[1]); err |= __put_user(mfhi2(), &sc->sc_hi[2]); err |= __put_user(mflo2(), &sc->sc_lo[2]); err |= __put_user(mfhi3(), &sc->sc_hi[3]); err |= __put_user(mflo3(), &sc->sc_lo[3]); err |= __put_user(rddsp(DSP_MASK), &sc->sc_dsp); } #endif #endif #if 0 err |= __put_user(!!used_math(), &sc->sc_used_math); if (!used_math()) goto out; /* * Save FPU state to signal context. Signal handler will "inherit" * current FPU state. */ preempt_disable(); if (!is_fpu_owner()) { own_fpu(); restore_fp(current); } err |= save_fp_context(sc); preempt_enable(); out: #endif return err; } static inline int restore_sigcontext(CPUState *regs, struct target_sigcontext *sc) { int err = 0; err |= __get_user(regs->CP0_EPC, &sc->sc_pc); err |= __get_user(regs->HI[0][regs->current_tc], &sc->sc_mdhi); err |= __get_user(regs->LO[0][regs->current_tc], &sc->sc_mdlo); #define restore_gp_reg(i) do { \ err |= __get_user(regs->gpr[i][regs->current_tc], &sc->sc_regs[i]); \ } while(0) restore_gp_reg( 1); restore_gp_reg( 2); restore_gp_reg( 3); restore_gp_reg( 4); restore_gp_reg( 5); restore_gp_reg( 6); restore_gp_reg( 7); restore_gp_reg( 8); restore_gp_reg( 9); restore_gp_reg(10); restore_gp_reg(11); restore_gp_reg(12); restore_gp_reg(13); restore_gp_reg(14); restore_gp_reg(15); restore_gp_reg(16); restore_gp_reg(17); restore_gp_reg(18); restore_gp_reg(19); restore_gp_reg(20); restore_gp_reg(21); restore_gp_reg(22); restore_gp_reg(23); restore_gp_reg(24); restore_gp_reg(25); restore_gp_reg(26); restore_gp_reg(27); restore_gp_reg(28); restore_gp_reg(29); restore_gp_reg(30); restore_gp_reg(31); #undef restore_gp_reg #if 0 if (cpu_has_dsp) { err |= __get_user(treg, &sc->sc_hi1); mthi1(treg); err |= __get_user(treg, &sc->sc_lo1); mtlo1(treg); err |= __get_user(treg, &sc->sc_hi2); mthi2(treg); err |= __get_user(treg, &sc->sc_lo2); mtlo2(treg); err |= __get_user(treg, &sc->sc_hi3); mthi3(treg); err |= __get_user(treg, &sc->sc_lo3); mtlo3(treg); err |= __get_user(treg, &sc->sc_dsp); wrdsp(treg, DSP_MASK); } #ifdef CONFIG_64BIT err |= __get_user(regs->hi, &sc->sc_hi[0]); err |= __get_user(regs->lo, &sc->sc_lo[0]); if (cpu_has_dsp) { err |= __get_user(treg, &sc->sc_hi[1]); mthi1(treg); err |= __get_user(treg, &sc->sc_lo[1]); mthi1(treg); err |= __get_user(treg, &sc->sc_hi[2]); mthi2(treg); err |= __get_user(treg, &sc->sc_lo[2]); mthi2(treg); err |= __get_user(treg, &sc->sc_hi[3]); mthi3(treg); err |= __get_user(treg, &sc->sc_lo[3]); mthi3(treg); err |= __get_user(treg, &sc->sc_dsp); wrdsp(treg, DSP_MASK); } #endif err |= __get_user(used_math, &sc->sc_used_math); conditional_used_math(used_math); preempt_disable(); if (used_math()) { /* restore fpu context if we have used it before */ own_fpu(); err |= restore_fp_context(sc); } else { /* signal handler may have used FPU. Give it up. */ lose_fpu(); } preempt_enable(); #endif return err; } /* * Determine which stack to use.. */ static inline abi_ulong get_sigframe(struct emulated_sigaction *ka, CPUState *regs, size_t frame_size) { unsigned long sp; /* Default to using normal stack */ sp = regs->gpr[29][regs->current_tc]; /* * FPU emulator may have it's own trampoline active just * above the user stack, 16-bytes before the next lowest * 16 byte boundary. Try to avoid trashing it. */ sp -= 32; /* This is the X/Open sanctioned signal stack switching. */ if ((ka->sa.sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags (sp) == 0)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } return (sp - frame_size) & ~7; } /* compare linux/arch/mips/kernel/signal.c:setup_frame() */ static void setup_frame(int sig, struct emulated_sigaction * ka, target_sigset_t *set, CPUState *regs) { struct sigframe *frame; abi_ulong frame_addr; int i; frame_addr = get_sigframe(ka, regs, sizeof(*frame)); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; install_sigtramp(frame->sf_code, TARGET_NR_sigreturn); if(setup_sigcontext(regs, &frame->sf_sc)) goto give_sigsegv; for(i = 0; i < TARGET_NSIG_WORDS; i++) { if(__put_user(set->sig[i], &frame->sf_mask.sig[i])) goto give_sigsegv; } /* * Arguments to signal handler: * * a0 = signal number * a1 = 0 (should be cause) * a2 = pointer to struct sigcontext * * $25 and PC point to the signal handler, $29 points to the * struct sigframe. */ regs->gpr[ 4][regs->current_tc] = sig; regs->gpr[ 5][regs->current_tc] = 0; regs->gpr[ 6][regs->current_tc] = frame_addr + offsetof(struct sigframe, sf_sc); regs->gpr[29][regs->current_tc] = frame_addr; regs->gpr[31][regs->current_tc] = frame_addr + offsetof(struct sigframe, sf_code); /* The original kernel code sets CP0_EPC to the handler * since it returns to userland using eret * we cannot do this here, and we must set PC directly */ regs->PC[regs->current_tc] = regs->gpr[25][regs->current_tc] = ka->sa._sa_handler; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sig(TARGET_SIGSEGV/*, current*/); return; } long do_sigreturn(CPUState *regs) { struct sigframe *frame; abi_ulong frame_addr; sigset_t blocked; target_sigset_t target_set; int i; #if defined(DEBUG_SIGNAL) fprintf(stderr, "do_sigreturn\n"); #endif frame_addr = regs->gpr[29][regs->current_tc]; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; for(i = 0; i < TARGET_NSIG_WORDS; i++) { if(__get_user(target_set.sig[i], &frame->sf_mask.sig[i])) goto badframe; } target_to_host_sigset_internal(&blocked, &target_set); sigprocmask(SIG_SETMASK, &blocked, NULL); if (restore_sigcontext(regs, &frame->sf_sc)) goto badframe; #if 0 /* * Don't let your children do this ... */ __asm__ __volatile__( "move\t$29, %0\n\t" "j\tsyscall_exit" :/* no outputs */ :"r" (®s)); /* Unreached */ #endif regs->PC[regs->current_tc] = regs->CP0_EPC; /* I am not sure this is right, but it seems to work * maybe a problem with nested signals ? */ regs->CP0_EPC = 0; return 0; badframe: force_sig(TARGET_SIGSEGV/*, current*/); return 0; } static void setup_rt_frame(int sig, struct emulated_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_rt_frame: not implemented\n"); } long do_rt_sigreturn(CPUState *env) { fprintf(stderr, "do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #elif defined(TARGET_SH4) /* * code and data structures from linux kernel: * include/asm-sh/sigcontext.h * arch/sh/kernel/signal.c */ struct target_sigcontext { target_ulong oldmask; /* CPU registers */ target_ulong sc_gregs[16]; target_ulong sc_pc; target_ulong sc_pr; target_ulong sc_sr; target_ulong