/* * mmap support for qemu * * Copyright (c) 2003 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "qemu/osdep.h" #include #include "trace.h" #include "exec/log.h" #include "qemu.h" #include "user-internals.h" #include "user-mmap.h" #include "target_mman.h" #include "qemu/interval-tree.h" #ifdef TARGET_ARM #include "target/arm/cpu-features.h" #endif static pthread_mutex_t mmap_mutex = PTHREAD_MUTEX_INITIALIZER; static __thread int mmap_lock_count; void mmap_lock(void) { if (mmap_lock_count++ == 0) { pthread_mutex_lock(&mmap_mutex); } } void mmap_unlock(void) { assert(mmap_lock_count > 0); if (--mmap_lock_count == 0) { pthread_mutex_unlock(&mmap_mutex); } } bool have_mmap_lock(void) { return mmap_lock_count > 0 ? true : false; } /* Grab lock to make sure things are in a consistent state after fork(). */ void mmap_fork_start(void) { if (mmap_lock_count) abort(); pthread_mutex_lock(&mmap_mutex); } void mmap_fork_end(int child) { if (child) { pthread_mutex_init(&mmap_mutex, NULL); } else { pthread_mutex_unlock(&mmap_mutex); } } /* Protected by mmap_lock. */ static IntervalTreeRoot shm_regions; static void shm_region_add(abi_ptr start, abi_ptr last) { IntervalTreeNode *i = g_new0(IntervalTreeNode, 1); i->start = start; i->last = last; interval_tree_insert(i, &shm_regions); } static abi_ptr shm_region_find(abi_ptr start) { IntervalTreeNode *i; for (i = interval_tree_iter_first(&shm_regions, start, start); i; i = interval_tree_iter_next(i, start, start)) { if (i->start == start) { return i->last; } } return 0; } static void shm_region_rm_complete(abi_ptr start, abi_ptr last) { IntervalTreeNode *i, *n; for (i = interval_tree_iter_first(&shm_regions, start, last); i; i = n) { n = interval_tree_iter_next(i, start, last); if (i->start >= start && i->last <= last) { interval_tree_remove(i, &shm_regions); g_free(i); } } } /* * Validate target prot bitmask. * Return the prot bitmask for the host in *HOST_PROT. * Return 0 if the target prot bitmask is invalid, otherwise * the internal qemu page_flags (which will include PAGE_VALID). */ static int validate_prot_to_pageflags(int prot) { int valid = PROT_READ | PROT_WRITE | PROT_EXEC | TARGET_PROT_SEM; int page_flags = (prot & PAGE_BITS) | PAGE_VALID; #ifdef TARGET_AARCH64 { ARMCPU *cpu = ARM_CPU(thread_cpu); /* * The PROT_BTI bit is only accepted if the cpu supports the feature. * Since this is the unusual case, don't bother checking unless * the bit has been requested. If set and valid, record the bit * within QEMU's page_flags. */ if ((prot & TARGET_PROT_BTI) && cpu_isar_feature(aa64_bti, cpu)) { valid |= TARGET_PROT_BTI; page_flags |= PAGE_BTI; } /* Similarly for the PROT_MTE bit. */ if ((prot & TARGET_PROT_MTE) && cpu_isar_feature(aa64_mte, cpu)) { valid |= TARGET_PROT_MTE; page_flags |= PAGE_MTE; } } #elif defined(TARGET_HPPA) valid |= PROT_GROWSDOWN | PROT_GROWSUP; #endif return prot & ~valid ? 0 : page_flags; } /* * For the host, we need not pass anything except read/write/exec. * While PROT_SEM is allowed by all hosts, it is also ignored, so * don't bother transforming guest bit to host bit. Any other * target-specific prot bits will not be understood by the host * and will need to be encoded into page_flags for qemu emulation. * * Pages that are executable by the guest will never be executed * by the host, but the host will need to be able to read them. */ static int target_to_host_prot(int prot) { return (prot & (PROT_READ | PROT_WRITE)) | (prot & PROT_EXEC ? PROT_READ : 0); } /* NOTE: all the constants are the HOST ones, but addresses are target. */ int target_mprotect(abi_ulong start, abi_ulong len, int target_prot) { int host_page_size = qemu_real_host_page_size(); abi_ulong starts[3]; abi_ulong lens[3]; int prots[3]; abi_ulong host_start, host_last, last; int prot1, ret, page_flags, nranges; trace_target_mprotect(start, len, target_prot); if ((start & ~TARGET_PAGE_MASK) != 0) { return -TARGET_EINVAL; } page_flags = validate_prot_to_pageflags(target_prot); if (!page_flags) { return -TARGET_EINVAL; } if (len == 0) { return 0; } len = TARGET_PAGE_ALIGN(len); if (!guest_range_valid_untagged(start, len)) { return -TARGET_ENOMEM; } last = start + len - 1; host_start = start & -host_page_size; host_last = ROUND_UP(last, host_page_size) - 1; nranges = 0; mmap_lock(); if (host_last - host_start < host_page_size) { /* Single host page contains all guest pages: sum the prot. */ prot1 = target_prot; for (abi_ulong a = host_start; a < start; a += TARGET_PAGE_SIZE) { prot1 |= page_get_flags(a); } for (abi_ulong a = last; a < host_last; a += TARGET_PAGE_SIZE) { prot1 |= page_get_flags(a + 1); } starts[nranges] = host_start; lens[nranges] = host_page_size; prots[nranges] = prot1; nranges++; } else { if (host_start < start) { /* Host page contains more than one guest page: sum the prot. */ prot1 = target_prot; for (abi_ulong a = host_start; a < start; a += TARGET_PAGE_SIZE) { prot1 |= page_get_flags(a); } /* If the resulting sum differs, create a new range. */ if (prot1 != target_prot) { starts[nranges] = host_start; lens[nranges] = host_page_size; prots[nranges] = prot1; nranges++; host_start += host_page_size; } } if (last < host_last) { /* Host page contains more than one guest page: sum the prot. */ prot1 = target_prot; for (abi_ulong a = last; a < host_last; a += TARGET_PAGE_SIZE) { prot1 |= page_get_flags(a + 1); } /* If the resulting sum differs, create a new range. */ if (prot1 != target_prot) { host_last -= host_page_size; starts[nranges] = host_last + 1; lens[nranges] = host_page_size; prots[nranges] = prot1; nranges++; } } /* Create a range for the middle, if any remains. */ if (host_start < host_last) { starts[nranges] = host_start; lens[nranges] = host_last - host_start + 1; prots[nranges] = target_prot; nranges++; } } for (int i = 0; i < nranges; ++i) { ret = mprotect(g2h_untagged(starts[i]), lens[i], target_to_host_prot(prots[i])); if (ret != 0) { goto error; } } page_set_flags(start, last, page_flags); ret = 0; error: mmap_unlock(); return ret; } /* * Perform munmap on behalf of the target, with host parameters. * If reserved_va, we must replace the memory reservation. */ static int do_munmap(void *addr, size_t len) { if (reserved_va) { void *ptr = mmap(addr, len, PROT_NONE, MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0); return ptr == addr ? 0 : -1; } return munmap(addr, len); } /* * Perform a pread on behalf of target_mmap. We can reach EOF, we can be * interrupted by signals, and in general there's no good error return path. * If @zero, zero the rest of the block at EOF. * Return true on success. */ static bool mmap_pread(int fd, void *p, size_t len, off_t offset, bool zero) { while (1) { ssize_t r = pread(fd, p, len, offset); if (likely(r == len)) { /* Complete */ return true; } if (r == 0) { /* EOF */ if (zero) { memset(p, 0, len); } return true; } if (r > 0) { /* Short read */ p += r; len -= r; offset += r; } else if (errno != EINTR) { /* Error */ return false; } } } /* * Map an incomplete host page. * * Here be dragons. This case will not work if there is an existing * overlapping host page, which is file mapped, and for which the mapping * is beyond the end of the file. In that case, we will see SIGBUS when * trying to write a portion of this page. * * FIXME: Work around this with a temporary signal handler and longjmp. */ static bool mmap_frag(abi_ulong real_start, abi_ulong start, abi_ulong last, int prot, int flags, int fd, off_t offset) { int host_page_size = qemu_real_host_page_size(); abi_ulong real_last; void *host_start; int prot_old, prot_new; int host_prot_old, host_prot_new; if (!(flags & MAP_ANONYMOUS) && (flags & MAP_TYPE) == MAP_SHARED && (prot & PROT_WRITE)) { /* * msync() won't work with the partial page, so we return an * error if write is possible while it is a shared mapping. */ errno = EINVAL; return false; } real_last = real_start + host_page_size - 1; host_start = g2h_untagged(real_start); /* Get the protection of the target pages outside the mapping. */ prot_old = 0; for (abi_ulong a = real_start; a < start; a += TARGET_PAGE_SIZE) { prot_old |= page_get_flags(a); } for (abi_ulong a = real_last; a > last; a -= TARGET_PAGE_SIZE) { prot_old |= page_get_flags(a); } if (prot_old == 0) { /* * Since !(prot_old & PAGE_VALID), there were no guest pages * outside of the fragment we need to map. Allocate a new host * page to cover, discarding whatever else may have been present. */ void *p = mmap(host_start, host_page_size, target_to_host_prot(prot), flags | MAP_ANONYMOUS, -1, 0); if (p != host_start) { if (p != MAP_FAILED) { do_munmap(p, host_page_size); errno = EEXIST; } return false; } prot_old = prot; } prot_new = prot | prot_old; host_prot_old = target_to_host_prot(prot_old); host_prot_new = target_to_host_prot(prot_new); /* Adjust protection to be able to write. */ if (!