/* * Emulation of Linux signals * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include "qemu/bitops.h" #include "qemu/cutils.h" #include "gdbstub/user.h" #include "exec/page-protection.h" #include "hw/core/tcg-cpu-ops.h" #include #include #include "qemu.h" #include "user-internals.h" #include "strace.h" #include "loader.h" #include "trace.h" #include "signal-common.h" #include "host-signal.h" #include "user/safe-syscall.h" #include "tcg/tcg.h" /* target_siginfo_t must fit in gdbstub's siginfo save area. */ QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH); static struct target_sigaction sigact_table[TARGET_NSIG]; static void host_signal_handler(int host_signum, siginfo_t *info, void *puc); /* Fallback addresses into sigtramp page. */ abi_ulong default_sigreturn; abi_ulong default_rt_sigreturn; /* * System includes define _NSIG as SIGRTMAX + 1, but qemu (like the kernel) * defines TARGET_NSIG as TARGET_SIGRTMAX and the first signal is 1. * Signal number 0 is reserved for use as kill(pid, 0), to test whether * a process exists without sending it a signal. */ #ifdef __SIGRTMAX QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG); #endif static uint8_t host_to_target_signal_table[_NSIG] = { #define MAKE_SIG_ENTRY(sig) [sig] = TARGET_##sig, MAKE_SIGNAL_LIST #undef MAKE_SIG_ENTRY }; static uint8_t target_to_host_signal_table[TARGET_NSIG + 1]; /* valid sig is between 1 and _NSIG - 1 */ int host_to_target_signal(int sig) { if (sig < 1) { return sig; } if (sig >= _NSIG) { return TARGET_NSIG + 1; } return host_to_target_signal_table[sig]; } /* valid sig is between 1 and TARGET_NSIG */ int target_to_host_signal(int sig) { if (sig < 1) { return sig; } if (sig > TARGET_NSIG) { return _NSIG; } return target_to_host_signal_table[sig]; } static inline void target_sigaddset(target_sigset_t *set, int signum) { signum--; abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); set->sig[signum / TARGET_NSIG_BPW] |= mask; } static inline int target_sigismember(const target_sigset_t *set, int signum) { signum--; abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0); } void host_to_target_sigset_internal(target_sigset_t *d, const sigset_t *s) { int host_sig, target_sig; target_sigemptyset(d); for (host_sig = 1; host_sig < _NSIG; host_sig++) { target_sig = host_to_target_signal(host_sig); if (target_sig < 1 || target_sig > TARGET_NSIG) { continue; } if (sigismember(s, host_sig)) { target_sigaddset(d, target_sig); } } } void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) { target_sigset_t d1; int i; host_to_target_sigset_internal(&d1, s); for(i = 0;i < TARGET_NSIG_WORDS; i++) d->sig[i] = tswapal(d1.sig[i]); } void target_to_host_sigset_internal(sigset_t *d, const target_sigset_t *s) { int host_sig, target_sig; sigemptyset(d); for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) { host_sig = target_to_host_signal(target_sig); if (host_sig < 1 || host_sig >= _NSIG) { continue; } if (target_sigismember(s, target_sig)) { sigaddset(d, host_sig); } } } void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) { target_sigset_t s1; int i; for(i = 0;i < TARGET_NSIG_WORDS; i++) s1.sig[i] = tswapal(s->sig[i]); target_to_host_sigset_internal(d, &s1); } void host_to_target_old_sigset(abi_ulong *old_sigset, const sigset_t *sigset) { target_sigset_t d; host_to_target_sigset(&d, sigset); *old_sigset = d.sig[0]; } void target_to_host_old_sigset(sigset_t *sigset, const abi_ulong *old_sigset) { target_sigset_t d; int i; d.sig[0] = *old_sigset; for(i = 1;i < TARGET_NSIG_WORDS; i++) d.sig[i] = 0; target_to_host_sigset(sigset, &d); } int block_signals(void) { TaskState *ts = get_task_state(thread_cpu); sigset_t set; /* It's OK to block everything including SIGSEGV, because we won't * run any further guest code before unblocking signals in * process_pending_signals(). */ sigfillset(&set); sigprocmask(SIG_SETMASK, &set, 0); return qatomic_xchg(&ts->signal_pending, 1); } /* Wrapper for sigprocmask function * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset * are host signal set, not guest ones. Returns -QEMU_ERESTARTSYS if * a signal was already pending and the syscall must be restarted, or * 0 on success. * If set is NULL, this is guaranteed not to fail. */ int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset) { TaskState *ts = get_task_state(thread_cpu); if (oldset) { *oldset = ts->signal_mask; } if (set) { int i; if (block_signals()) { return -QEMU_ERESTARTSYS; } switch (how) { case SIG_BLOCK: sigorset(&ts->signal_mask, &ts->signal_mask, set); break; case SIG_UNBLOCK: for (i = 1; i <= NSIG; ++i) { if (sigismember(set, i)) { sigdelset(&ts->signal_mask, i); } } break; case SIG_SETMASK: ts->signal_mask = *set; break; default: g_assert_not_reached(); } /* Silently ignore attempts to change blocking status of KILL or STOP */ sigdelset(&ts->signal_mask, SIGKILL); sigdelset(&ts->signal_mask, SIGSTOP); } return 0; } /* Just set the guest's signal mask to the specified value; the * caller is assumed to have called block_signals() already. */ void set_sigmask(const sigset_t *set) { TaskState *ts = get_task_state(thread_cpu); ts->signal_mask = *set; } /* sigaltstack management */ int on_sig_stack(unsigned long sp) { TaskState *ts = get_task_state(thread_cpu); return (sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size); } int sas_ss_flags(unsigned long sp) { TaskState *ts = get_task_state(thread_cpu); return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE : on_sig_stack(sp) ? SS_ONSTACK : 0); } abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka) { /* * This is the X/Open sanctioned signal stack switching. */ TaskState *ts = get_task_state(thread_cpu); if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) { return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; } return sp; } void target_save_altstack(target_stack_t *uss, CPUArchState *env) { TaskState *ts = get_task_state(thread_cpu); __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp); __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags); __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size); } abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env) { TaskState *ts = get_task_state(thread_cpu); size_t minstacksize = TARGET_MINSIGSTKSZ; target_stack_t ss; #if defined(TARGET_PPC64) /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */ struct image_info *image = ts->info; if (get_ppc64_abi(image) > 1) { minstacksize = 4096; } #endif __get_user(ss.ss_sp, &uss->ss_sp); __get_user(ss.ss_size, &uss->ss_size); __get_user(ss.ss_flags, &uss->ss_flags); if (on_sig_stack(get_sp_from_cpustate(env))) { return -TARGET_EPERM; } switch (ss.ss_flags) { default: return -TARGET_EINVAL; case TARGET_SS_DISABLE: ss.ss_size = 0; ss.ss_sp = 0; break; case TARGET_SS_ONSTACK: case 0: if (ss.ss_size < minstacksize) { return -TARGET_ENOMEM; } break; } ts->sigaltstack_used.ss_sp = ss.ss_sp; ts->sigaltstack_used.ss_size = ss.ss_size; return 0; } /* siginfo conversion */ static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, const siginfo_t *info) { int sig = host_to_target_signal(info->si_signo); int si_code = info->si_code; int si_type; tinfo->si_signo = sig; tinfo->si_errno = 0; tinfo->si_code = info->si_code; /* This memset serves two purposes: * (1) ensure we don't leak random junk to the guest later * (2) placate false positives from gcc about fields * being used uninitialized if it chooses to inline both this * function and tswap_siginfo() into host_to_target_siginfo(). */ memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad)); /* This is awkward, because we have to use a combination of * the si_code and si_signo to figure out which of the union's * members are valid. (Within the host kernel it is always possible * to tell, but the kernel carefully avoids giving userspace the * high 16 bits of si_code, so we don't have the information to * do this the easy way...) We therefore make our best guess, * bearing in mind that a guest can spoof most of the si_codes * via rt_sigqueueinfo() if it likes. * * Once we have made our guess, we record it in the top 16 bits of * the si_code, so that tswap_siginfo() later can use it. * tswap_siginfo() will strip these top bits out before writing * si_code to the guest (sign-extending the lower bits). */ switch (si_code) { case SI_USER: case SI_TKILL: case SI_KERNEL: /* Sent via kill(), tkill() or tgkill(), or direct from the kernel. * These are the only unspoofable si_code values. */ tinfo->_sifields._kill._pid = info->si_pid; tinfo->_sifields._kill._uid = info->si_uid; si_type = QEMU_SI_KILL; break; default: /* Everything else is spoofable. Make best guess based on signal */ switch (sig) { case TARGET_SIGCHLD: tinfo->_sifields._sigchld._pid = info->si_pid; tinfo->_sifields._sigchld._uid = info->si_uid; if (si_code == CLD_EXITED) tinfo->_sifields._sigchld._status = info->si_status; else tinfo->_sifields._sigchld._status = host_to_target_signal(info->si_status & 