#ifndef QEMU_H #define QEMU_H #include <signal.h> #include <string.h> #include "cpu.h" #undef DEBUG_REMAP #ifdef DEBUG_REMAP #include <stdlib.h> #endif /* DEBUG_REMAP */ #include "exec/user/abitypes.h" #include "exec/user/thunk.h" #include "syscall_defs.h" #include "syscall.h" #include "exec/gdbstub.h" #include "qemu/queue.h" #define THREAD __thread /* This struct is used to hold certain information about the image. * Basically, it replicates in user space what would be certain * task_struct fields in the kernel */ struct image_info { abi_ulong load_bias; abi_ulong load_addr; abi_ulong start_code; abi_ulong end_code; abi_ulong start_data; abi_ulong end_data; abi_ulong start_brk; abi_ulong brk; abi_ulong start_mmap; abi_ulong mmap; abi_ulong rss; abi_ulong start_stack; abi_ulong stack_limit; abi_ulong entry; abi_ulong code_offset; abi_ulong data_offset; abi_ulong saved_auxv; abi_ulong auxv_len; abi_ulong arg_start; abi_ulong arg_end; uint32_t elf_flags; int personality; #ifdef CONFIG_USE_FDPIC abi_ulong loadmap_addr; uint16_t nsegs; void *loadsegs; abi_ulong pt_dynamic_addr; struct image_info *other_info; #endif }; #ifdef TARGET_I386 /* Information about the current linux thread */ struct vm86_saved_state { uint32_t eax; /* return code */ uint32_t ebx; uint32_t ecx; uint32_t edx; uint32_t esi; uint32_t edi; uint32_t ebp; uint32_t esp; uint32_t eflags; uint32_t eip; uint16_t cs, ss, ds, es, fs, gs; }; #endif #if defined(TARGET_ARM) && defined(TARGET_ABI32) /* FPU emulator */ #include "nwfpe/fpa11.h" #endif #define MAX_SIGQUEUE_SIZE 1024 struct sigqueue { struct sigqueue *next; target_siginfo_t info; }; struct emulated_sigtable { int pending; /* true if signal is pending */ struct sigqueue *first; struct sigqueue info; /* in order to always have memory for the first signal, we put it here */ }; /* NOTE: we force a big alignment so that the stack stored after is aligned too */ typedef struct TaskState { pid_t ts_tid; /* tid (or pid) of this task */ #ifdef TARGET_ARM # ifdef TARGET_ABI32 /* FPA state */ FPA11 fpa; # endif int swi_errno; #endif #ifdef TARGET_UNICORE32 int swi_errno; #endif #if defined(TARGET_I386) && !defined(TARGET_X86_64) abi_ulong target_v86; struct vm86_saved_state vm86_saved_regs; struct target_vm86plus_struct vm86plus; uint32_t v86flags; uint32_t v86mask; #endif abi_ulong child_tidptr; #ifdef TARGET_M68K int sim_syscalls; abi_ulong tp_value; #endif #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) /* Extra fields for semihosted binaries. */ uint32_t heap_base; uint32_t heap_limit; #endif uint32_t stack_base; int used; /* non zero if used */ struct image_info *info; struct linux_binprm *bprm; struct emulated_sigtable sigtab[TARGET_NSIG]; struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */ struct sigqueue *first_free; /* first free siginfo queue entry */ int signal_pending; /* non zero if a signal may be pending */ } __attribute__((aligned(16))) TaskState; extern char *exec_path; void init_task_state(TaskState *ts); void task_settid(TaskState *); void stop_all_tasks(void); extern const char *qemu_uname_release; extern unsigned long mmap_min_addr; /* ??? See if we can avoid exposing so much of the loader internals. */ /* * MAX_ARG_PAGES defines the number of pages allocated for arguments * and envelope for the new program. 32 should suffice, this gives * a maximum env+arg of 128kB w/4KB pages! */ #define MAX_ARG_PAGES 33 /* Read a good amount of data initially, to hopefully get all the program headers loaded. */ #define BPRM_BUF_SIZE 1024 /* * This structure is used to hold the arguments that are * used when loading binaries. */ struct linux_binprm { char buf[BPRM_BUF_SIZE] __attribute__((aligned)); void *page[MAX_ARG_PAGES]; abi_ulong p; int fd; int e_uid, e_gid; int argc, envc; char **argv; char **envp; char * filename; /* Name of binary */ int (*core_dump)(int, const CPUArchState *); /* coredump routine */ }; void do_init_thread(struct target_pt_regs *regs, struct image_info *infop); abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp, abi_ulong stringp, int push_ptr); int loader_exec(int fdexec, const char *filename, char **argv, char **envp, struct target_pt_regs * regs, struct image_info *infop, struct linux_binprm *); int load_elf_binary(struct linux_binprm *bprm, struct image_info *info); int load_flt_binary(struct linux_binprm *bprm, struct image_info *info); abi_long memcpy_to_target(abi_ulong dest, const void *src, unsigned long len); void target_set_brk(abi_ulong new_brk); abi_long