(host_prot_old & PROT_WRITE)) { host_prot_old |= PROT_WRITE; mprotect(host_start, host_page_size, host_prot_old); } /* Read or zero the new guest pages. */ if (flags & MAP_ANONYMOUS) { memset(g2h_untagged(start), 0, last - start + 1); } else if (!mmap_pread(fd, g2h_untagged(start), last - start + 1, offset, true)) { return false; } /* Put final protection */ if (host_prot_new != host_prot_old) { mprotect(host_start, host_page_size, host_prot_new); } return true; } abi_ulong task_unmapped_base; abi_ulong elf_et_dyn_base; abi_ulong mmap_next_start; /* * Subroutine of mmap_find_vma, used when we have pre-allocated * a chunk of guest address space. */ static abi_ulong mmap_find_vma_reserved(abi_ulong start, abi_ulong size, abi_ulong align) { target_ulong ret; ret = page_find_range_empty(start, reserved_va, size, align); if (ret == -1 && start > mmap_min_addr) { /* Restart at the beginning of the address space. */ ret = page_find_range_empty(mmap_min_addr, start - 1, size, align); } return ret; } /* * Find and reserve a free memory area of size 'size'. The search * starts at 'start'. * It must be called with mmap_lock() held. * Return -1 if error. */ abi_ulong mmap_find_vma(abi_ulong start, abi_ulong size, abi_ulong align) { int host_page_size = qemu_real_host_page_size(); void *ptr, *prev; abi_ulong addr; int wrapped, repeat; align = MAX(align, host_page_size); /* If 'start' == 0, then a default start address is used. */ if (start == 0) { start = mmap_next_start; } else { start &= -host_page_size; } start = ROUND_UP(start, align); size = ROUND_UP(size, host_page_size); if (reserved_va) { return mmap_find_vma_reserved(start, size, align); } addr = start; wrapped = repeat = 0; prev = 0; for (;; prev = ptr) { /* * Reserve needed memory area to avoid a race. * It should be discarded using: * - mmap() with MAP_FIXED flag * - mremap() with MREMAP_FIXED flag * - shmat() with SHM_REMAP flag */ ptr = mmap(g2h_untagged(addr), size, PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0); /* ENOMEM, if host address space has no memory */ if (ptr == MAP_FAILED) { return (abi_ulong)-1; } /* * Count the number of sequential returns of the same address. * This is used to modify the search algorithm below. */ repeat = (ptr == prev ? repeat + 1 : 0); if (h2g_valid(ptr + size - 1)) { addr = h2g(ptr); if ((addr & (align - 1)) == 0) { /* Success. */ if (start == mmap_next_start && addr >= task_unmapped_base) { mmap_next_start = addr + size; } return addr; } /* The address is not properly aligned for the target. */ switch (repeat) { case 0: /* * Assume the result that the kernel gave us is the * first with enough free space, so start again at the * next higher target page. */ addr = ROUND_UP(addr, align); break; case 1: /* * Sometimes the kernel decides to perform the allocation * at the top end of memory instead. */ addr &= -align; break; case 2: /* Start over at low memory. */ addr = 0; break; default: /* Fail. This unaligned block must the last. */ addr = -1; break; } } else { /* * Since the result the kernel gave didn't fit, start * again at low memory. If any repetition, fail. */ addr = (repeat ? -1 : 0); } /* Unmap and try again. */ munmap(ptr, size); /* ENOMEM if we checked the whole of the target address space. */ if (addr == (abi_ulong)-1) { return (abi_ulong)-1; } else if (addr == 0) { if (wrapped) { return (abi_ulong)-1; } wrapped = 1; /* * Don't actually use 0 when wrapping, instead indicate * that we'd truly like an allocation in low memory. */ addr = (mmap_min_addr > TARGET_PAGE_SIZE ? TARGET_PAGE_ALIGN(mmap_min_addr) : TARGET_PAGE_SIZE); } else if (wrapped && addr >= start) { return (abi_ulong)-1; } } } /* * Record a successful mmap within the user-exec interval tree. */ static abi_long mmap_end(abi_ulong start, abi_ulong last, abi_ulong passthrough_start, abi_ulong passthrough_last, int flags, int page_flags) { if (flags & MAP_ANONYMOUS) { page_flags |= PAGE_ANON; } page_flags |= PAGE_RESET; if (passthrough_start > passthrough_last) { page_set_flags(start, last, page_flags); } else { if (start < passthrough_start) { page_set_flags(start, passthrough_start - 1, page_flags); } page_set_flags(passthrough_start, passthrough_last, page_flags | PAGE_PASSTHROUGH); if (passthrough_last < last) { page_set_flags(passthrough_last + 1, last, page_flags); } } shm_region_rm_complete(start, last); trace_target_mmap_complete(start); if (qemu_loglevel_mask(CPU_LOG_PAGE)) { FILE *f = qemu_log_trylock(); if (f) { fprintf(f, "page layout changed following mmap\n"); page_dump(f); qemu_log_unlock(f); } } return start; } /* * Special case host page size == target page size, * where there are no edge conditions. */ static abi_long mmap_h_eq_g(abi_ulong start, abi_ulong len, int host_prot, int flags, int page_flags, int fd, off_t offset) { void *p, *want_p = NULL; abi_ulong last; if (start || (flags & (MAP_FIXED | MAP_FIXED_NOREPLACE))) { want_p = g2h_untagged(start); } p = mmap(want_p, len, host_prot, flags, fd, offset); if (p == MAP_FAILED) { return -1; } /* If the host kernel does not support MAP_FIXED_NOREPLACE, emulate. */ if ((flags & MAP_FIXED_NOREPLACE) && p != want_p) { do_munmap(p, len); errno = EEXIST; return -1; } start = h2g(p); last = start + len - 1; return mmap_end(start, last, start, last, flags, page_flags); } /* * Special case host page size < target page size. * * The two special cases are increased guest alignment, and mapping * past the end of a file. * * When mapping files into a memory area larger than the file, * accesses to pages beyond the file size will cause a SIGBUS. * * For example, if mmaping a file of 100 bytes on a host with 4K * pages emulating a target with 8K pages, the target expects to * be able to access the first 8K. But the host will trap us on * any access beyond 4K. * * When emulating a target with a larger page-size than the hosts, * we may need to truncate file maps at EOF and add extra anonymous * pages up to the targets page boundary. * * This workaround only works for files that do not change. * If the file is later extended (e.g. ftruncate), the SIGBUS * vanishes and the proper behaviour is that changes within the * anon page should be reflected in the file. * * However, this case is rather common with executable images, * so the workaround is important for even trivial tests, whereas * the mmap of of a file being extended is less common. */ static abi_long mmap_h_lt_g(abi_ulong start, abi_ulong len, int host_prot, int mmap_flags, int page_flags, int fd, off_t offset, int host_page_size) { void *p, *want_p = NULL; off_t fileend_adj = 0; int flags = mmap_flags; abi_ulong last, pass_last; if (start || (flags & (MAP_FIXED | MAP_FIXED_NOREPLACE))) { want_p = g2h_untagged(start); } if (!(flags & MAP_ANONYMOUS)) { struct stat sb; if (fstat(fd, &sb) == -1) { return -1; } if (offset >= sb.st_size) { /* * The entire map is beyond the end of the file. * Transform it to an anonymous mapping. */ flags |= MAP_ANONYMOUS; fd = -1; offset = 0; } else if (offset + len > sb.st_size) { /* * A portion of the map is beyond the end of the file. * Truncate the file portion of the allocation. */ fileend_adj = offset + len - sb.st_size; } } if (flags & (MAP_FIXED | MAP_FIXED_NOREPLACE)) { if (fileend_adj) { p = mmap(want_p, len, host_prot, flags | MAP_ANONYMOUS, -1, 0); } else { p = mmap(want_p, len, host_prot, flags, fd, offset); } if (p != want_p) { if (p != MAP_FAILED) { /* Host does not support MAP_FIXED_NOREPLACE: emulate. */ do_munmap(p, len); errno = EEXIST; } return -1; } if (fileend_adj) { void *t = mmap(p, len - fileend_adj, host_prot, (flags & ~MAP_FIXED_NOREPLACE) | MAP_FIXED, fd, offset); if (t == MAP_FAILED) { int save_errno = errno; /* * We failed a map over the top of the successful anonymous * mapping above. The only failure mode is running out of VMAs, * and there's nothing that we can do to detect that earlier. * If we have replaced an existing mapping with MAP_FIXED, * then we cannot properly recover. It's a coin toss whether * it would be better to exit or continue here. */ if (!(flags & MAP_FIXED_NOREPLACE) && !page_check_range_empty(start, start + len - 1)) { qemu_log("QEMU target_mmap late failure: %s", strerror(save_errno)); } do_munmap(want_p, len); errno = save_errno; return -1; } } } else { size_t host_len, part_len; /* * Take care to align the host memory. Perform a larger anonymous * allocation and extract the aligned portion. Remap the file on * top of that. */ host_len = len + TARGET_PAGE_SIZE - host_page_size; p = mmap(want_p, host_len, host_prot, flags | MAP_ANONYMOUS, -1, 0); if (p == MAP_FAILED) { return -1; } part_len = (uintptr_t)p & (TARGET_PAGE_SIZE - 1); if (part_len) { part_len = TARGET_PAGE_SIZE - part_len; do_munmap(p, part_len); p += part_len; host_len -= part_len; } if (len < host_len) { do_munmap(p + len, host_len - len); } if (!