0x7f) | (info->si_status & ~0x7f); tinfo->_sifields._sigchld._utime = info->si_utime; tinfo->_sifields._sigchld._stime = info->si_stime; si_type = QEMU_SI_CHLD; break; case TARGET_SIGIO: tinfo->_sifields._sigpoll._band = info->si_band; tinfo->_sifields._sigpoll._fd = info->si_fd; si_type = QEMU_SI_POLL; break; default: /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */ tinfo->_sifields._rt._pid = info->si_pid; tinfo->_sifields._rt._uid = info->si_uid; /* XXX: potential problem if 64 bit */ tinfo->_sifields._rt._sigval.sival_ptr = (abi_ulong)(unsigned long)info->si_value.sival_ptr; si_type = QEMU_SI_RT; break; } break; } tinfo->si_code = deposit32(si_code, 16, 16, si_type); } static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info) { int si_type = extract32(info->si_code, 16, 16); int si_code = sextract32(info->si_code, 0, 16); __put_user(info->si_signo, &tinfo->si_signo); __put_user(info->si_errno, &tinfo->si_errno); __put_user(si_code, &tinfo->si_code); /* We can use our internal marker of which fields in the structure * are valid, rather than duplicating the guesswork of * host_to_target_siginfo_noswap() here. */ switch (si_type) { case QEMU_SI_KILL: __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid); __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid); break; case QEMU_SI_TIMER: __put_user(info->_sifields._timer._timer1, &tinfo->_sifields._timer._timer1); __put_user(info->_sifields._timer._timer2, &tinfo->_sifields._timer._timer2); break; case QEMU_SI_POLL: __put_user(info->_sifields._sigpoll._band, &tinfo->_sifields._sigpoll._band); __put_user(info->_sifields._sigpoll._fd, &tinfo->_sifields._sigpoll._fd); break; case QEMU_SI_FAULT: __put_user(info->_sifields._sigfault._addr, &tinfo->_sifields._sigfault._addr); break; case QEMU_SI_CHLD: __put_user(info->_sifields._sigchld._pid, &tinfo->_sifields._sigchld._pid); __put_user(info->_sifields._sigchld._uid, &tinfo->_sifields._sigchld._uid); __put_user(info->_sifields._sigchld._status, &tinfo->_sifields._sigchld._status); __put_user(info->_sifields._sigchld._utime, &tinfo->_sifields._sigchld._utime); __put_user(info->_sifields._sigchld._stime, &tinfo->_sifields._sigchld._stime); break; case QEMU_SI_RT: __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid); __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid); __put_user(info->_sifields._rt._sigval.sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); break; default: g_assert_not_reached(); } } void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) { target_siginfo_t tgt_tmp; host_to_target_siginfo_noswap(&tgt_tmp, info); tswap_siginfo(tinfo, &tgt_tmp); } /* XXX: we support only POSIX RT signals are used. */ /* XXX: find a solution for 64 bit (additional malloced data is needed) */ void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo) { /* This conversion is used only for the rt_sigqueueinfo syscall, * and so we know that the _rt fields are the valid ones. */ abi_ulong sival_ptr; __get_user(info->si_signo, &tinfo->si_signo); __get_user(info->si_errno, &tinfo->si_errno); __get_user(info->si_code, &tinfo->si_code); __get_user(info->si_pid, &tinfo->_sifields._rt._pid); __get_user(info->si_uid, &tinfo->_sifields._rt._uid); __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr); info->si_value.sival_ptr = (void *)(long)sival_ptr; } /* returns 1 if given signal should dump core if not handled */ static int core_dump_signal(int sig) { switch (sig) { case TARGET_SIGABRT: case TARGET_SIGFPE: case TARGET_SIGILL: case TARGET_SIGQUIT: case TARGET_SIGSEGV: case TARGET_SIGTRAP: case TARGET_SIGBUS: return (1); default: return (0); } } static void signal_table_init(const char *rtsig_map) { int hsig, tsig, count; if (rtsig_map) { /* * Map host RT signals to target RT signals according to the * user-provided specification. */ const char *s = rtsig_map; while (true) { int i; if (qemu_strtoi(s, &s, 10, &tsig) || *s++ != ' ') { fprintf(stderr, "Malformed target signal in QEMU_RTSIG_MAP\n"); exit(EXIT_FAILURE); } if (qemu_strtoi(s, &s, 10, &hsig) || *s++ != ' ') { fprintf(stderr, "Malformed host signal in QEMU_RTSIG_MAP\n"); exit(EXIT_FAILURE); } if (qemu_strtoi(s, &s, 10, &count) || (*s && *s != ',')) { fprintf(stderr, "Malformed signal count in QEMU_RTSIG_MAP\n"); exit(EXIT_FAILURE); } for (i = 0; i < count; i++, tsig++, hsig++) { if (tsig < TARGET_SIGRTMIN || tsig > TARGET_NSIG) { fprintf(stderr, "%d is not a target rt signal\n", tsig); exit(EXIT_FAILURE); } if (hsig < SIGRTMIN || hsig > SIGRTMAX) { fprintf(stderr, "%d is not a host rt signal\n", hsig); exit(EXIT_FAILURE); } if (host_to_target_signal_table[hsig]) { fprintf(stderr, "%d already maps %d\n", hsig, host_to_target_signal_table[hsig]); exit(EXIT_FAILURE); } host_to_target_signal_table[hsig] = tsig; } if (*s) { s++; } else { break; } } } else { /* * Default host-to-target RT signal mapping. * * Signals are supported starting from TARGET_SIGRTMIN and going up * until we run out of host realtime signals. Glibc uses the lower 2 * RT signals and (hopefully) nobody uses the upper ones. * This is why SIGRTMIN (34) is generally greater than __SIGRTMIN (32). * To fix this properly we would need to do manual signal delivery * multiplexed over a single host signal. * Attempts for configure "missing" signals via sigaction will be * silently ignored. * * Reserve one signal for internal usage (see below). */ hsig = SIGRTMIN + 1; for (tsig = TARGET_SIGRTMIN; hsig <= SIGRTMAX && tsig <= TARGET_NSIG; hsig++, tsig++) { host_to_target_signal_table[hsig] = tsig; } } /* * Remap the target SIGABRT, so that we can distinguish host abort * from guest abort. When the guest registers a signal handler or * calls raise(SIGABRT), the host will raise SIG_RTn. If the guest * arrives at dump_core_and_abort(), we will map back to host SIGABRT * so that the parent (native or emulated) sees the correct signal. * Finally, also map host to guest SIGABRT so that the emulated * parent sees the correct mapping from wait status. */ host_to_target_signal_table[SIGABRT] = 0; for (hsig = SIGRTMIN; hsig <= SIGRTMAX; hsig++) { if (!host_to_target_signal_table[hsig]) { host_to_target_signal_table[hsig] = TARGET_SIGABRT; break; } } if (hsig > SIGRTMAX) { fprintf(stderr, "No rt signals left for SIGABRT mapping\n"); exit(EXIT_FAILURE); } /* Invert the mapping that has already been assigned. */ for (hsig = 1; hsig < _NSIG; hsig++) { tsig = host_to_target_signal_table[hsig]; if (tsig) { if (target_to_host_signal_table[tsig]) { fprintf(stderr, "%d is already mapped to %d\n", tsig, target_to_host_signal_table[tsig]); exit(EXIT_FAILURE); } target_to_host_signal_table[tsig] = hsig; } } host_to_target_signal_table[SIGABRT] = TARGET_SIGABRT; /* Map everything else out-of-bounds. */ for (hsig = 1; hsig < _NSIG; hsig++) { if (host_to_target_signal_table[hsig] == 0) { host_to_target_signal_table[hsig] = TARGET_NSIG + 1; } } for (count = 0, tsig = 1; tsig <= TARGET_NSIG; tsig++) { if (target_to_host_signal_table[tsig] == 0) { target_to_host_signal_table[tsig] = _NSIG; count++; } } trace_signal_table_init(count); } void signal_init(const char *rtsig_map) { TaskState *ts = get_task_state(thread_cpu); struct sigaction act, oact; /* initialize signal conversion tables */ signal_table_init(rtsig_map); /* Set the signal mask from the host mask. */ sigprocmask(0, 0, &ts->signal_mask); sigfillset(&act.sa_mask); act.sa_flags = SA_SIGINFO; act.sa_sigaction = host_signal_handler; /* * A parent process may configure ignored signals, but all other * signals are default. For any target signals that have no host * mapping, set to ignore. For all core_dump_signal, install our * host signal handler so that we may invoke dump_core_and_abort. * This includes SIGSEGV and SIGBUS, which are also need our signal * handler for paging and exceptions. */ for (int tsig = 1; tsig <= TARGET_NSIG; tsig++) { int hsig = target_to_host_signal(tsig); abi_ptr thand = TARGET_SIG_IGN; if (hsig >= _NSIG) { continue; } /* As we force remap SIGABRT, cannot probe and install in one step. */ if (tsig == TARGET_SIGABRT) { sigaction(SIGABRT, NULL, &oact); sigaction(hsig, &act, NULL); } else { struct sigaction *iact = core_dump_signal(tsig) ? &act : NULL; sigaction(hsig, iact, &oact); } if (oact.sa_sigaction != (void *)SIG_IGN) { thand = TARGET_SIG_DFL; } sigact_table[tsig - 1]._sa_handler = thand; } } /* Force a synchronously taken signal. The kernel force_sig() function * also forces the signal to "not blocked, not ignored", but for QEMU * that work is done in process_pending_signals(). */ void force_sig(int sig) { CPUState *cpu = thread_cpu; target_siginfo_t info = {}; info.si_signo = sig; info.si_errno = 0; info.si_code = TARGET_SI_KERNEL; info._sifields._kill._pid = 0; info._sifields._kill._uid = 0; queue_signal(cpu_env(cpu), info.si_signo, QEMU_SI_KILL, &info); } /* * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the * 'force' part is handled in process_pending_signals(). */ void force_sig_fault(int sig, int