#ifndef QEMU_H
#define QEMU_H

#include <signal.h>
#include <string.h>

#include "cpu.h"

#undef DEBUG_REMAP
#ifdef DEBUG_REMAP
#include <stdlib.h>
#endif /* DEBUG_REMAP */

#include "exec/user/abitypes.h"

#include "exec/user/thunk.h"
#include "syscall_defs.h"
#include "syscall.h"
#include "exec/gdbstub.h"
#include "qemu/queue.h"

#define THREAD __thread

/* This struct is used to hold certain information about the image.
 * Basically, it replicates in user space what would be certain
 * task_struct fields in the kernel
 */
struct image_info {
        abi_ulong       load_bias;
        abi_ulong       load_addr;
        abi_ulong       start_code;
        abi_ulong       end_code;
        abi_ulong       start_data;
        abi_ulong       end_data;
        abi_ulong       start_brk;
        abi_ulong       brk;
        abi_ulong       start_mmap;
        abi_ulong       mmap;
        abi_ulong       rss;
        abi_ulong       start_stack;
        abi_ulong       stack_limit;
        abi_ulong       entry;
        abi_ulong       code_offset;
        abi_ulong       data_offset;
        abi_ulong       saved_auxv;
        abi_ulong       auxv_len;
        abi_ulong       arg_start;
        abi_ulong       arg_end;
        uint32_t        elf_flags;
	int		personality;
#ifdef CONFIG_USE_FDPIC
        abi_ulong       loadmap_addr;
        uint16_t        nsegs;
        void           *loadsegs;
        abi_ulong       pt_dynamic_addr;
        struct image_info *other_info;
#endif
};

#ifdef TARGET_I386
/* Information about the current linux thread */
struct vm86_saved_state {
    uint32_t eax; /* return code */
    uint32_t ebx;
    uint32_t ecx;
    uint32_t edx;
    uint32_t esi;
    uint32_t edi;
    uint32_t ebp;
    uint32_t esp;
    uint32_t eflags;
    uint32_t eip;
    uint16_t cs, ss, ds, es, fs, gs;
};
#endif

#if defined(TARGET_ARM) && defined(TARGET_ABI32)
/* FPU emulator */
#include "nwfpe/fpa11.h"
#endif

#define MAX_SIGQUEUE_SIZE 1024

struct sigqueue {
    struct sigqueue *next;
    target_siginfo_t info;
};

struct emulated_sigtable {
    int pending; /* true if signal is pending */
    struct sigqueue *first;
    struct sigqueue info; /* in order to always have memory for the
                             first signal, we put it here */
};

/* NOTE: we force a big alignment so that the stack stored after is
   aligned too */
typedef struct TaskState {
    pid_t ts_tid;     /* tid (or pid) of this task */
#ifdef TARGET_ARM
# ifdef TARGET_ABI32
    /* FPA state */
    FPA11 fpa;
# endif
    int swi_errno;
#endif
#ifdef TARGET_UNICORE32
    int swi_errno;
#endif
#if defined(TARGET_I386) && !defined(TARGET_X86_64)
    abi_ulong target_v86;
    struct vm86_saved_state vm86_saved_regs;
    struct target_vm86plus_struct vm86plus;
    uint32_t v86flags;
    uint32_t v86mask;
#endif
    abi_ulong child_tidptr;
#ifdef TARGET_M68K
    int sim_syscalls;
    abi_ulong tp_value;
#endif
#if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
    /* Extra fields for semihosted binaries.  */
    uint32_t heap_base;
    uint32_t heap_limit;
#endif
    uint32_t stack_base;
    int used; /* non zero if used */
    struct image_info *info;
    struct linux_binprm *bprm;

    struct emulated_sigtable sigtab[TARGET_NSIG];
    struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
    struct sigqueue *first_free; /* first free siginfo queue entry */
    int signal_pending; /* non zero if a signal may be pending */
} __attribute__((aligned(16))) TaskState;

extern char *exec_path;
void init_task_state(TaskState *ts);
void task_settid(TaskState *);
void stop_all_tasks(void);
extern const char *qemu_uname_release;
extern unsigned long mmap_min_addr;

/* ??? See if we can avoid exposing so much of the loader internals.  */
/*
 * MAX_ARG_PAGES defines the number of pages allocated for arguments
 * and envelope for the new program. 32 should suffice, this gives
 * a maximum env+arg of 128kB w/4KB pages!
 */
#define MAX_ARG_PAGES 33