(flags & MAP_ANONYMOUS)) { void *t = mmap(p, len - fileend_adj, host_prot, flags | MAP_FIXED, fd, offset); if (t == MAP_FAILED) { int save_errno = errno; do_munmap(p, len); errno = save_errno; return -1; } } start = h2g(p); } last = start + len - 1; if (fileend_adj) { pass_last = ROUND_UP(last - fileend_adj, host_page_size) - 1; } else { pass_last = last; } return mmap_end(start, last, start, pass_last, mmap_flags, page_flags); } /* * Special case host page size > target page size. * * The two special cases are address and file offsets that are valid * for the guest that cannot be directly represented by the host. */ static abi_long mmap_h_gt_g(abi_ulong start, abi_ulong len, int target_prot, int host_prot, int flags, int page_flags, int fd, off_t offset, int host_page_size) { void *p, *want_p = NULL; off_t host_offset = offset & -host_page_size; abi_ulong last, real_start, real_last; bool misaligned_offset = false; size_t host_len; if (start || (flags & (MAP_FIXED | MAP_FIXED_NOREPLACE))) { want_p = g2h_untagged(start); } if (!(flags & (MAP_FIXED | MAP_FIXED_NOREPLACE))) { /* * Adjust the offset to something representable on the host. */ host_len = len + offset - host_offset; p = mmap(want_p, host_len, host_prot, flags, fd, host_offset); if (p == MAP_FAILED) { return -1; } /* Update start to the file position at offset. */ p += offset - host_offset; start = h2g(p); last = start + len - 1; return mmap_end(start, last, start, last, flags, page_flags); } if (!(flags & MAP_ANONYMOUS)) { misaligned_offset = (start ^ offset) & (host_page_size - 1); /* * The fallback for misalignment is a private mapping + read. * This carries none of semantics required of MAP_SHARED. */ if (misaligned_offset && (flags & MAP_TYPE) != MAP_PRIVATE) { errno = EINVAL; return -1; } } last = start + len - 1; real_start = start & -host_page_size; real_last = ROUND_UP(last, host_page_size) - 1; /* * Handle the start and end of the mapping. */ if (real_start < start) { abi_ulong real_page_last = real_start + host_page_size - 1; if (last <= real_page_last) { /* Entire allocation a subset of one host page. */ if (!mmap_frag(real_start, start, last, target_prot, flags, fd, offset)) { return -1; } return mmap_end(start, last, -1, 0, flags, page_flags); } if (!mmap_frag(real_start, start, real_page_last, target_prot, flags, fd, offset)) { return -1; } real_start = real_page_last + 1; } if (last < real_last) { abi_ulong real_page_start = real_last - host_page_size + 1; if (!mmap_frag(real_page_start, real_page_start, last, target_prot, flags, fd, offset + real_page_start - start)) { return -1; } real_last = real_page_start - 1; } if (real_start > real_last) { return mmap_end(start, last, -1, 0, flags, page_flags); } /* * Handle the middle of the mapping. */ host_len = real_last - real_start + 1; want_p += real_start - start; if (flags & MAP_ANONYMOUS) { p = mmap(want_p, host_len, host_prot, flags, -1, 0); } else if (!misaligned_offset) { p = mmap(want_p, host_len, host_prot, flags, fd, offset + real_start - start); } else { p = mmap(want_p, host_len, host_prot | PROT_WRITE, flags | MAP_ANONYMOUS, -1, 0); } if (p != want_p) { if (p != MAP_FAILED) { do_munmap(p, host_len); errno = EEXIST; } return -1; } if (misaligned_offset) { if (!mmap_pread(fd, p, host_len, offset + real_start - start, false)) { do_munmap(p, host_len); return -1; } if (!(host_prot & PROT_WRITE)) { mprotect(p, host_len, host_prot); } } return mmap_end(start, last, -1, 0, flags, page_flags); } static abi_long target_mmap__locked(abi_ulong start, abi_ulong len, int target_prot, int flags, int page_flags, int fd, off_t offset) { int host_page_size = qemu_real_host_page_size(); int host_prot; /* * For reserved_va, we are in full control of the allocation. * Find a suitable hole and convert to MAP_FIXED. */ if (reserved_va) { if (flags & MAP_FIXED_NOREPLACE) { /* Validate that the chosen range is empty. */ if (!page_check_range_empty(start, start + len - 1)) { errno = EEXIST; return -1; } flags = (flags & ~MAP_FIXED_NOREPLACE) | MAP_FIXED; } else if (!