/* * qemu user main * * Copyright (c) 2003-2008 Fabrice Bellard * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see <http://www.gnu.org/licenses/>. */ #include <stdlib.h> #include <stdio.h> #include <stdarg.h> #include <string.h> #include <errno.h> #include <unistd.h> #include <sys/mman.h> #include <sys/syscall.h> #include "qemu.h" #include "qemu-common.h" #include "cache-utils.h" /* For tb_lock */ #include "exec-all.h" #include "envlist.h" #define DEBUG_LOGFILE "/tmp/qemu.log" char *exec_path; int singlestep; #if defined(CONFIG_USE_GUEST_BASE) unsigned long mmap_min_addr; unsigned long guest_base; int have_guest_base; #endif static const char *interp_prefix = CONFIG_QEMU_PREFIX; const char *qemu_uname_release = CONFIG_UNAME_RELEASE; #if defined(__i386__) && !defined(CONFIG_STATIC) /* Force usage of an ELF interpreter even if it is an ELF shared object ! */ const char interp[] __attribute__((section(".interp"))) = "/lib/ld-linux.so.2"; #endif /* for recent libc, we add these dummy symbols which are not declared when generating a linked object (bug in ld ?) */ #if (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3)) && !defined(CONFIG_STATIC) asm(".globl __preinit_array_start\n" ".globl __preinit_array_end\n" ".globl __init_array_start\n" ".globl __init_array_end\n" ".globl __fini_array_start\n" ".globl __fini_array_end\n" ".section \".rodata\"\n" "__preinit_array_start:\n" "__preinit_array_end:\n" "__init_array_start:\n" "__init_array_end:\n" "__fini_array_start:\n" "__fini_array_end:\n" ".long 0\n" ".previous\n"); #endif /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so we allocate a bigger stack. Need a better solution, for example by remapping the process stack directly at the right place */ unsigned long x86_stack_size = 512 * 1024; void gemu_log(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); va_end(ap); } #if defined(TARGET_I386) int cpu_get_pic_interrupt(CPUState *env) { return -1; } #endif /* timers for rdtsc */ #if 0 static uint64_t emu_time; int64_t cpu_get_real_ticks(void) { return emu_time++; } #endif #if defined(CONFIG_USE_NPTL) /***********************************************************/ /* Helper routines for implementing atomic operations. */ /* To implement exclusive operations we force all cpus to syncronise. We don't require a full sync, only that no cpus are executing guest code. The alternative is to map target atomic ops onto host equivalents, which requires quite a lot of per host/target work. */ static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER; static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER; static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER; static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER; static int pending_cpus; /* Make sure everything is in a consistent state for calling fork(). */ void fork_start(void) { mmap_fork_start(); pthread_mutex_lock(&tb_lock); pthread_mutex_lock(&exclusive_lock); } void fork_end(int child) { if (child) { /* Child processes created by fork() only have a single thread. Discard information about the parent threads. */ first_cpu = thread_env; thread_env->next_cpu = NULL; pending_cpus = 0; pthread_mutex_init(&exclusive_lock, NULL); pthread_mutex_init(&cpu_list_mutex, NULL); pthread_cond_init(&exclusive_cond, NULL); pthread_cond_init(&exclusive_resume, NULL); pthread_mutex_init(&tb_lock, NULL); gdbserver_fork(thread_env); } else { pthread_mutex_unlock(&exclusive_lock); pthread_mutex_unlock(&tb_lock); } mmap_fork_end(child); } /* Wait for pending exclusive operations to complete. The exclusive lock must be held. */ static inline void exclusive_idle(void) { while (pending_cpus) { pthread_cond_wait(&exclusive_resume, &exclusive_lock); } } /* Start an exclusive operation. Must only be called from outside cpu_arm_exec. */ static inline void start_exclusive(void) { CPUState *other; pthread_mutex_lock(&exclusive_lock); exclusive_idle(); pending_cpus = 1; /* Make all other cpus stop executing. */ for (other = first_cpu; other; other = other->next_cpu) { if (other->running) { pending_cpus++; cpu_exit(other); } } if (pending_cpus > 1) { pthread_cond_wait(&exclusive_cond, &exclusive_lock); } } /* Finish an exclusive operation. */ static inline void end_exclusive(void) { pending_cpus = 0; pthread_cond_broadcast(&exclusive_resume); pthread_mutex_unlock(&exclusive_lock); } /* Wait for exclusive ops to finish, and begin cpu execution. */ static inline void cpu_exec_start(CPUState *env) { pthread_mutex_lock(&exclusive_lock); exclusive_idle(); env->running = 1; pthread_mutex_unlock(&exclusive_lock); } /* Mark cpu as not executing, and release pending exclusive ops. */ static inline void cpu_exec_end(CPUState *env) { pthread_mutex_lock(&exclusive_lock); env->running = 0; if (pending_cpus > 1) { pending_cpus--; if (pending_cpus == 1) { pthread_cond_signal(&exclusive_cond); } } exclusive_idle(); pthread_mutex_unlock(&exclusive_lock); } void cpu_list_lock(void) { pthread_mutex_lock(&cpu_list_mutex); } void cpu_list_unlock(void) { pthread_mutex_unlock(&cpu_list_mutex); } #else /* if !CONFIG_USE_NPTL */ /* These are no-ops because we are not threadsafe. */ static inline void cpu_exec_start(CPUState *env) { } static inline void cpu_exec_end(CPUState *env) { } static inline void start_exclusive(void) { } static inline void end_exclusive(void) { } void fork_start(void) { } void fork_end(int child) { if (child) { gdbserver_fork(thread_env); } } void cpu_list_lock(void) { } void