/* Read a good amount of data initially, to hopefully get all the
   program headers loaded.  */
#define BPRM_BUF_SIZE  1024

/*
 * This structure is used to hold the arguments that are
 * used when loading binaries.
 */
struct linux_binprm {
        char buf[BPRM_BUF_SIZE] __attribute__((aligned));
        void *page[MAX_ARG_PAGES];
        abi_ulong p;
	int fd;
        int e_uid, e_gid;
        int argc, envc;
        char **argv;
        char **envp;
        char * filename;        /* Name of binary */
        int (*core_dump)(int, const CPUArchState *); /* coredump routine */
};

void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
                              abi_ulong stringp, int push_ptr);
int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
             struct target_pt_regs * regs, struct image_info *infop,
             struct linux_binprm *);

int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
                    struct image_info * info);
int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
                    struct image_info * info);

abi_long memcpy_to_target(abi_ulong dest, const void *src,
                          unsigned long len);
void target_set_brk(abi_ulong new_brk);
abi_long do_brk(abi_ulong new_brk);
void syscall_init(void);
abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
                    abi_long arg2, abi_long arg3, abi_long arg4,
                    abi_long arg5, abi_long arg6, abi_long arg7,
                    abi_long arg8);
void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
extern THREAD CPUState *thread_cpu;
void cpu_loop(CPUArchState *env);
char *target_strerror(int err);
int get_osversion(void);
void init_qemu_uname_release(void);
void fork_start(void);
void fork_end(int child);

/* Creates the initial guest address space in the host memory space using
 * the given host start address hint and size.  The guest_start parameter
 * specifies the start address of the guest space.  guest_base will be the
 * difference between the host start address computed by this function and
 * guest_start.  If fixed is specified, then the mapped address space must
 * start at host_start.  The real start address of the mapped memory space is
 * returned or -1 if there was an error.
 */
unsigned long init_guest_space(unsigned long host_start,
                               unsigned long host_size,
                               unsigned long guest_start,
                               bool fixed);

#include "qemu/log.h"

/* syscall.c */
int host_to_target_waitstatus(int status);

/* strace.c */
void print_syscall(int num,
                   abi_long arg1, abi_long arg2, abi_long arg3,
                   abi_long arg4, abi_long arg5, abi_long arg6);
void print_syscall_ret(int num, abi_long arg1);
extern int do_strace;

/* signal.c */
void process_pending_signals(CPUArchState *cpu_env);
void signal_init(void);
int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
int target_to_host_signal(int sig);
int host_to_target_signal(int sig);
long do_sigreturn(CPUArchState *env);
long do_rt_sigreturn(CPUArchState *env);
abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);

#ifdef TARGET_I386
/* vm86.c */
void save_v86_state(CPUX86State *env);
void handle_vm86_trap(CPUX86State *env, int trapno);
void handle_vm86_fault(CPUX86State *env);
int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
#elif defined(TARGET_SPARC64)
void sparc64_set_context(CPUSPARCState *env);
void sparc64_get_context(CPUSPARCState *env);
#endif

/* mmap.c */
int target_mprotect(abi_ulong start, abi_ulong len, int prot);
abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
                     int flags, int fd, abi_ulong offset);
int target_munmap(abi_ulong start, abi_ulong len);
abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
                       abi_ulong new_size, unsigned long flags,
                       abi_ulong new_addr);
int target_msync(abi_ulong start, abi_ulong len, int flags);
extern unsigned long last_brk;
extern abi_ulong mmap_next_start;
void mmap_lock(void);
void mmap_unlock(void);
abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
void cpu_list_lock(void);
void cpu_list_unlock(void);
void mmap_fork_start(void);
void mmap_fork_end(int child);

/* main.c */
extern unsigned long guest_stack_size;

/* user access */

#define VERIFY_READ 0
#define VERIFY_WRITE 1 /* implies read access */

static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
{
    return page_check_range((target_ulong)addr, size,
                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
}

/* NOTE __get_user and __put_user use host pointers and don't check access.
   These are usually used to access struct data members once the struct has
   been locked - usually with lock_user_struct.  */