(flags & MAP_FIXED)) { abi_ulong real_start = start & -host_page_size; off_t host_offset = offset & -host_page_size; size_t real_len = len + offset - host_offset; abi_ulong align = MAX(host_page_size, TARGET_PAGE_SIZE); start = mmap_find_vma(real_start, real_len, align); if (start == (abi_ulong)-1) { errno = ENOMEM; return -1; } start += offset - host_offset; flags |= MAP_FIXED; } } host_prot = target_to_host_prot(target_prot); if (host_page_size == TARGET_PAGE_SIZE) { return mmap_h_eq_g(start, len, host_prot, flags, page_flags, fd, offset); } else if (host_page_size < TARGET_PAGE_SIZE) { return mmap_h_lt_g(start, len, host_prot, flags, page_flags, fd, offset, host_page_size); } else { return mmap_h_gt_g(start, len, target_prot, host_prot, flags, page_flags, fd, offset, host_page_size); } } /* NOTE: all the constants are the HOST ones */ abi_long target_mmap(abi_ulong start, abi_ulong len, int target_prot, int flags, int fd, off_t offset) { abi_long ret; int page_flags; trace_target_mmap(start, len, target_prot, flags, fd, offset); if (!len) { errno = EINVAL; return -1; } page_flags = validate_prot_to_pageflags(target_prot); if (!page_flags) { errno = EINVAL; return -1; } /* Also check for overflows... */ len = TARGET_PAGE_ALIGN(len); if (!len || len != (size_t)len) { errno = ENOMEM; return -1; } if (offset & ~TARGET_PAGE_MASK) { errno = EINVAL; return -1; } if (flags & (MAP_FIXED | MAP_FIXED_NOREPLACE)) { if (start & ~TARGET_PAGE_MASK) { errno = EINVAL; return -1; } if (!guest_range_valid_untagged(start, len)) { errno = ENOMEM; return -1; } } mmap_lock(); ret = target_mmap__locked(start, len, target_prot, flags, page_flags, fd, offset); mmap_unlock(); /* * If we're mapping shared memory, ensure we generate code for parallel * execution and flush old translations. This will work up to the level * supported by the host -- anything that requires EXCP_ATOMIC will not * be atomic with respect to an external process. */ if (ret != -1 && (flags & MAP_TYPE) != MAP_PRIVATE) { CPUState *cpu = thread_cpu; if (!(cpu->tcg_cflags & CF_PARALLEL)) { cpu->tcg_cflags |= CF_PARALLEL; tb_flush(cpu); } } return ret; } static int mmap_reserve_or_unmap(abi_ulong start, abi_ulong len) { int host_page_size = qemu_real_host_page_size(); abi_ulong real_start; abi_ulong real_last; abi_ulong real_len; abi_ulong last; abi_ulong a; void *host_start; int prot; last = start + len - 1; real_start = start & -host_page_size; real_last = ROUND_UP(last, host_page_size) - 1; /* * If guest pages remain on the first or last host pages, * adjust the deallocation to retain those guest pages. * The single page special case is required for the last page, * lest real_start overflow to zero. */ if (real_last - real_start < host_page_size) { prot = 0; for (a = real_start; a < start; a += TARGET_PAGE_SIZE) { prot |= page_get_flags(a); } for (a = last; a < real_last; a += TARGET_PAGE_SIZE) { prot |= page_get_flags(a + 1); } if (prot != 0) { return 0; } } else { for (prot = 0, a = real_start; a < start; a += TARGET_PAGE_SIZE) { prot |= page_get_flags(a); } if (prot != 0) { real_start += host_page_size; } for (prot = 0, a = last; a < real_last; a += TARGET_PAGE_SIZE) { prot |= page_get_flags(a + 1); } if (prot != 0) { real_last -= host_page_size; } if (real_last < real_start) { return 0; } } real_len = real_last - real_start + 1; host_start = g2h_untagged(real_start); return do_munmap(host_start, real_len); } int target_munmap(abi_ulong start, abi_ulong len) { int ret; trace_target_munmap(start, len); if (start & ~TARGET_PAGE_MASK) { errno = EINVAL; return -1; } len = TARGET_PAGE_ALIGN(len); if (len == 0 || !guest_range_valid_untagged(start, len)) { errno = EINVAL; return -1; } mmap_lock(); ret = mmap_reserve_or_unmap(start, len); if (likely(ret == 0)) { page_set_flags(start, start + len - 1, 0); shm_region_rm_complete(start, start + len - 1); } mmap_unlock(); return ret; } abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size, abi_ulong new_size, unsigned long flags, abi_ulong new_addr) { int prot; void *host_addr; if (!guest_range_valid_untagged(old_addr, old_size) || ((flags & MREMAP_FIXED) && !guest_range_valid_untagged(new_addr, new_size)) || ((flags & MREMAP_MAYMOVE) == 0 && !guest_range_valid_untagged(old_addr, new_size))) { errno = ENOMEM; return -1; } mmap_lock(); if (flags & MREMAP_FIXED) { host_addr = mremap(g2h_untagged(old_addr), old_size, new_size, flags, g2h_untagged(new_addr)); if (reserved_va && host_addr != MAP_FAILED) { /* * If new and old addresses overlap then the above mremap will * already have failed with EINVAL. */ mmap_reserve_or_unmap(old_addr, old_size); } } else if (flags & MREMAP_MAYMOVE) { abi_ulong mmap_start; mmap_start = mmap_find_vma(0, new_size, TARGET_PAGE_SIZE); if (mmap_start == -1) { errno = ENOMEM; host_addr = MAP_FAILED; } else { host_addr = mremap(g2h_untagged(old_addr), old_size, new_size, flags | MREMAP_FIXED, g2h_untagged(mmap_start)); if (reserved_va) { mmap_reserve_or_unmap(old_addr, old_size); } } } else { int page_flags = 0; if (reserved_va && old_size < new_size) { abi_ulong addr; for (addr = old_addr + old_size; addr < old_addr + new_size; addr++) { page_flags |= page_get_flags(addr); } } if (page_flags == 0) { host_addr = mremap(g2h_untagged(old_addr), old_size, new_size, flags); if (host_addr != MAP_FAILED) { /* Check if address fits target address space */ if (!guest_range_valid_untagged(h2g(host_addr), new_size)) { /* Revert mremap() changes */ host_addr = mremap(g2h_untagged(old_addr), new_size, old_size, flags); errno = ENOMEM; host_addr = MAP_FAILED; } else if (reserved_va && old_size > new_size) { mmap_reserve_or_unmap(old_addr + old_size, old_size - new_size); } } } else { errno = ENOMEM; host_addr = MAP_FAILED; } } if (host_addr == MAP_FAILED) { new_addr = -1; } else { new_addr = h2g(host_addr); prot = page_get_flags(old_addr); page_set_flags(old_addr, old_addr + old_size - 1, 0); shm_region_rm_complete(old_addr, old_addr + old_size - 1); page_set_flags(new_addr, new_addr + new_size - 1, prot | PAGE_VALID | PAGE_RESET); shm_region_rm_complete(new_addr, new_addr + new_size - 1); } mmap_unlock(); return new_addr; } abi_long target_madvise(abi_ulong start, abi_ulong len_in, int advice) { abi_ulong len; int ret = 0; if (start & ~TARGET_PAGE_MASK) { return -TARGET_EINVAL; } if (len_in == 0) { return 0; } len = TARGET_PAGE_ALIGN(len_in); if (len == 0 || !guest_range_valid_untagged(start, len)) { return -TARGET_EINVAL; } /* Translate for some architectures which have different MADV_xxx values */ switch (advice) { case TARGET_MADV_DONTNEED: /* alpha */ advice = MADV_DONTNEED; break; case TARGET_MADV_WIPEONFORK: /* parisc */ advice = MADV_WIPEONFORK; break; case TARGET_MADV_KEEPONFORK: /* parisc */ advice = MADV_KEEPONFORK; break; /* we do not care about the other MADV_xxx values yet */ } /* * Most advice values are hints, so ignoring and returning success is ok. * * However, some advice values such as MADV_DONTNEED, MADV_WIPEONFORK and * MADV_KEEPONFORK are not hints and need to be emulated. * * A straight passthrough for those may not be safe because qemu sometimes * turns private file-backed mappings into anonymous mappings. * If all guest pages have PAGE_PASSTHROUGH set, mappings have the * same semantics for the host as for the guest. * * We pass through MADV_WIPEONFORK and MADV_KEEPONFORK if possible and * return failure if not. * * MADV_DONTNEED is passed through as well, if possible. * If passthrough isn't possible, we nevertheless (wrongly!) return * success, which is broken but some userspace programs fail to work * otherwise. Completely implementing such emulation is quite complicated * though. */ mmap_lock(); switch (advice) { case MADV_WIPEONFORK: case MADV_KEEPONFORK: ret = -EINVAL; /* fall through */ case MADV_DONTNEED: if (page_check_range(start, len, PAGE_PASSTHROUGH)) { ret = get_errno(madvise(g2h_untagged(start), len, advice)); if ((advice == MADV_DONTNEED) && (ret == 0)) { page_reset_target_data(start, start + len - 1); } } } mmap_unlock(); return ret; } #ifndef TARGET_FORCE_SHMLBA /* * For most architectures, SHMLBA is the same as the page size; * some architectures have larger values, in which case they should * define TARGET_FORCE_SHMLBA and provide a target_shmlba() function. * This corresponds to the kernel arch code defining __ARCH_FORCE_SHMLBA * and defining its own value for SHMLBA. * * The kernel also permits SHMLBA to be set by the architecture to a * value larger than the page size without setting __ARCH_FORCE_SHMLBA; * this means that addresses are rounded to the large size if * SHM_RND is set but addresses not aligned to that size are not rejected * as long as they are at least page-aligned. Since the only architecture * which uses this is ia64 this code doesn't provide for that oddity. */ static inline abi_ulong target_shmlba(CPUArchState *cpu_env) { return TARGET_PAGE_SIZE; } #endif #if defined(__arm__) || defined(__mips__) || defined(__sparc__) #define HOST_FORCE_SHMLBA 1 #else #define HOST_FORCE_SHMLBA 0 #endif abi_ulong target_shmat(CPUArchState *cpu_env, int shmid, abi_ulong shmaddr, int shmflg) { CPUState *cpu = env_cpu(cpu_env); struct shmid_ds shm_info; int ret; int h_pagesize; int