sc_gbr; target_ulong sc_mach; target_ulong sc_macl; /* FPU registers */ target_ulong sc_fpregs[16]; target_ulong sc_xfpregs[16]; unsigned int sc_fpscr; unsigned int sc_fpul; unsigned int sc_ownedfp; }; struct target_sigframe { struct target_sigcontext sc; target_ulong extramask[TARGET_NSIG_WORDS-1]; uint16_t retcode[3]; }; struct target_ucontext { target_ulong uc_flags; struct target_ucontext *uc_link; target_stack_t uc_stack; struct target_sigcontext uc_mcontext; target_sigset_t uc_sigmask; /* mask last for extensibility */ }; struct target_rt_sigframe { struct target_siginfo info; struct target_ucontext uc; uint16_t retcode[3]; }; #define MOVW(n) (0x9300|((n)-2)) /* Move mem word at PC+n to R3 */ #define TRAP_NOARG 0xc310 /* Syscall w/no args (NR in R3) SH3/4 */ static abi_ulong get_sigframe(struct emulated_sigaction *ka, unsigned long sp, size_t frame_size) { if ((ka->sa.sa_flags & TARGET_SA_ONSTACK) && (sas_ss_flags(sp) == 0)) { sp = target_sigaltstack_used.ss_sp + target_sigaltstack_used.ss_size; } return (sp - frame_size) & -8ul; } static int setup_sigcontext(struct target_sigcontext *sc, CPUState *regs, unsigned long mask) { int err = 0; #define COPY(x) err |= __put_user(regs->x, &sc->sc_##x) COPY(gregs[0]); COPY(gregs[1]); COPY(gregs[2]); COPY(gregs[3]); COPY(gregs[4]); COPY(gregs[5]); COPY(gregs[6]); COPY(gregs[7]); COPY(gregs[8]); COPY(gregs[9]); COPY(gregs[10]); COPY(gregs[11]); COPY(gregs[12]); COPY(gregs[13]); COPY(gregs[14]); COPY(gregs[15]); COPY(gbr); COPY(mach); COPY(macl); COPY(pr); COPY(sr); COPY(pc); #undef COPY /* todo: save FPU registers here */ /* non-iBCS2 extensions.. */ err |= __put_user(mask, &sc->oldmask); return err; } static int restore_sigcontext(struct CPUState *regs, struct target_sigcontext *sc) { unsigned int err = 0; #define COPY(x) err |= __get_user(regs->x, &sc->sc_##x) COPY(gregs[1]); COPY(gregs[2]); COPY(gregs[3]); COPY(gregs[4]); COPY(gregs[5]); COPY(gregs[6]); COPY(gregs[7]); COPY(gregs[8]); COPY(gregs[9]); COPY(gregs[10]); COPY(gregs[11]); COPY(gregs[12]); COPY(gregs[13]); COPY(gregs[14]); COPY(gregs[15]); COPY(gbr); COPY(mach); COPY(macl); COPY(pr); COPY(sr); COPY(pc); #undef COPY /* todo: restore FPU registers here */ regs->tra = -1; /* disable syscall checks */ return err; } static void setup_frame(int sig, struct emulated_sigaction *ka, target_sigset_t *set, CPUState *regs) { struct target_sigframe *frame; abi_ulong frame_addr; int i; int err = 0; int signal; frame_addr = get_sigframe(ka, regs->gregs[15], sizeof(*frame)); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; signal = current_exec_domain_sig(sig); err |= setup_sigcontext(&frame->sc, regs, set->sig[0]); for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { err |= __put_user(set->sig[i + 1], &frame->extramask[i]); } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa.sa_flags & TARGET_SA_RESTORER) { regs->pr = (unsigned long) ka->sa.sa_restorer; } else { /* Generate return code (system call to sigreturn) */ err |= __put_user(MOVW(2), &frame->retcode[0]); err |= __put_user(TRAP_NOARG, &frame->retcode[1]); err |= __put_user((TARGET_NR_sigreturn), &frame->retcode[2]); regs->pr = (unsigned long) frame->retcode; } if (err) goto give_sigsegv; /* Set up registers for signal handler */ regs->gregs[15] = (unsigned long) frame; regs->gregs[4] = signal; /* Arg for signal handler */ regs->gregs[5] = 0; regs->gregs[6] = (unsigned long) &frame->sc; regs->pc = (unsigned long) ka->sa._sa_handler; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sig(SIGSEGV); } static void setup_rt_frame(int sig, struct emulated_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *regs) { struct target_rt_sigframe *frame; abi_ulong frame_addr; int i; int err = 0; int signal; frame_addr = get_sigframe(ka, regs->gregs[15], sizeof(*frame)); if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) goto give_sigsegv; signal = current_exec_domain_sig(sig); err |= copy_siginfo_to_user(&frame->info, info); /* Create the ucontext. */ err |= __put_user(0, &frame->uc.uc_flags); err |= __put_user(0, (unsigned long *)&frame->uc.uc_link); err |= __put_user((void *)target_sigaltstack_used.ss_sp, &frame->uc.uc_stack.ss_sp); err |= __put_user(sas_ss_flags(regs->gregs[15]), &frame->uc.uc_stack.ss_flags); err |= __put_user(target_sigaltstack_used.ss_size, &frame->uc.uc_stack.ss_size); err |= setup_sigcontext(&frame->uc.uc_mcontext, regs, set->sig[0]); for(i = 0; i < TARGET_NSIG_WORDS; i++) { err |= __put_user(set->sig[i], &frame->uc.uc_sigmask.sig[i]); } /* Set up to return from userspace. If provided, use a stub already in userspace. */ if (ka->sa.sa_flags & TARGET_SA_RESTORER) { regs->pr = (unsigned long) ka->sa.sa_restorer; } else { /* Generate return code (system call to sigreturn) */ err |= __put_user(MOVW(2), &frame->retcode[0]); err |= __put_user(TRAP_NOARG, &frame->retcode[1]); err |= __put_user((TARGET_NR_rt_sigreturn), &frame->retcode[2]); regs->pr = (unsigned long) frame->retcode; } if (err) goto give_sigsegv; /* Set up registers for signal handler */ regs->gregs[15] = (unsigned long) frame; regs->gregs[4] = signal; /* Arg for signal handler */ regs->gregs[5] = (unsigned long) &frame->info; regs->gregs[6] = (unsigned long) &frame->uc; regs->pc = (unsigned long) ka->sa._sa_handler; unlock_user_struct(frame, frame_addr, 1); return; give_sigsegv: unlock_user_struct(frame, frame_addr, 1); force_sig(SIGSEGV); } long do_sigreturn(CPUState *regs) { struct target_sigframe *frame; abi_ulong frame_addr; sigset_t blocked; target_sigset_t target_set; int i; int err = 0; #if defined(DEBUG_SIGNAL) fprintf(stderr, "do_sigreturn\n"); #endif frame_addr = regs->gregs[15]; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; err |= __get_user(target_set.sig[0], &frame->sc.oldmask); for(i = 1; i < TARGET_NSIG_WORDS; i++) { err |= (__get_user(target_set.sig[i], &frame->extramask[i - 1])); } if (err) goto badframe; target_to_host_sigset_internal(&blocked, &target_set); sigprocmask(SIG_SETMASK, &blocked, NULL); if (restore_sigcontext(regs, &frame->sc)) goto badframe; unlock_user_struct(frame, frame_addr, 0); return regs->gregs[0]; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return 0; } long do_rt_sigreturn(CPUState *regs) { struct target_rt_sigframe *frame; abi_ulong frame_addr; sigset_t blocked; #if defined(DEBUG_SIGNAL) fprintf(stderr, "do_rt_sigreturn\n"); #endif frame_addr = regs->gregs[15]; if (!lock_user_struct(VERIFY_READ, frame, frame_addr, 1)) goto badframe; target_to_host_sigset(&blocked, &frame->uc.uc_sigmask); sigprocmask(SIG_SETMASK, &blocked, NULL); if (restore_sigcontext(regs, &frame->uc.uc_mcontext)) goto badframe; if (do_sigaltstack(frame_addr + offsetof(struct target_rt_sigframe, uc.uc_stack), 0, get_sp_from_cpustate(regs)) == -EFAULT) goto badframe; unlock_user_struct(frame, frame_addr, 0); return regs->gregs[0]; badframe: unlock_user_struct(frame, frame_addr, 0); force_sig(TARGET_SIGSEGV); return 0; } #else static void setup_frame(int sig, struct emulated_sigaction *ka, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_frame: not implemented\n"); } static void setup_rt_frame(int sig, struct emulated_sigaction *ka, target_siginfo_t *info, target_sigset_t *set, CPUState *env) { fprintf(stderr, "setup_rt_frame: not implemented\n"); } long do_sigreturn(CPUState *env) { fprintf(stderr, "do_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } long do_rt_sigreturn(CPUState *env) { fprintf(stderr, "do_rt_sigreturn: not implemented\n"); return -TARGET_ENOSYS; } #endif void process_pending_signals(void *cpu_env) { int sig; abi_ulong handler; sigset_t set, old_set; target_sigset_t target_old_set; struct emulated_sigaction *k; struct sigqueue *q; if (!signal_pending) return; k = sigact_table; for(sig = 1; sig <= TARGET_NSIG; sig++) { if (k->pending) goto handle_signal; k++; } /* if no signal is pending, just return */ signal_pending = 0; return; handle_signal: #ifdef DEBUG_SIGNAL fprintf(stderr, "qemu: process signal %d\n", sig); #endif /* dequeue signal */ q = k->first; k->first = q->next; if (!k->first) k->pending = 0; sig = gdb_handlesig (cpu_env, sig); if (!sig) { fprintf (stderr, "Lost signal\n"); abort(); } handler = k->sa._sa_handler; if (handler == TARGET_SIG_DFL) { /* default handler : ignore some signal. The other are fatal */ if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && sig != TARGET_SIGWINCH) { force_sig(sig); } } else if (handler == TARGET_SIG_IGN) { /* ignore sig */ } else if (handler == TARGET_SIG_ERR) { force_sig(sig); } else { /* compute the blocked signals during the handler execution */ target_to_host_sigset(&set, &k->sa.sa_mask); /* SA_NODEFER indicates that the current signal should not be blocked during the handler */ if (!(k->sa.sa_flags & TARGET_SA_NODEFER)) sigaddset(&set, target_to_host_signal(sig)); /* block signals in the handler using Linux */ sigprocmask(SIG_BLOCK, &set, &old_set); /* save the previous blocked signal state to restore it at the end of the signal execution (see do_sigreturn) */ host_to_target_sigset_internal(&target_old_set, &old_set); /* if the CPU is in VM86 mode, we restore the 32 bit values */ #if defined(TARGET_I386) && !defined(TARGET_X86_64) { CPUX86State *env = cpu_env; if (env->eflags & VM_MASK) save_v86_state(env); } #endif /* prepare the stack frame of the virtual CPU */ if (k->sa.sa_flags & TARGET_SA_SIGINFO) setup_rt_frame(sig, k, &q->info, &target_old_set, cpu_env); else setup_frame(sig, k, &target_old_set, cpu_env); if (k->sa.sa_flags & TARGET_SA_RESETHAND) k->sa._sa_handler = TARGET_SIG_DFL; } if (q != &k->info) free_sigqueue(q); }