do_brk(abi_ulong new_brk); void syscall_init(void); abi_long do_syscall(void *cpu_env, int num, abi_long arg1, abi_long arg2, abi_long arg3, abi_long arg4, abi_long arg5, abi_long arg6, abi_long arg7, abi_long arg8); void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2); extern THREAD CPUState *thread_cpu; void cpu_loop(CPUArchState *env); char *target_strerror(int err); int get_osversion(void); void init_qemu_uname_release(void); void fork_start(void); void fork_end(int child); /* Creates the initial guest address space in the host memory space using * the given host start address hint and size. The guest_start parameter * specifies the start address of the guest space. guest_base will be the * difference between the host start address computed by this function and * guest_start. If fixed is specified, then the mapped address space must * start at host_start. The real start address of the mapped memory space is * returned or -1 if there was an error. */ unsigned long init_guest_space(unsigned long host_start, unsigned long host_size, unsigned long guest_start, bool fixed); #include "qemu/log.h" /* syscall.c */ int host_to_target_waitstatus(int status); /* strace.c */ void print_syscall(int num, abi_long arg1, abi_long arg2, abi_long arg3, abi_long arg4, abi_long arg5, abi_long arg6); void print_syscall_ret(int num, abi_long arg1); extern int do_strace; /* signal.c */ void process_pending_signals(CPUArchState *cpu_env); void signal_init(void); int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info); void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info); void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo); int target_to_host_signal(int sig); int host_to_target_signal(int sig); long do_sigreturn(CPUArchState *env); long do_rt_sigreturn(CPUArchState *env); abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp); #ifdef TARGET_I386 /* vm86.c */ void save_v86_state(CPUX86State *env); void handle_vm86_trap(CPUX86State *env, int trapno); void handle_vm86_fault(CPUX86State *env); int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr); #elif defined(TARGET_SPARC64) void sparc64_set_context(CPUSPARCState *env); void sparc64_get_context(CPUSPARCState *env); #endif /* mmap.c */ int target_mprotect(abi_ulong start, abi_ulong len, int prot); abi_long target_mmap(abi_ulong start, abi_ulong len, int prot, int flags, int fd, abi_ulong offset); int target_munmap(abi_ulong start, abi_ulong len); abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, abi_ulong new_size, unsigned long flags, abi_ulong new_addr); int target_msync(abi_ulong start, abi_ulong len, int flags); extern unsigned long last_brk; extern abi_ulong mmap_next_start; void mmap_lock(void); void mmap_unlock(void); abi_ulong mmap_find_vma(abi_ulong, abi_ulong); void cpu_list_lock(void); void cpu_list_unlock(void); void mmap_fork_start(void); void mmap_fork_end(int child); /* main.c */ extern unsigned long guest_stack_size; /* user access */ #define VERIFY_READ 0 #define VERIFY_WRITE 1 /* implies read access */ static inline int access_ok(int type, abi_ulong addr, abi_ulong size) { return page_check_range((target_ulong)addr, size, (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0; } /* NOTE __get_user and __put_user use host pointers and don't check access. These are usually used to access struct data members once the struct has been locked - usually with lock_user_struct. */ /* Tricky points: - Use __builtin_choose_expr to avoid type promotion from ?:, - Invalid sizes result in a compile time error stemming from the fact that abort has no parameters. - It's easier to use the endian-specific unaligned load/store functions than host-endian unaligned load/store plus tswapN. */ #define __put_user_e(x, hptr, e) \ (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p, \ __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p, \ __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p, \ __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort)))) \ ((hptr), (x)), 0) #define __get_user_e(x, hptr, e) \ ((x) = (typeof(*hptr))( \ __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p, \ __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p, \ __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p, \ __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort)))) \ (hptr)), 0) #ifdef TARGET_WORDS_BIGENDIAN # define __put_user(x, hptr) __put_user_e(x, hptr, be) # define __get_user(x, hptr) __get_user_e(x, hptr, be) #else # define __put_user(x, hptr) __put_user_e(x, hptr, le) # define __get_user(x, hptr) __get_user_e(x, hptr, le) #endif /* put_user()/get_user() take a guest address and check access */ /* These are usually used to access an atomic data type, such as an int, * that has been passed by address. These internally perform locking * and unlocking on the data type. */ #define put_user(x, gaddr, target_type) \ ({ \ abi_ulong __gaddr = (gaddr); \ target_type *__hptr; \ abi_long __ret; \ if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \ __ret = __put_user((x), __hptr); \ unlock_user(__hptr, __gaddr, sizeof(target_type)); \ } else \ __ret = -TARGET_EFAULT; \ __ret; \ }) #define get_user(x, gaddr, target_type) \ ({ \ abi_ulong __gaddr = (gaddr); \ target_type *__hptr; \ abi_long __ret; \ if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \ __ret = __get_user((x), __hptr); \ unlock_user(__hptr, __gaddr, 0); \ } else { \ /* avoid warning */ \ (x) = 0; \ __ret = -TARGET_EFAULT; \ } \ __ret; \ }) #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong) #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long) #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t) #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t) #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t) #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t) #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t) #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t) #define put_user_u8(x, gaddr) put_user((x), (gaddr), uint8_t) #define put_user_s8(x, gaddr) put_user((x), (gaddr), int8_t) #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong) #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long) #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t) #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t) #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t) #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t) #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t) #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t) #define get_user_u8(x, gaddr) get_user((x), (gaddr), uint8_t) #define get_user_s8(x, gaddr) get_user((x), (gaddr), int8_t) /* copy_from_user() and copy_to_user() are usually used to copy data * buffers between the target and host. These internally perform * locking/unlocking of the memory. */ abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len); abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len); /* Functions for accessing guest memory. The tget and tput functions read/write single values, byteswapping as necessary. The lock_user function gets a pointer to a contiguous area of guest memory, but does not perform any byteswapping. lock_user may return either a pointer to the guest memory, or a temporary buffer. */ /* Lock an area of guest memory into the host. If copy is true then the host area will have the same contents as the guest. */ static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy) { if (!access_ok(type, guest_addr, len)) return NULL; #ifdef DEBUG_REMAP { void *addr; addr = malloc(len); if (copy) memcpy(addr, g2h(guest_addr), len); else memset(addr, 0, len); return addr; } #else return g2h(guest_addr); #endif } /* Unlock an area of guest memory. The first LEN bytes must be flushed back to guest memory. host_ptr = NULL is explicitly allowed and does nothing. */ static inline void unlock_user(void *host_ptr, abi_ulong guest_addr, long len) { #ifdef DEBUG_REMAP if (!host_ptr) return; if (host_ptr == g2h(guest_addr)) return; if (len > 0) memcpy(g2h(guest_addr), host_ptr, len); free(host_ptr); #endif } /* Return the length of a string in target memory or -TARGET_EFAULT if access error. */ abi_long target_strlen(abi_ulong gaddr); /* Like lock_user but for null terminated strings. */ static inline void *lock_user_string(abi_ulong guest_addr) { abi_long len; len = target_strlen(guest_addr); if (len < 0) return NULL; return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1); } /* Helper macros for locking/unlocking a target struct. */ #define lock_user_struct(type, host_ptr, guest_addr, copy) \ (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy)) #define unlock_user_struct(host_ptr, guest_addr, copy) \ unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0) #include <pthread.h> /* Include target-specific struct and function definitions; * they may need access to the target-independent structures * above, so include them last. */ #include "target_cpu.h" #include "target_signal.h" #include "target_structs.h" #endif /* QEMU_H */