cpu_list_unlock(void) { } #endif #ifdef TARGET_I386 /***********************************************************/ /* CPUX86 core interface */ void cpu_smm_update(CPUState *env) { } uint64_t cpu_get_tsc(CPUX86State *env) { return cpu_get_real_ticks(); } static void write_dt(void *ptr, unsigned long addr, unsigned long limit, int flags) { unsigned int e1, e2; uint32_t *p; e1 = (addr << 16) | (limit & 0xffff); e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); e2 |= flags; p = ptr; p[0] = tswap32(e1); p[1] = tswap32(e2); } static uint64_t *idt_table; #ifdef TARGET_X86_64 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, uint64_t addr, unsigned int sel) { uint32_t *p, e1, e2; e1 = (addr & 0xffff) | (sel << 16); e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); p = ptr; p[0] = tswap32(e1); p[1] = tswap32(e2); p[2] = tswap32(addr >> 32); p[3] = 0; } /* only dpl matters as we do only user space emulation */ static void set_idt(int n, unsigned int dpl) { set_gate64(idt_table + n * 2, 0, dpl, 0, 0); } #else static void set_gate(void *ptr, unsigned int type, unsigned int dpl, uint32_t addr, unsigned int sel) { uint32_t *p, e1, e2; e1 = (addr & 0xffff) | (sel << 16); e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); p = ptr; p[0] = tswap32(e1); p[1] = tswap32(e2); } /* only dpl matters as we do only user space emulation */ static void set_idt(int n, unsigned int dpl) { set_gate(idt_table + n, 0, dpl, 0, 0); } #endif void cpu_loop(CPUX86State *env) { int trapnr; abi_ulong pc; target_siginfo_t info; for(;;) { trapnr = cpu_x86_exec(env); switch(trapnr) { case 0x80: /* linux syscall from int $0x80 */ env->regs[R_EAX] = do_syscall(env, env->regs[R_EAX], env->regs[R_EBX], env->regs[R_ECX], env->regs[R_EDX], env->regs[R_ESI], env->regs[R_EDI], env->regs[R_EBP]); break; #ifndef TARGET_ABI32 case EXCP_SYSCALL: /* linux syscall from syscall intruction */ env->regs[R_EAX] = do_syscall(env, env->regs[R_EAX], env->regs[R_EDI], env->regs[R_ESI], env->regs[R_EDX], env->regs[10], env->regs[8], env->regs[9]); env->eip = env->exception_next_eip; break; #endif case EXCP0B_NOSEG: case EXCP0C_STACK: info.si_signo = SIGBUS; info.si_errno = 0; info.si_code = TARGET_SI_KERNEL; info._sifields._sigfault._addr = 0; queue_signal(env, info.si_signo, &info); break; case EXCP0D_GPF: /* XXX: potential problem if ABI32 */ #ifndef TARGET_X86_64 if (env->eflags & VM_MASK) { handle_vm86_fault(env); } else #endif { info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = TARGET_SI_KERNEL; info._sifields._sigfault._addr = 0; queue_signal(env, info.si_signo, &info); } break; case EXCP0E_PAGE: info.si_signo = SIGSEGV; info.si_errno = 0; if (!(env->error_code & 1)) info.si_code = TARGET_SEGV_MAPERR; else info.si_code = TARGET_SEGV_ACCERR; info._sifields._sigfault._addr = env->cr[2]; queue_signal(env, info.si_signo, &info); break; case EXCP00_DIVZ: #ifndef TARGET_X86_64 if (env->eflags & VM_MASK) { handle_vm86_trap(env, trapnr); } else #endif { /* division by zero */ info.si_signo = SIGFPE; info.si_errno = 0; info.si_code = TARGET_FPE_INTDIV; info._sifields._sigfault._addr = env->eip; queue_signal(env, info.si_signo, &info); } break; case EXCP01_DB: case EXCP03_INT3: #ifndef TARGET_X86_64 if (env->eflags & VM_MASK) { handle_vm86_trap(env, trapnr); } else #endif { info.si_signo = SIGTRAP; info.si_errno = 0; if (trapnr == EXCP01_DB) { info.si_code = TARGET_TRAP_BRKPT; info._sifields._sigfault._addr = env->eip; } else { info.si_code = TARGET_SI_KERNEL; info._sifields._sigfault._addr = 0; } queue_signal(env, info.si_signo, &info); } break; case EXCP04_INTO: case EXCP05_BOUND: #ifndef TARGET_X86_64 if (env->eflags & VM_MASK) { handle_vm86_trap(env, trapnr); } else #endif { info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = TARGET_SI_KERNEL; info._sifields._sigfault._addr = 0; queue_signal(env, info.si_signo, &info); } break; case EXCP06_ILLOP: info.si_signo = SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_ILLOPN; info._sifields._sigfault._addr = env->eip; queue_signal(env, info.si_signo, &info); break; case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; case EXCP_DEBUG: { int sig; sig = gdb_handlesig (env, TARGET_SIGTRAP); if (sig) { info.si_signo = sig; info.si_errno = 0; info.si_code = TARGET_TRAP_BRKPT; queue_signal(env, info.si_signo, &info); } } break; default: pc = env->segs[R_CS].base + env->eip; fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", (long)pc, trapnr); abort(); } process_pending_signals(env); } } #endif #ifdef TARGET_ARM static void arm_cache_flush(abi_ulong start, abi_ulong last) { abi_ulong addr, last1; if (last < start) return; addr = start; for(;;) { last1 = ((addr + TARGET_PAGE_SIZE) & TARGET_PAGE_MASK) - 1; if (last1 > last) last1 = last; tb_invalidate_page_range(addr, last1 + 1); if (last1 == last) break; addr = last1 + 1; } } /* Handle a jump to the kernel code page. */ static int do_kernel_trap(CPUARMState *env) { uint32_t addr; uint32_t cpsr; uint32_t val; switch (env->regs[15]) { case 0xffff0fa0: /* __kernel_memory_barrier */ /* ??? No-op. Will need to do better for SMP. */ break; case 0xffff0fc0: /* __kernel_cmpxchg */ /* XXX: This only works between threads, not between processes. It's probably possible to implement this with native host operations. However things like ldrex/strex are much harder so there's not much point trying. */ start_exclusive(); cpsr = cpsr_read(env); addr = env->regs[2]; /* FIXME: This should SEGV if the access fails. */ if (get_user_u32(val, addr)) val = ~env->regs[0]; if (val == env->regs[0]) { val = env->regs[1]; /* FIXME: Check for segfaults. */ put_user_u32(val, addr); env->regs[0] = 0; cpsr |= CPSR_C; } else { env->regs[0] = -1; cpsr &= ~CPSR_C; } cpsr_write(env, cpsr, CPSR_C); end_exclusive(); break; case 0xffff0fe0: /* __kernel_get_tls */ env->regs[0] = env->cp15.c13_tls2; break; default: return 1; } /* Jump back to the caller. */ addr = env->regs[14]; if (addr & 1) { env->thumb = 1; addr &= ~1; } env->regs[15] = addr; return 0; } void cpu_loop(CPUARMState *env) { int trapnr; unsigned int n, insn; target_siginfo_t info; uint32_t addr; for(;;) { cpu_exec_start(env); trapnr = cpu_arm_exec(env); cpu_exec_end(env); switch(trapnr) { case EXCP_UDEF: { TaskState *ts = env->opaque; uint32_t opcode; int rc; /* we handle the FPU emulation here, as Linux */ /* we get the opcode */ /* FIXME - what to do if get_user() fails? */ get_user_u32(opcode, env->regs[15]); rc = EmulateAll(opcode, &ts->fpa, env); if (rc == 0) { /* illegal instruction */ info.si_signo = SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_ILLOPN; info._sifields._sigfault._addr = env->regs[15]; queue_signal(env, info.si_signo, &info); } else if (rc < 0) { /* FP exception */ int arm_fpe=0; /* translate softfloat flags to FPSR flags */ if (-rc & float_flag_invalid) arm_fpe |= BIT_IOC; if (-rc & float_flag_divbyzero) arm_fpe |= BIT_DZC; if (-rc & float_flag_overflow) arm_fpe |= BIT_OFC; if (-rc & float_flag_underflow) arm_fpe |= BIT_UFC; if (-rc & float_flag_inexact) arm_fpe |= BIT_IXC; FPSR fpsr = ts->fpa.fpsr; //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe); if (fpsr & (arm_fpe << 16)) { /* exception enabled? */ info.si_signo = SIGFPE; info.si_errno = 0; /* ordered by priority, least first */ if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES; if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND; if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF; if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV; if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV; info._sifields._sigfault._addr = env->regs[15]; queue_signal(env, info.si_signo, &info); } else { env->regs[15] += 4; } /* accumulate unenabled exceptions */ if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC)) fpsr |= BIT_IXC; if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC)) fpsr |= BIT_UFC; if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC)) fpsr |= BIT_OFC; if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC)) fpsr |= BIT_DZC; if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC)) fpsr |= BIT_IOC; ts->fpa.fpsr=fpsr; } else { /* everything OK */ /* increment PC */ env->regs[15] += 4; } } break; case EXCP_SWI: case EXCP_BKPT: { env->eabi = 1; /* system call */ if (trapnr == EXCP_BKPT) { if (env->thumb) { /* FIXME - what to do if get_user() fails? */ get_user_u16(insn, env->regs[15]); n = insn & 0xff; env->regs[15] += 2; } else { /* FIXME - what to do if get_user() fails? */ get_user_u32(insn, env->regs[15]); n = (insn & 0xf) | ((insn >> 4) & 0xff0); env->regs[15] += 4; } } else { if (env->thumb) { /* FIXME - what to do if get_user() fails? */ get_user_u16(insn, env->regs[15] - 2); n = insn & 0xff; } else { /* FIXME - what to do if get_user() fails? */ get_user_u32(insn, env->regs[15] - 4); n = insn & 0xffffff; } } if (n == ARM_NR_cacheflush) { arm_cache_flush(env->regs[0], env->regs[1]); } else if (n == ARM_NR_semihosting || n == ARM_NR_thumb_semihosting) { env->regs[0] = do_arm_semihosting (env); } else if (n == 0 || n >= ARM_SYSCALL_BASE || (env->thumb && n == ARM_THUMB_SYSCALL)) { /* linux syscall */ if (env->thumb || n == 0) { n = env->regs[7]; } else { n -= ARM_SYSCALL_BASE; env->eabi = 0; } if ( n > ARM_NR_BASE) { switch (n) { case ARM_NR_cacheflush: arm_cache_flush(env->regs[0], env->regs[1]); break; case ARM_NR_set_tls: cpu_set_tls(env, env->regs[0]); env->regs[0] = 0; break; default: gemu_log("qemu: Unsupported ARM syscall: 0x%x\n", n); env->regs[0] = -TARGET_ENOSYS; break; } } else { env->regs[0] = do_syscall(env, n, env->regs[0], env->regs[1], env->regs[2], env->regs[3], env->regs[4], env->regs[5]); } } else { goto error; } } break; case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; case EXCP_PREFETCH_ABORT: addr = env->cp15.c6_insn; goto do_segv; case EXCP_DATA_ABORT: addr = env->cp15.c6_data; goto do_segv; do_segv: { info.si_signo = SIGSEGV; info.si_errno = 0; /* XXX: check env->error_code */ info.si_code = TARGET_SEGV_MAPERR; info._sifields._sigfault._addr = addr; queue_signal(env, info.si_signo, &info); } break; case EXCP_DEBUG: { int sig; sig = gdb_handlesig (env, TARGET_SIGTRAP); if (sig) { info.si_signo = sig; info.si_errno = 0; info.si_code = TARGET_TRAP_BRKPT; queue_signal(env, info.si_signo, &info); } } break; case EXCP_KERNEL_TRAP: if (do_kernel_trap(env)) goto error; break; default: error: fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); cpu_dump_state(env, stderr, fprintf, 0); abort(); } process_pending_signals(env); } } #endif #ifdef TARGET_SPARC #define SPARC64_STACK_BIAS 2047 //#define DEBUG_WIN /* WARNING: dealing with register windows _is_ complicated. More info can be found at http://www.sics.se/~psm/sparcstack.html */ static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) { index = (index + cwp * 16) % (16 * env->nwindows); /* wrap handling : if cwp is on the last window, then we use the registers 'after' the end */ if (index < 8 && env->cwp == env->nwindows - 1) index += 16 * env->nwindows; return index; } /* save the register window 'cwp1' */ static inline void save_window_offset(CPUSPARCState *env, int cwp1) { unsigned int i; abi_ulong sp_ptr; sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; #ifdef TARGET_SPARC64 if (sp_ptr & 3) sp_ptr += SPARC64_STACK_BIAS; #endif #if defined(DEBUG_WIN) printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", sp_ptr, cwp1); #endif for(i = 0; i < 16; i++) { /* FIXME - what to do if put_user() fails? */ put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); sp_ptr += sizeof(abi_ulong); } } static void save_window(CPUSPARCState *env) { #ifndef TARGET_SPARC64 unsigned int new_wim; new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & ((1LL << env->nwindows) - 1); save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); env->wim = new_wim; #else save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); env->cansave++; env->canrestore--; #endif } static void restore_window(CPUSPARCState *env) { #ifndef TARGET_SPARC64 unsigned int new_wim; #endif unsigned int i, cwp1; abi_ulong sp_ptr; #ifndef TARGET_SPARC64 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & ((1LL << env->nwindows) - 1); #endif /* restore the invalid window */ cwp1 = cpu_cwp_inc(env, env->cwp + 1); sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; #ifdef TARGET_SPARC64 if (sp_ptr & 3) sp_ptr += SPARC64_STACK_BIAS; #endif #if defined(DEBUG_WIN) printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", sp_ptr, cwp1); #endif for(i = 0; i < 16; i++) { /* FIXME - what to do if get_user() fails? */ get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); sp_ptr += sizeof(abi_ulong); } #ifdef TARGET_SPARC64 env->canrestore++; if (env->cleanwin < env->nwindows - 1) env->cleanwin++; env->cansave--; #else env->wim = new_wim; #endif } static void flush_windows(CPUSPARCState *env) { int offset, cwp1; offset = 1; for(;;) { /* if restore would invoke restore_window(), then we can stop */ cwp1 = cpu_cwp_inc(env, env->cwp + offset); #ifndef TARGET_SPARC64 if (env->wim & (1 << cwp1)) break; #else if (env->canrestore == 0) break; env->cansave++; env->canrestore--; #endif save_window_offset(env, cwp1); offset++; } cwp1 = cpu_cwp_inc(env, env->cwp + 1); #ifndef TARGET_SPARC64 /* set wim so that restore will reload the registers */ env->wim = 1 << cwp1; #endif #if defined(DEBUG_WIN) printf("flush_windows: nb=%d\n", offset - 1); #endif } void cpu_loop (CPUSPARCState *env) { int trapnr, ret; target_siginfo_t info; while (1) { trapnr = cpu_sparc_exec (env); switch (trapnr) { #ifndef TARGET_SPARC64 case 0x88: case 0x90: #else case 0x110: case 0x16d: #endif ret = do_syscall (env, env->gregs[1], env->regwptr[0], env->regwptr[1], env->regwptr[2], env->regwptr[3], env->regwptr[4], env->regwptr[5]); if ((unsigned int)ret >= (unsigned int)(-515)) { #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) env->xcc |= PSR_CARRY; #else env->psr |= PSR_CARRY; #endif ret = -ret; } else { #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) env->xcc &= ~PSR_CARRY; #else env->psr &= ~PSR_CARRY; #endif } env->regwptr[0] = ret; /* next instruction */ env->pc = env->npc; env->npc = env->npc + 4; break; case 0x83: /* flush windows */ #ifdef TARGET_ABI32 case 0x103: #endif flush_windows(env); /* next instruction */ env->pc = env->npc; env->npc = env->npc + 4; break; #ifndef TARGET_SPARC64 case TT_WIN_OVF: /* window overflow */ save_window(env); break; case TT_WIN_UNF: /* window underflow */ restore_window(env); break; case TT_TFAULT: case TT_DFAULT: { info.si_signo = SIGSEGV; info.si_errno = 0; /* XXX: check env->error_code */ info.si_code = TARGET_SEGV_MAPERR; info._sifields._sigfault._addr = env->mmuregs[4]; queue_signal(env, info.si_signo, &info); } break; #else case TT_SPILL: /* window overflow */ save_window(env); break; case TT_FILL: /* window underflow */ restore_window(env); break; case TT_TFAULT: case TT_DFAULT: { info.si_signo = SIGSEGV; info.si_errno = 0; /* XXX: check env->error_code */ info.si_code = TARGET_SEGV_MAPERR; if (trapnr == TT_DFAULT) info._sifields._sigfault._addr = env->dmmuregs[4]; else info._sifields._sigfault._addr = cpu_tsptr(env)->tpc; queue_signal(env, info.si_signo, &info); } break; #ifndef TARGET_ABI32 case 0x16e: flush_windows(env); sparc64_get_context(env); break; case 0x16f: flush_windows(env); sparc64_set_context(env); break; #endif #endif case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; case EXCP_DEBUG: { int sig; sig = gdb_handlesig (env, TARGET_SIGTRAP); if (sig) { info.si_signo = sig; info.si_errno = 0; info.si_code = TARGET_TRAP_BRKPT; queue_signal(env, info.si_signo, &info); } } break; default: printf ("Unhandled trap: 0x%x\n", trapnr); cpu_dump_state(env, stderr, fprintf, 0); exit (1); } process_pending_signals (env); } } #endif #ifdef TARGET_PPC static inline uint64_t cpu_ppc_get_tb (CPUState *env) { /* TO FIX */ return 0; } uint32_t cpu_ppc_load_tbl (CPUState *env) { return cpu_ppc_get_tb(env) & 0xFFFFFFFF; } uint32_t cpu_ppc_load_tbu (CPUState *env) { return cpu_ppc_get_tb(env) >> 32; } uint32_t cpu_ppc_load_atbl (CPUState *env) { return cpu_ppc_get_tb(env) & 0xFFFFFFFF; } uint32_t cpu_ppc_load_atbu (CPUState *env) { return cpu_ppc_get_tb(env) >> 32; } uint32_t cpu_ppc601_load_rtcu (CPUState *env) __attribute__ (( alias ("cpu_ppc_load_tbu") )); uint32_t cpu_ppc601_load_rtcl (CPUState *env) { return cpu_ppc_load_tbl(env) & 0x3FFFFF80; } /* XXX: to be fixed */ int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, target_ulong *valp) { return -1; } int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, target_ulong val) { return -1; } #define EXCP_DUMP(env, fmt, ...) \ do { \ fprintf(stderr, fmt , ## __VA_ARGS__); \ cpu_dump_state(env, stderr, fprintf, 0); \ qemu_log(fmt, ## __VA_ARGS__); \ if (logfile) \ log_cpu_state(env, 0); \ } while (0) static int do_store_exclusive(CPUPPCState *env) { target_ulong addr; target_ulong page_addr; target_ulong val; int flags; int segv = 0; addr = env->reserve_ea; page_addr = addr & TARGET_PAGE_MASK; start_exclusive(); mmap_lock(); flags = page_get_flags(page_addr); if ((flags & PAGE_READ) == 0) { segv = 1; } else { int reg = env->reserve_info & 0x1f; int size = (env->reserve_info >> 5) & 0xf; int stored = 0; if (addr == env->reserve_addr) { switch (size) { case 1: segv = get_user_u8(val, addr); break; case 2: segv = get_user_u16(val, addr); break; case 4: segv = get_user_u32(val, addr); break; #if defined(TARGET_PPC64) case 8: segv = get_user_u64(val, addr); break; #endif default: abort(); } if (!segv && val == env->reserve_val) { val = env->gpr[reg]; switch (size) { case 1: segv = put_user_u8(val, addr); break; case 2: segv = put_user_u16(val, addr); break; case 4: segv = put_user_u32(val, addr); break; #if defined(TARGET_PPC64) case 8: segv = put_user_u64(val, addr); break; #endif default: abort(); } if (!segv) { stored = 1; } } } env->crf[0] = (stored << 1) | xer_so; env->reserve_addr = (target_ulong)-1; } if (!segv) { env->nip += 4; } mmap_unlock(); end_exclusive(); return segv; } void cpu_loop(CPUPPCState *env) { target_siginfo_t info; int trapnr; uint32_t ret; for(;;) { cpu_exec_start(env); trapnr = cpu_ppc_exec(env); cpu_exec_end(env); switch(trapnr) { case POWERPC_EXCP_NONE: /* Just go on */ break; case POWERPC_EXCP_CRITICAL: /* Critical input */ cpu_abort(env, "Critical interrupt while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_MCHECK: /* Machine check exception */ cpu_abort(env, "Machine check exception while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_DSI: /* Data storage exception */ EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n", env->spr[SPR_DAR]); /* XXX: check this. Seems bugged */ switch (env->error_code & 0xFF000000) { case 0x40000000: info.si_signo = TARGET_SIGSEGV; info.si_errno = 0; info.si_code = TARGET_SEGV_MAPERR; break; case 0x04000000: info.si_signo = TARGET_SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_ILLADR; break; case 0x08000000: info.si_signo = TARGET_SIGSEGV; info.si_errno = 0; info.si_code = TARGET_SEGV_ACCERR; break; default: /* Let's send a regular segfault... */ EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", env->error_code); info.si_signo = TARGET_SIGSEGV; info.si_errno = 0; info.si_code = TARGET_SEGV_MAPERR; break; } info._sifields._sigfault._addr = env->nip; queue_signal(env, info.si_signo, &info); break; case POWERPC_EXCP_ISI: /* Instruction storage exception */ EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx "\n", env->spr[SPR_SRR0]); /* XXX: check this */ switch (env->error_code & 0xFF000000) { case 0x40000000: info.si_signo = TARGET_SIGSEGV; info.si_errno = 0; info.si_code = TARGET_SEGV_MAPERR; break; case 0x10000000: case 0x08000000: info.si_signo = TARGET_SIGSEGV; info.si_errno = 0; info.si_code = TARGET_SEGV_ACCERR; break; default: /* Let's send a regular segfault... */ EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", env->error_code); info.si_signo = TARGET_SIGSEGV; info.si_errno = 0; info.si_code = TARGET_SEGV_MAPERR; break; } info._sifields._sigfault._addr = env->nip - 4; queue_signal(env, info.si_signo, &info); break; case POWERPC_EXCP_EXTERNAL: /* External input */ cpu_abort(env, "External interrupt while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_ALIGN: /* Alignment exception */ EXCP_DUMP(env, "Unaligned memory access\n"); /* XXX: check this */ info.si_signo = TARGET_SIGBUS; info.si_errno = 0; info.si_code = TARGET_BUS_ADRALN; info._sifields._sigfault._addr = env->nip - 4; queue_signal(env, info.si_signo, &info); break; case POWERPC_EXCP_PROGRAM: /* Program exception */ /* XXX: check this */ switch (env->error_code & ~0xF) { case POWERPC_EXCP_FP: EXCP_DUMP(env, "Floating point program exception\n"); info.si_signo = TARGET_SIGFPE; info.si_errno = 0; switch (env->error_code & 0xF) { case POWERPC_EXCP_FP_OX: info.si_code = TARGET_FPE_FLTOVF; break; case POWERPC_EXCP_FP_UX: info.si_code = TARGET_FPE_FLTUND; break; case POWERPC_EXCP_FP_ZX: case POWERPC_EXCP_FP_VXZDZ: info.si_code = TARGET_FPE_FLTDIV; break; case POWERPC_EXCP_FP_XX: info.si_code = TARGET_FPE_FLTRES; break; case POWERPC_EXCP_FP_VXSOFT: info.si_code = TARGET_FPE_FLTINV; break; case POWERPC_EXCP_FP_VXSNAN: case POWERPC_EXCP_FP_VXISI: case POWERPC_EXCP_FP_VXIDI: case POWERPC_EXCP_FP_VXIMZ: case POWERPC_EXCP_FP_VXVC: case POWERPC_EXCP_FP_VXSQRT: case POWERPC_EXCP_FP_VXCVI: info.si_code = TARGET_FPE_FLTSUB; break; default: EXCP_DUMP(env, "Unknown floating point exception (%02x)\n", env->error_code); break; } break; case POWERPC_EXCP_INVAL: EXCP_DUMP(env, "Invalid instruction\n"); info.si_signo = TARGET_SIGILL; info.si_errno = 0; switch (env->error_code & 0xF) { case POWERPC_EXCP_INVAL_INVAL: info.si_code = TARGET_ILL_ILLOPC; break; case POWERPC_EXCP_INVAL_LSWX: info.si_code = TARGET_ILL_ILLOPN; break; case POWERPC_EXCP_INVAL_SPR: info.si_code = TARGET_ILL_PRVREG; break; case POWERPC_EXCP_INVAL_FP: info.si_code = TARGET_ILL_COPROC; break; default: EXCP_DUMP(env, "Unknown invalid