/* Tricky points:
   - Use __builtin_choose_expr to avoid type promotion from ?:,
   - Invalid sizes result in a compile time error stemming from
     the fact that abort has no parameters.
   - It's easier to use the endian-specific unaligned load/store
     functions than host-endian unaligned load/store plus tswapN.  */

#define __put_user_e(x, hptr, e)                                        \
  (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                   \
   __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,             \
   __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,             \
   __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))   \
     ((hptr), (x)), 0)

#define __get_user_e(x, hptr, e)                                        \
  ((x) = (typeof(*hptr))(                                               \
   __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                  \
   __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,            \
   __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,             \
   __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))   \
     (hptr)), 0)

#ifdef TARGET_WORDS_BIGENDIAN
# define __put_user(x, hptr)  __put_user_e(x, hptr, be)
# define __get_user(x, hptr)  __get_user_e(x, hptr, be)
#else
# define __put_user(x, hptr)  __put_user_e(x, hptr, le)
# define __get_user(x, hptr)  __get_user_e(x, hptr, le)
#endif

/* put_user()/get_user() take a guest address and check access */
/* These are usually used to access an atomic data type, such as an int,
 * that has been passed by address.  These internally perform locking
 * and unlocking on the data type.
 */
#define put_user(x, gaddr, target_type)					\
({									\
    abi_ulong __gaddr = (gaddr);					\
    target_type *__hptr;						\
    abi_long __ret;							\
    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
        __ret = __put_user((x), __hptr);				\
        unlock_user(__hptr, __gaddr, sizeof(target_type));		\
    } else								\
        __ret = -TARGET_EFAULT;						\
    __ret;								\
})

#define get_user(x, gaddr, target_type)					\
({									\
    abi_ulong __gaddr = (gaddr);					\
    target_type *__hptr;						\
    abi_long __ret;							\
    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
        __ret = __get_user((x), __hptr);				\
        unlock_user(__hptr, __gaddr, 0);				\
    } else {								\
        /* avoid warning */						\
        (x) = 0;							\
        __ret = -TARGET_EFAULT;						\
    }									\
    __ret;								\
})

#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)

#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)

/* copy_from_user() and copy_to_user() are usually used to copy data
 * buffers between the target and host.  These internally perform
 * locking/unlocking of the memory.
 */
abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);

/* Functions for accessing guest memory.  The tget and tput functions
   read/write single values, byteswapping as necessary.  The lock_user function
   gets a pointer to a contiguous area of guest memory, but does not perform
   any byteswapping.  lock_user may return either a pointer to the guest
   memory, or a temporary buffer.  */

/* Lock an area of guest memory into the host.  If copy is true then the
   host area will have the same contents as the guest.  */
static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
{
    if (!access_ok(type, guest_addr, len))
        return NULL;
#ifdef DEBUG_REMAP
    {
        void *addr;
        addr = malloc(len);
        if (copy)
            memcpy(addr, g2h(guest_addr), len);
        else
            memset(addr, 0, len);
        return addr;
    }
#else
    return g2h(guest_addr);
#endif
}

/* Unlock an area of guest memory.  The first LEN bytes must be
   flushed back to guest memory. host_ptr = NULL is explicitly
   allowed and does nothing. */
static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
                               long len)
{

#ifdef DEBUG_REMAP
    if (!host_ptr)
        return;
    if (host_ptr == g2h(guest_addr))
        return;
    if (len > 0)
        memcpy(g2h(guest_addr), host_ptr, len);
    free(host_ptr);
#endif
}

/* Return the length of a string in target memory or -TARGET_EFAULT if
   access error. */
abi_long target_strlen(abi_ulong gaddr);

/* Like lock_user but for null terminated strings.  */
static inline void *lock_user_string(abi_ulong guest_addr)
{
    abi_long len;
    len = target_strlen(guest_addr);
    if (len < 0)
        return NULL;
    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
}

/* Helper macros for locking/unlocking a target struct.  */
#define lock_user_struct(type, host_ptr, guest_addr, copy)	\
    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
#define unlock_user_struct(host_ptr, guest_addr, copy)		\
    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)

#include <pthread.h>

/* Include target-specific struct and function definitions;
 * they may need access to the target-independent structures
 * above, so include them last.
 */
#include "target_cpu.h"
#include "target_signal.h"
#include "target_structs.h"

#endif /* QEMU_H */