code, abi_ulong addr) { CPUState *cpu = thread_cpu; target_siginfo_t info = {}; info.si_signo = sig; info.si_errno = 0; info.si_code = code; info._sifields._sigfault._addr = addr; queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info); } /* Force a SIGSEGV if we couldn't write to memory trying to set * up the signal frame. oldsig is the signal we were trying to handle * at the point of failure. */ #if !defined(TARGET_RISCV) void force_sigsegv(int oldsig) { if (oldsig == SIGSEGV) { /* Make sure we don't try to deliver the signal again; this will * end up with handle_pending_signal() calling dump_core_and_abort(). */ sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL; } force_sig(TARGET_SIGSEGV); } #endif void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, MMUAccessType access_type, bool maperr, uintptr_t ra) { const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; if (tcg_ops->record_sigsegv) { tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); } force_sig_fault(TARGET_SIGSEGV, maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, addr); cpu->exception_index = EXCP_INTERRUPT; cpu_loop_exit_restore(cpu, ra); } void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, MMUAccessType access_type, uintptr_t ra) { const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; if (tcg_ops->record_sigbus) { tcg_ops->record_sigbus(cpu, addr, access_type, ra); } force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); cpu->exception_index = EXCP_INTERRUPT; cpu_loop_exit_restore(cpu, ra); } /* abort execution with signal */ static G_NORETURN void die_with_signal(int host_sig) { struct sigaction act = { .sa_handler = SIG_DFL, }; /* * The proper exit code for dying from an uncaught signal is -. * The kernel doesn't allow exit() or _exit() to pass a negative value. * To get the proper exit code we need to actually die from an uncaught * signal. Here the default signal handler is installed, we send * the signal and we wait for it to arrive. */ sigfillset(&act.sa_mask); sigaction(host_sig, &act, NULL); kill(getpid(), host_sig); /* Make sure the signal isn't masked (reusing the mask inside of act). */ sigdelset(&act.sa_mask, host_sig); sigsuspend(&act.sa_mask); /* unreachable */ _exit(EXIT_FAILURE); } static G_NORETURN void dump_core_and_abort(CPUArchState *env, int target_sig) { CPUState *cpu = env_cpu(env); TaskState *ts = get_task_state(cpu); int host_sig, core_dumped = 0; /* On exit, undo the remapping of SIGABRT. */ if (target_sig == TARGET_SIGABRT) { host_sig = SIGABRT; } else { host_sig = target_to_host_signal(target_sig); } trace_user_dump_core_and_abort(env, target_sig, host_sig); gdb_signalled(env, target_sig); /* dump core if supported by target binary format */ if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { stop_all_tasks(); core_dumped = ((*ts->bprm->core_dump)(target_sig, env) == 0); } if (core_dumped) { /* we already dumped the core of target process, we don't want * a coredump of qemu itself */ struct rlimit nodump; getrlimit(RLIMIT_CORE, &nodump); nodump.rlim_cur=0; setrlimit(RLIMIT_CORE, &nodump); (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n", target_sig, strsignal(host_sig), "core dumped" ); } preexit_cleanup(env, 128 + target_sig); die_with_signal(host_sig); } /* queue a signal so that it will be send to the virtual CPU as soon as possible */ void queue_signal(CPUArchState *env, int sig, int si_type, target_siginfo_t *info) { CPUState *cpu = env_cpu(env); TaskState *ts = get_task_state(cpu); trace_user_queue_signal(env, sig); info->si_code = deposit32(info->si_code, 16, 16, si_type); ts->sync_signal.info = *info; ts->sync_signal.pending = sig; /* signal that a new signal is pending */ qatomic_set(&ts->signal_pending, 1); } /* Adjust the signal context to rewind out of safe-syscall if we're in it */ static inline void rewind_if_in_safe_syscall(void *puc) { host_sigcontext *uc = (host_sigcontext *)puc; uintptr_t pcreg = host_signal_pc(uc); if (pcreg > (uintptr_t)safe_syscall_start && pcreg < (uintptr_t)safe_syscall_end) { host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); } } static G_NORETURN void die_from_signal(siginfo_t *info) { char sigbuf[4], codebuf[12]; const char *sig, *code = NULL; switch (info->si_signo) { case SIGSEGV: sig = "SEGV"; switch (info->si_code) { case SEGV_MAPERR: code = "MAPERR"; break; case SEGV_ACCERR: code = "ACCERR"; break; } break; case SIGBUS: sig = "BUS"; switch (info->si_code) { case BUS_ADRALN: code = "ADRALN"; break; case BUS_ADRERR: code = "ADRERR"; break; } break; case SIGILL: sig = "ILL"; switch (info->si_code) { case ILL_ILLOPC: code = "ILLOPC"; break; case ILL_ILLOPN: code = "ILLOPN"; break; case ILL_ILLADR: code = "ILLADR"; break; case ILL_PRVOPC: code = "PRVOPC"; break; case ILL_PRVREG: code = "PRVREG"; break; case ILL_COPROC: code = "COPROC"; break; } break; case SIGFPE: sig = "FPE"; switch (info->si_code) { case FPE_INTDIV: code = "INTDIV"; break; case FPE_INTOVF: code = "INTOVF"; break; } break; case SIGTRAP: sig = "TRAP"; break; default: snprintf(sigbuf, sizeof(sigbuf), "%d", info->si_signo); sig = sigbuf; break; } if (code == NULL) { snprintf(codebuf, sizeof(sigbuf), "%d", info->si_code); code = codebuf; } error_report("QEMU internal SIG%s {code=%s, addr=%p}", sig, code, info->si_addr); die_with_signal(info->si_signo); } static void host_sigsegv_handler(CPUState *cpu, siginfo_t *info, host_sigcontext *uc) { uintptr_t host_addr = (uintptr_t)info->si_addr; /* * Convert forcefully to guest address space: addresses outside * reserved_va are still valid to report via SEGV_MAPERR. */ bool is_valid = h2g_valid(host_addr); abi_ptr guest_addr = h2g_nocheck(host_addr); uintptr_t pc = host_signal_pc(uc); bool is_write = host_signal_write(info, uc); MMUAccessType access_type = adjust_signal_pc(&pc, is_write); bool maperr; /* If this was a write to a TB protected page, restart. */ if (is_write && is_valid && info->si_code == SEGV_ACCERR && handle_sigsegv_accerr_write(cpu, host_signal_mask(uc), pc, guest_addr)) { return; } /* * If the access was not on behalf of the guest, within the executable * mapping of the generated code buffer, then it is a host bug. */ if (access_type != MMU_INST_FETCH && !in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) { die_from_signal(info); } maperr = true; if (is_valid && info->si_code == SEGV_ACCERR) { /* * With reserved_va, the whole address space is PROT_NONE, * which means that we may get ACCERR when we want MAPERR. */ if (page_get_flags(guest_addr) & PAGE_VALID) { maperr = false; } else { info->si_code = SEGV_MAPERR; } } sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL); cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); } static uintptr_t host_sigbus_handler(CPUState *cpu, siginfo_t *info, host_sigcontext *uc) { uintptr_t pc = host_signal_pc(uc); bool is_write = host_signal_write(info, uc); MMUAccessType access_type = adjust_signal_pc(&pc, is_write); /* * If the access was not on behalf of the guest, within the executable * mapping of the generated code buffer, then it is a host bug. */ if (!in_code_gen_buffer((void *)(pc - tcg_splitwx_diff))) { die_from_signal(info); } if (info->si_code == BUS_ADRALN) { uintptr_t host_addr = (uintptr_t)info->si_addr; abi_ptr guest_addr = h2g_nocheck(host_addr); sigprocmask(SIG_SETMASK, host_signal_mask(uc), NULL); cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); } return pc; } static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) { CPUState *cpu = thread_cpu; CPUArchState *env = cpu_env(cpu); TaskState *ts = get_task_state(cpu); target_siginfo_t tinfo; host_sigcontext *uc = puc; struct emulated_sigtable *k; int guest_sig; uintptr_t pc = 0; bool sync_sig = false; void *sigmask; /* * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special * handling wrt signal blocking and unwinding. Non-spoofed SIGILL, * SIGFPE, SIGTRAP are always host bugs. */ if (info->si_code > 0) { switch (host_sig) { case SIGSEGV: /* Only returns on handle_sigsegv_accerr_write success. */ host_sigsegv_handler(cpu, info, uc); return; case SIGBUS: pc = host_sigbus_handler(cpu, info, uc); sync_sig = true; break; case SIGILL: case SIGFPE: case SIGTRAP: die_from_signal(info); } } /* get target signal number */ guest_sig = host_to_target_signal(host_sig); if (guest_sig < 1 || guest_sig > TARGET_NSIG) { return; } trace_user_host_signal(env, host_sig, guest_sig); host_to_target_siginfo_noswap(&tinfo, info); k = &ts->sigtab[guest_sig - 1]; k->info = tinfo; k->pending = guest_sig; ts->signal_pending = 1; /* * For synchronous signals, unwind the cpu state to the faulting * insn and then exit back to the main loop so that the signal * is delivered immediately. */ if (sync_sig) { cpu->exception_index = EXCP_INTERRUPT; cpu_loop_exit_restore(cpu, pc); } rewind_if_in_safe_syscall(puc); /* * Block host signals until target signal handler entered. We * can't block SIGSEGV or SIGBUS while we're executing guest * code in case the guest