operation (%02x)\n", env->error_code & 0xF); info.si_code = TARGET_ILL_ILLADR; break; } break; case POWERPC_EXCP_PRIV: EXCP_DUMP(env, "Privilege violation\n"); info.si_signo = TARGET_SIGILL; info.si_errno = 0; switch (env->error_code & 0xF) { case POWERPC_EXCP_PRIV_OPC: info.si_code = TARGET_ILL_PRVOPC; break; case POWERPC_EXCP_PRIV_REG: info.si_code = TARGET_ILL_PRVREG; break; default: EXCP_DUMP(env, "Unknown privilege violation (%02x)\n", env->error_code & 0xF); info.si_code = TARGET_ILL_PRVOPC; break; } break; case POWERPC_EXCP_TRAP: cpu_abort(env, "Tried to call a TRAP\n"); break; default: /* Should not happen ! */ cpu_abort(env, "Unknown program exception (%02x)\n", env->error_code); break; } info._sifields._sigfault._addr = env->nip - 4; queue_signal(env, info.si_signo, &info); break; case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ EXCP_DUMP(env, "No floating point allowed\n"); info.si_signo = TARGET_SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_COPROC; info._sifields._sigfault._addr = env->nip - 4; queue_signal(env, info.si_signo, &info); break; case POWERPC_EXCP_SYSCALL: /* System call exception */ cpu_abort(env, "Syscall exception while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */ EXCP_DUMP(env, "No APU instruction allowed\n"); info.si_signo = TARGET_SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_COPROC; info._sifields._sigfault._addr = env->nip - 4; queue_signal(env, info.si_signo, &info); break; case POWERPC_EXCP_DECR: /* Decrementer exception */ cpu_abort(env, "Decrementer interrupt while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ cpu_abort(env, "Fix interval timer interrupt while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ cpu_abort(env, "Watchdog timer interrupt while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_DTLB: /* Data TLB error */ cpu_abort(env, "Data TLB exception while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_ITLB: /* Instruction TLB error */ cpu_abort(env, "Instruction TLB exception while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */ EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n"); info.si_signo = TARGET_SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_COPROC; info._sifields._sigfault._addr = env->nip - 4; queue_signal(env, info.si_signo, &info); break; case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */ cpu_abort(env, "Embedded floating-point data IRQ not handled\n"); break; case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */ cpu_abort(env, "Embedded floating-point round IRQ not handled\n"); break; case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */ cpu_abort(env, "Performance monitor exception not handled\n"); break; case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */ cpu_abort(env, "Doorbell interrupt while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */ cpu_abort(env, "Doorbell critical interrupt while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_RESET: /* System reset exception */ cpu_abort(env, "Reset interrupt while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_DSEG: /* Data segment exception */ cpu_abort(env, "Data segment exception while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_ISEG: /* Instruction segment exception */ cpu_abort(env, "Instruction segment exception " "while in user mode. Aborting\n"); break; /* PowerPC 64 with hypervisor mode support */ case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */ cpu_abort(env, "Hypervisor decrementer interrupt " "while in user mode. Aborting\n"); break; case POWERPC_EXCP_TRACE: /* Trace exception */ /* Nothing to do: * we use this exception to emulate step-by-step execution mode. */ break; /* PowerPC 64 with hypervisor mode support */ case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */ cpu_abort(env, "Hypervisor data storage exception " "while in user mode. Aborting\n"); break; case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */ cpu_abort(env, "Hypervisor instruction storage exception " "while in user mode. Aborting\n"); break; case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */ cpu_abort(env, "Hypervisor data segment exception " "while in user mode. Aborting\n"); break; case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */ cpu_abort(env, "Hypervisor instruction segment exception " "while in user mode. Aborting\n"); break; case POWERPC_EXCP_VPU: /* Vector unavailable exception */ EXCP_DUMP(env, "No Altivec instructions allowed\n"); info.si_signo = TARGET_SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_COPROC; info._sifields._sigfault._addr = env->nip - 4; queue_signal(env, info.si_signo, &info); break; case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */ cpu_abort(env, "Programable interval timer interrupt " "while in user mode. Aborting\n"); break; case POWERPC_EXCP_IO: /* IO error exception */ cpu_abort(env, "IO error exception while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_RUNM: /* Run mode exception */ cpu_abort(env, "Run mode exception while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_EMUL: /* Emulation trap exception */ cpu_abort(env, "Emulation trap exception not handled\n"); break; case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ cpu_abort(env, "Instruction fetch TLB exception " "while in user-mode. Aborting"); break; case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ cpu_abort(env, "Data load TLB exception while in