t_shmlba, h_shmlba, m_shmlba; size_t t_len, h_len, m_len; /* shmat pointers are always untagged */ /* * Because we can't use host shmat() unless the address is sufficiently * aligned for the host, we'll need to check both. * TODO: Could be fixed with softmmu. */ t_shmlba = target_shmlba(cpu_env); h_pagesize = qemu_real_host_page_size(); h_shmlba = (HOST_FORCE_SHMLBA ? SHMLBA : h_pagesize); m_shmlba = MAX(t_shmlba, h_shmlba); if (shmaddr) { if (shmaddr & (m_shmlba - 1)) { if (shmflg & SHM_RND) { /* * The guest is allowing the kernel to round the address. * Assume that the guest is ok with us rounding to the * host required alignment too. Anyway if we don't, we'll * get an error from the kernel. */ shmaddr &= ~(m_shmlba - 1); if (shmaddr == 0 && (shmflg & SHM_REMAP)) { return -TARGET_EINVAL; } } else { int require = TARGET_PAGE_SIZE; #ifdef TARGET_FORCE_SHMLBA require = t_shmlba; #endif /* * Include host required alignment, as otherwise we cannot * use host shmat at all. */ require = MAX(require, h_shmlba); if (shmaddr & (require - 1)) { return -TARGET_EINVAL; } } } } else { if (shmflg & SHM_REMAP) { return -TARGET_EINVAL; } } /* All rounding now manually concluded. */ shmflg &= ~SHM_RND; /* Find out the length of the shared memory segment. */ ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info)); if (is_error(ret)) { /* can't get length, bail out */ return ret; } t_len = TARGET_PAGE_ALIGN(shm_info.shm_segsz); h_len = ROUND_UP(shm_info.shm_segsz, h_pagesize); m_len = MAX(t_len, h_len); if (!guest_range_valid_untagged(shmaddr, m_len)) { return -TARGET_EINVAL; } WITH_MMAP_LOCK_GUARD() { bool mapped = false; void *want, *test; abi_ulong last; if (!shmaddr) { shmaddr = mmap_find_vma(0, m_len, m_shmlba); if (shmaddr == -1) { return -TARGET_ENOMEM; } mapped = !reserved_va; } else if (shmflg & SHM_REMAP) { /* * If host page size > target page size, the host shmat may map * more memory than the guest expects. Reject a mapping that * would replace memory in the unexpected gap. * TODO: Could be fixed with softmmu. */ if (t_len < h_len && !page_check_range_empty(shmaddr + t_len, shmaddr + h_len - 1)) { return -TARGET_EINVAL; } } else { if (!page_check_range_empty(shmaddr, shmaddr + m_len - 1)) { return -TARGET_EINVAL; } } /* All placement is now complete. */ want = (void *)g2h_untagged(shmaddr); /* * Map anonymous pages across the entire range, then remap with * the shared memory. This is required for a number of corner * cases for which host and guest page sizes differ. */ if (h_len != t_len) { int mmap_p = PROT_READ | (shmflg & SHM_RDONLY ? 0 : PROT_WRITE); int mmap_f = MAP_PRIVATE | MAP_ANONYMOUS | (reserved_va || mapped || (shmflg & SHM_REMAP) ? MAP_FIXED : MAP_FIXED_NOREPLACE); test = mmap(want, m_len, mmap_p, mmap_f, -1, 0); if (unlikely(test != want)) { /* shmat returns EINVAL not EEXIST like mmap. */ ret = (test == MAP_FAILED && errno != EEXIST ? get_errno(-1) : -TARGET_EINVAL); if (mapped) { do_munmap(want, m_len); } return ret; } mapped = true; } if (reserved_va || mapped) { shmflg |= SHM_REMAP; } test = shmat(shmid, want, shmflg); if (test == MAP_FAILED) { ret = get_errno(-1); if (mapped) { do_munmap(want, m_len); } return ret; } assert(test == want); last = shmaddr + m_len - 1; page_set_flags(shmaddr, last, PAGE_VALID | PAGE_RESET | PAGE_READ | (shmflg & SHM_RDONLY ? 0 : PAGE_WRITE) | (shmflg & SHM_EXEC ? PAGE_EXEC : 0)); shm_region_rm_complete(shmaddr, last); shm_region_add(shmaddr, last); } /* * We're mapping shared memory, so ensure we generate code for parallel * execution and flush old translations. This will work up to the level * supported by the host -- anything that requires EXCP_ATOMIC will not * be atomic with respect to an external process. */ if (!(cpu->tcg_cflags & CF_PARALLEL)) { cpu->tcg_cflags |= CF_PARALLEL; tb_flush(cpu); } if (qemu_loglevel_mask(CPU_LOG_PAGE)) { FILE *f = qemu_log_trylock(); if (f) { fprintf(f, "page layout changed following shmat\n"); page_dump(f); qemu_log_unlock(f); } } return shmaddr; } abi_long target_shmdt(abi_ulong shmaddr) { abi_long rv; /* shmdt pointers are always untagged */ WITH_MMAP_LOCK_GUARD() { abi_ulong last = shm_region_find(shmaddr); if (last == 0) { return -TARGET_EINVAL; } rv = get_errno(shmdt(g2h_untagged(shmaddr))); if (rv == 0) { abi_ulong size = last - shmaddr + 1; page_set_flags(shmaddr, last, 0); shm_region_rm_complete(shmaddr, last); mmap_reserve_or_unmap(shmaddr, size); } } return rv; }