code provokes one in the window between * now and it getting out to the main loop. Signals will be * unblocked again in process_pending_signals(). * * WARNING: we cannot use sigfillset() here because the sigmask * field is a kernel sigset_t, which is much smaller than the * libc sigset_t which sigfillset() operates on. Using sigfillset() * would write 0xff bytes off the end of the structure and trash * data on the struct. */ sigmask = host_signal_mask(uc); memset(sigmask, 0xff, SIGSET_T_SIZE); sigdelset(sigmask, SIGSEGV); sigdelset(sigmask, SIGBUS); /* interrupt the virtual CPU as soon as possible */ cpu_exit(thread_cpu); } /* do_sigaltstack() returns target values and errnos. */ /* compare linux/kernel/signal.c:do_sigaltstack() */ abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, CPUArchState *env) { target_stack_t oss, *uoss = NULL; abi_long ret = -TARGET_EFAULT; if (uoss_addr) { /* Verify writability now, but do not alter user memory yet. */ if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) { goto out; } target_save_altstack(&oss, env); } if (uss_addr) { target_stack_t *uss; if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { goto out; } ret = target_restore_altstack(uss, env); if (ret) { goto out; } } if (uoss_addr) { memcpy(uoss, &oss, sizeof(oss)); unlock_user_struct(uoss, uoss_addr, 1); uoss = NULL; } ret = 0; out: if (uoss) { unlock_user_struct(uoss, uoss_addr, 0); } return ret; } /* do_sigaction() return target values and host errnos */ int do_sigaction(int sig, const struct target_sigaction *act, struct target_sigaction *oact, abi_ulong ka_restorer) { struct target_sigaction *k; int host_sig; int ret = 0; trace_signal_do_sigaction_guest(sig, TARGET_NSIG); if (sig < 1 || sig > TARGET_NSIG) { return -TARGET_EINVAL; } if (act && (sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP)) { return -TARGET_EINVAL; } if (block_signals()) { return -QEMU_ERESTARTSYS; } k = &sigact_table[sig - 1]; if (oact) { __put_user(k->_sa_handler, &oact->_sa_handler); __put_user(k->sa_flags, &oact->sa_flags); #ifdef TARGET_ARCH_HAS_SA_RESTORER __put_user(k->sa_restorer, &oact->sa_restorer); #endif /* Not swapped. */ oact->sa_mask = k->sa_mask; } if (act) { __get_user(k->_sa_handler, &act->_sa_handler); __get_user(k->sa_flags, &act->sa_flags); #ifdef TARGET_ARCH_HAS_SA_RESTORER __get_user(k->sa_restorer, &act->sa_restorer); #endif #ifdef TARGET_ARCH_HAS_KA_RESTORER k->ka_restorer = ka_restorer; #endif /* To be swapped in target_to_host_sigset. */ k->sa_mask = act->sa_mask; /* we update the host linux signal state */ host_sig = target_to_host_signal(sig); trace_signal_do_sigaction_host(host_sig, TARGET_NSIG); if (host_sig > SIGRTMAX) { /* we don't have enough host signals to map all target signals */ qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n", sig); /* * we don't return an error here because some programs try to * register an handler for all possible rt signals even if they * don't need it. * An error here can abort them whereas there can be no problem * to not have the signal available later. * This is the case for golang, * See https://github.com/golang/go/issues/33746 * So we silently ignore the error. */ return 0; } if (host_sig != SIGSEGV && host_sig != SIGBUS) { struct sigaction act1; sigfillset(&act1.sa_mask); act1.sa_flags = SA_SIGINFO; if (k->_sa_handler == TARGET_SIG_IGN) { /* * It is important to update the host kernel signal ignore * state to avoid getting unexpected interrupted syscalls. */ act1.sa_sigaction = (void *)SIG_IGN; } else if (k->_sa_handler == TARGET_SIG_DFL) { if (core_dump_signal(sig)) { act1.sa_sigaction = host_signal_handler; } else { act1.sa_sigaction = (void *)SIG_DFL; } } else { act1.sa_sigaction = host_signal_handler; if (k->sa_flags & TARGET_SA_RESTART) { act1.sa_flags |= SA_RESTART; } } ret = sigaction(host_sig, &act1, NULL); } } return ret; } static void handle_pending_signal(CPUArchState *cpu_env, int sig, struct emulated_sigtable *k) { CPUState *cpu = env_cpu(cpu_env); abi_ulong handler; sigset_t set; target_siginfo_t unswapped; target_sigset_t target_old_set; struct target_sigaction *sa; TaskState *ts = get_task_state(cpu); trace_user_handle_signal(cpu_env, sig); /* dequeue signal */ k->pending = 0; /* * Writes out siginfo values byteswapped, accordingly to the target. * It also cleans the si_type from si_code making it correct for * the target. We must hold on to the original unswapped copy for * strace below, because si_type is still required there. */ if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { unswapped = k->info; } tswap_siginfo(&k->info, &k->info); sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info)); if (!sig) { sa = NULL; handler = TARGET_SIG_IGN; } else { sa = &sigact_table[sig - 1]; handler = sa->_sa_handler; } if (unlikely(qemu_loglevel_mask(LOG_STRACE))) { print_taken_signal(sig, &unswapped); } if (handler == TARGET_SIG_DFL) { /* default handler : ignore some signal. The other are job control or fatal */ if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) { kill(getpid(),SIGSTOP); } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && sig != TARGET_SIGWINCH && sig != TARGET_SIGCONT) { dump_core_and_abort(cpu_env, sig); } } else if (handler == TARGET_SIG_IGN) { /* ignore sig */ } else if (handler == TARGET_SIG_ERR) { dump_core_and_abort(cpu_env, sig); } else { /* compute the blocked signals during the handler execution */ sigset_t *blocked_set; target_to_host_sigset(&set, &sa->sa_mask); /* SA_NODEFER indicates that the current signal should not be blocked during the handler */ if (!(sa->sa_flags & TARGET_SA_NODEFER)) sigaddset(&set, target_to_host_signal(sig)); /* save the previous blocked signal state to restore it at the end of the signal execution (see do_sigreturn) */ host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); /* block signals in the handler */ blocked_set = ts->in_sigsuspend ? &ts->sigsuspend_mask : &ts->signal_mask; sigorset(&ts->signal_mask, blocked_set, &set); ts->in_sigsuspend = 0; /* if the CPU is in VM86 mode, we restore the 32 bit values */ #if defined(TARGET_I386) && !defined(TARGET_X86_64) { CPUX86State *env = cpu_env; if (env->eflags & VM_MASK) save_v86_state(env); } #endif /* prepare the stack frame of the virtual CPU */ #if defined(TARGET_ARCH_HAS_SETUP_FRAME) if (sa->sa_flags & TARGET_SA_SIGINFO) { setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); } else { setup_frame(sig, sa, &target_old_set, cpu_env); } #else /* These targets do not have traditional signals. */ setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env); #endif if (sa->sa_flags & TARGET_SA_RESETHAND) { sa->_sa_handler = TARGET_SIG_DFL; } } } void process_pending_signals(CPUArchState *cpu_env) { CPUState *cpu = env_cpu(cpu_env); int sig; TaskState *ts = get_task_state(cpu); sigset_t set; sigset_t *blocked_set; while (qatomic_read(&ts->signal_pending)) { sigfillset(&set); sigprocmask(SIG_SETMASK, &set, 0); restart_scan: sig = ts->sync_signal.pending; if (sig) { /* Synchronous signals are forced, * see force_sig_info() and callers in Linux * Note that not all of our queue_signal() calls in QEMU correspond * to force_sig_info() calls in Linux (some are send_sig_info()). * However it seems like a kernel bug to me to allow the process * to block a synchronous signal since it could then just end up * looping round and round indefinitely. */ if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig]) || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]); sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; } handle_pending_signal(cpu_env, sig, &ts->sync_signal); } for (sig = 1; sig <= TARGET_NSIG; sig++) { blocked_set = ts->in_sigsuspend ? &ts->sigsuspend_mask : &ts->signal_mask; if (ts->sigtab[sig - 1].pending && (!sigismember(blocked_set, target_to_host_signal_table[sig]))) { handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]); /* Restart scan from the beginning, as handle_pending_signal * might have resulted in a new synchronous signal (eg SIGSEGV). */ goto restart_scan; } } /* if no signal is pending, unblock signals and recheck (the act * of unblocking might cause us to take another host signal which * will set signal_pending again). */ qatomic_set(&ts->signal_pending, 0); ts->in_sigsuspend = 0; set = ts->signal_mask; sigdelset(&set, SIGSEGV); sigdelset(&set, SIGBUS); sigprocmask(SIG_SETMASK, &set, 0); } ts->in_sigsuspend = 0; } int process_sigsuspend_mask(sigset_t **pset, target_ulong sigset, target_ulong sigsize) { TaskState *ts = get_task_state(thread_cpu); sigset_t *host_set = &ts->sigsuspend_mask; target_sigset_t *target_sigset; if (sigsize != sizeof(*target_sigset)) { /* Like the kernel, we enforce correct size sigsets */ return -TARGET_EINVAL; } target_sigset = lock_user(VERIFY_READ, sigset, sigsize, 1); if (!target_sigset) { return -TARGET_EFAULT; } target_to_host_sigset(host_set, target_sigset); unlock_user(target_sigset, sigset, 0); *pset = host_set; return 0; }