user-mode. " "Aborting"); break; case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ cpu_abort(env, "Data store TLB exception while in user-mode. " "Aborting"); break; case POWERPC_EXCP_FPA: /* Floating-point assist exception */ cpu_abort(env, "Floating-point assist exception not handled\n"); break; case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ cpu_abort(env, "Instruction address breakpoint exception " "not handled\n"); break; case POWERPC_EXCP_SMI: /* System management interrupt */ cpu_abort(env, "System management interrupt while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_THERM: /* Thermal interrupt */ cpu_abort(env, "Thermal interrupt interrupt while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */ cpu_abort(env, "Performance monitor exception not handled\n"); break; case POWERPC_EXCP_VPUA: /* Vector assist exception */ cpu_abort(env, "Vector assist exception not handled\n"); break; case POWERPC_EXCP_SOFTP: /* Soft patch exception */ cpu_abort(env, "Soft patch exception not handled\n"); break; case POWERPC_EXCP_MAINT: /* Maintenance exception */ cpu_abort(env, "Maintenance exception while in user mode. " "Aborting\n"); break; case POWERPC_EXCP_STOP: /* stop translation */ /* We did invalidate the instruction cache. Go on */ break; case POWERPC_EXCP_BRANCH: /* branch instruction: */ /* We just stopped because of a branch. Go on */ break; case POWERPC_EXCP_SYSCALL_USER: /* system call in user-mode emulation */ /* WARNING: * PPC ABI uses overflow flag in cr0 to signal an error * in syscalls. */ #if 0 printf("syscall %d 0x%08x 0x%08x 0x%08x 0x%08x\n", env->gpr[0], env->gpr[3], env->gpr[4], env->gpr[5], env->gpr[6]); #endif env->crf[0] &= ~0x1; ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4], env->gpr[5], env->gpr[6], env->gpr[7], env->gpr[8]); if (ret == (uint32_t)(-TARGET_QEMU_ESIGRETURN)) { /* Returning from a successful sigreturn syscall. Avoid corrupting register state. */ break; } if (ret > (uint32_t)(-515)) { env->crf[0] |= 0x1; ret = -ret; } env->gpr[3] = ret; #if 0 printf("syscall returned 0x%08x (%d)\n", ret, ret); #endif break; case POWERPC_EXCP_STCX: if (do_store_exclusive(env)) { info.si_signo = TARGET_SIGSEGV; info.si_errno = 0; info.si_code = TARGET_SEGV_MAPERR; info._sifields._sigfault._addr = env->nip; queue_signal(env, info.si_signo, &info); } break; case EXCP_DEBUG: { int sig; sig = gdb_handlesig(env, TARGET_SIGTRAP); if (sig) { info.si_signo = sig; info.si_errno = 0; info.si_code = TARGET_TRAP_BRKPT; queue_signal(env, info.si_signo, &info); } } break; case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; default: cpu_abort(env, "Unknown exception 0x%d. Aborting\n", trapnr); break; } process_pending_signals(env); } } #endif #ifdef TARGET_MIPS #define MIPS_SYS(name, args) args, static const uint8_t mips_syscall_args[] = { MIPS_SYS(sys_syscall , 0) /* 4000 */ MIPS_SYS(sys_exit , 1) MIPS_SYS(sys_fork , 0) MIPS_SYS(sys_read , 3) MIPS_SYS(sys_write , 3) MIPS_SYS(sys_open , 3) /* 4005 */ MIPS_SYS(sys_close , 1) MIPS_SYS(sys_waitpid , 3) MIPS_SYS(sys_creat , 2) MIPS_SYS(sys_link , 2) MIPS_SYS(sys_unlink , 1) /* 4010 */ MIPS_SYS(sys_execve , 0) MIPS_SYS(sys_chdir , 1) MIPS_SYS(sys_time , 1) MIPS_SYS(sys_mknod , 3) MIPS_SYS(sys_chmod , 2) /* 4015 */ MIPS_SYS(sys_lchown , 3) MIPS_SYS(sys_ni_syscall , 0) MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */ MIPS_SYS(sys_lseek , 3) MIPS_SYS(sys_getpid , 0) /* 4020 */ MIPS_SYS(sys_mount , 5) MIPS_SYS(sys_oldumount , 1) MIPS_SYS(sys_setuid , 1) MIPS_SYS(sys_getuid , 0) MIPS_SYS(sys_stime , 1) /* 4025 */ MIPS_SYS(sys_ptrace , 4) MIPS_SYS(sys_alarm , 1) MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */ MIPS_SYS(sys_pause , 0) MIPS_SYS(sys_utime , 2) /* 4030 */ MIPS_SYS(sys_ni_syscall , 0) MIPS_SYS(sys_ni_syscall , 0) MIPS_SYS(sys_access , 2) MIPS_SYS(sys_nice , 1) MIPS_SYS(sys_ni_syscall , 0) /* 4035 */ MIPS_SYS(sys_sync , 0) MIPS_SYS(sys_kill , 2) MIPS_SYS(sys_rename , 2) MIPS_SYS(sys_mkdir , 2) MIPS_SYS(sys_rmdir , 1) /* 4040 */ MIPS_SYS(sys_dup , 1) MIPS_SYS(sys_pipe , 0) MIPS_SYS(sys_times , 1) MIPS_SYS(sys_ni_syscall , 0) MIPS_SYS(sys_brk , 1) /* 4045 */ MIPS_SYS(sys_setgid , 1) MIPS_SYS(sys_getgid , 0) MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */ MIPS_SYS(sys_geteuid , 0) MIPS_SYS(sys_getegid , 0) /* 4050 */ MIPS_SYS(sys_acct , 0) MIPS_SYS(sys_umount , 2) MIPS_SYS(sys_ni_syscall , 0) MIPS_SYS(sys_ioctl , 3) MIPS_SYS(sys_fcntl , 3) /* 4055 */ MIPS_SYS(sys_ni_syscall , 2) MIPS_SYS(sys_setpgid , 2) MIPS_SYS(sys_ni_syscall , 0) MIPS_SYS(sys_olduname , 1) MIPS_SYS(sys_umask , 1) /* 4060 */ MIPS_SYS(sys_chroot , 1) MIPS_SYS(sys_ustat , 2) MIPS_SYS(sys_dup2 , 2) MIPS_SYS(sys_getppid , 0) MIPS_SYS(sys_getpgrp , 0) /* 4065 */ MIPS_SYS(sys_setsid , 0) MIPS_SYS(sys_sigaction , 3) MIPS_SYS(sys_sgetmask , 0) MIPS_SYS(sys_ssetmask , 1) MIPS_SYS(sys_setreuid , 2) /* 4070 */ MIPS_SYS(sys_setregid , 2) MIPS_SYS(sys_sigsuspend , 0) MIPS_SYS(sys_sigpending , 1) MIPS_SYS(sys_sethostname , 2) MIPS_SYS(sys_setrlimit , 2) /* 4075 */ MIPS_SYS(sys_getrlimit , 2) MIPS_SYS(sys_getrusage , 2) MIPS_SYS(sys_gettimeofday, 2) MIPS_SYS(sys_settimeofday, 2) MIPS_SYS(sys_getgroups , 2) /* 4080 */ MIPS_SYS(sys_setgroups , 2) MIPS_SYS(sys_ni_syscall , 0) /* old_select */ MIPS_SYS(sys_symlink , 2) MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */ MIPS_SYS(sys_readlink , 3) /* 4085 */ MIPS_SYS(sys_uselib , 1) MIPS_SYS(sys_swapon , 2) MIPS_SYS(sys_reboot , 3) MIPS_SYS(old_readdir , 3) MIPS_SYS(old_mmap , 6) /* 4090 */ MIPS_SYS(sys_munmap , 2) MIPS_SYS(sys_truncate , 2) MIPS_SYS(sys_ftruncate , 2) MIPS_SYS(sys_fchmod , 2) MIPS_SYS(sys_fchown , 3) /* 4095 */ MIPS_SYS(sys_getpriority , 2) MIPS_SYS(sys_setpriority , 3) MIPS_SYS(sys_ni_syscall , 0) MIPS_SYS(sys_statfs , 2) MIPS_SYS(sys_fstatfs , 2) /* 4100 */ MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */ MIPS_SYS(sys_socketcall , 2) MIPS_SYS(sys_syslog , 3) MIPS_SYS(sys_setitimer , 3) MIPS_SYS(sys_getitimer , 2) /* 4105 */ MIPS_SYS(sys_newstat , 2) MIPS_SYS(sys_newlstat , 2) MIPS_SYS(sys_newfstat , 2) MIPS_SYS(sys_uname , 1) MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */ MIPS_SYS(sys_vhangup , 0) MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */ MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */ MIPS_SYS(sys_wait4 , 4) MIPS_SYS(sys_swapoff , 1) /* 4115 */ MIPS_SYS(sys_sysinfo , 1) MIPS_SYS(sys_ipc , 6) MIPS_SYS(sys_fsync , 1) MIPS_SYS(sys_sigreturn , 0) MIPS_SYS(sys_clone , 6) /* 4120 */ MIPS_SYS(sys_setdomainname, 2) MIPS_SYS(sys_newuname , 1) MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */ MIPS_SYS(sys_adjtimex , 1) MIPS_SYS(sys_mprotect , 3) /* 4125 */ MIPS_SYS(sys_sigprocmask , 3) MIPS_SYS(sys_ni_syscall , 0) /* was create_module */ MIPS_SYS(sys_init_module , 5) MIPS_SYS(sys_delete_module, 1) MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */ MIPS_SYS(sys_quotactl , 0) MIPS_SYS(sys_getpgid , 1) MIPS_SYS(sys_fchdir , 1) MIPS_SYS(sys_bdflush , 2) MIPS_SYS(sys_sysfs , 3) /* 4135 */ MIPS_SYS(sys_personality , 1) MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */ MIPS_SYS(sys_setfsuid , 1) MIPS_SYS(sys_setfsgid , 1) MIPS_SYS(sys_llseek , 5) /* 4140 */ MIPS_SYS(sys_getdents , 3) MIPS_SYS(sys_select , 5) MIPS_SYS(sys_flock , 2) MIPS_SYS(sys_msync , 3) MIPS_SYS(sys_readv , 3) /* 4145 */ MIPS_SYS(sys_writev , 3) MIPS_SYS(sys_cacheflush , 3) MIPS_SYS(sys_cachectl , 3) MIPS_SYS(sys_sysmips , 4) MIPS_SYS(sys_ni_syscall , 0) /* 4150 */ MIPS_SYS(sys_getsid , 1) MIPS_SYS(sys_fdatasync , 0) MIPS_SYS(sys_sysctl , 1) MIPS_SYS(sys_mlock , 2) MIPS_SYS(sys_munlock , 2) /* 4155 */ MIPS_SYS(sys_mlockall , 1) MIPS_SYS(sys_munlockall , 0) MIPS_SYS(sys_sched_setparam, 2) MIPS_SYS(sys_sched_getparam, 2) MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */ MIPS_SYS(sys_sched_getscheduler, 1) MIPS_SYS(sys_sched_yield , 0) MIPS_SYS(sys_sched_get_priority_max, 1) MIPS_SYS(sys_sched_get_priority_min, 1) MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */ MIPS_SYS(sys_nanosleep, 2) MIPS_SYS(sys_mremap , 4) MIPS_SYS(sys_accept , 3) MIPS_SYS(sys_bind , 3) MIPS_SYS(sys_connect , 3) /* 4170 */ MIPS_SYS(sys_getpeername , 3) MIPS_SYS(sys_getsockname , 3) MIPS_SYS(sys_getsockopt , 5) MIPS_SYS(sys_listen , 2) MIPS_SYS(sys_recv , 4) /* 4175 */ MIPS_SYS(sys_recvfrom , 6) MIPS_SYS(sys_recvmsg , 3) MIPS_SYS(sys_send , 4) MIPS_SYS(sys_sendmsg , 3) MIPS_SYS(sys_sendto , 6) /* 4180 */ MIPS_SYS(sys_setsockopt , 5) MIPS_SYS(sys_shutdown , 2) MIPS_SYS(sys_socket , 3) MIPS_SYS(sys_socketpair , 4) MIPS_SYS(sys_setresuid , 3) /* 4185 */ MIPS_SYS(sys_getresuid , 3) MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */ MIPS_SYS(sys_poll , 3) MIPS_SYS(sys_nfsservctl , 3) MIPS_SYS(sys_setresgid , 3) /* 4190 */ MIPS_SYS(sys_getresgid , 3) MIPS_SYS(sys_prctl , 5) MIPS_SYS(sys_rt_sigreturn, 0) MIPS_SYS(sys_rt_sigaction, 4) MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */ MIPS_SYS(sys_rt_sigpending, 2) MIPS_SYS(sys_rt_sigtimedwait, 4) MIPS_SYS(sys_rt_sigqueueinfo, 3) MIPS_SYS(sys_rt_sigsuspend, 0) MIPS_SYS(sys_pread64 , 6) /* 4200 */ MIPS_SYS(sys_pwrite64 , 6) MIPS_SYS(sys_chown , 3) MIPS_SYS(sys_getcwd , 2) MIPS_SYS(sys_capget , 2) MIPS_SYS(sys_capset , 2) /* 4205 */ MIPS_SYS(sys_sigaltstack , 0) MIPS_SYS(sys_sendfile , 4) MIPS_SYS(sys_ni_syscall , 0) MIPS_SYS(sys_ni_syscall , 0) MIPS_SYS(sys_mmap2 , 6) /* 4210 */ MIPS_SYS(sys_truncate64 , 4) MIPS_SYS(sys_ftruncate64 , 4) MIPS_SYS(sys_stat64 , 2) MIPS_SYS(sys_lstat64 , 2) MIPS_SYS(sys_fstat64 , 2) /* 4215 */ MIPS_SYS(sys_pivot_root , 2) MIPS_SYS(sys_mincore , 3) MIPS_SYS(sys_madvise , 3) MIPS_SYS(sys_getdents64 , 3) MIPS_SYS(sys_fcntl64 , 3) /* 4220 */ MIPS_SYS(sys_ni_syscall , 0) MIPS_SYS(sys_gettid , 0) MIPS_SYS(sys_readahead , 5) MIPS_SYS(sys_setxattr , 5) MIPS_SYS(sys_lsetxattr , 5) /* 4225 */ MIPS_SYS(sys_fsetxattr , 5) MIPS_SYS(sys_getxattr , 4) MIPS_SYS(sys_lgetxattr , 4) MIPS_SYS(sys_fgetxattr , 4) MIPS_SYS(sys_listxattr , 3) /* 4230 */ MIPS_SYS(sys_llistxattr , 3) MIPS_SYS(sys_flistxattr , 3) MIPS_SYS(sys_removexattr , 2) MIPS_SYS(sys_lremovexattr, 2) MIPS_SYS(sys_fremovexattr, 2) /* 4235 */ MIPS_SYS(sys_tkill , 2) MIPS_SYS(sys_sendfile64 , 5) MIPS_SYS(sys_futex , 2) MIPS_SYS(sys_sched_setaffinity, 3) MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */ MIPS_SYS(sys_io_setup , 2) MIPS_SYS(sys_io_destroy , 1) MIPS_SYS(sys_io_getevents, 5) MIPS_SYS(sys_io_submit , 3) MIPS_SYS(sys_io_cancel , 3) /* 4245 */ MIPS_SYS(sys_exit_group , 1) MIPS_SYS(sys_lookup_dcookie, 3) MIPS_SYS(sys_epoll_create, 1) MIPS_SYS(sys_epoll_ctl , 4) MIPS_SYS(sys_epoll_wait , 3) /* 4250 */ MIPS_SYS(sys_remap_file_pages, 5) MIPS_SYS(sys_set_tid_address, 1) MIPS_SYS(sys_restart_syscall, 0) MIPS_SYS(sys_fadvise64_64, 7) MIPS_SYS(sys_statfs64 , 3) /* 4255 */ MIPS_SYS(sys_fstatfs64 , 2) MIPS_SYS(sys_timer_create, 3) MIPS_SYS(sys_timer_settime, 4) MIPS_SYS(sys_timer_gettime, 2) MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */ MIPS_SYS(sys_timer_delete, 1) MIPS_SYS(sys_clock_settime, 2) MIPS_SYS(sys_clock_gettime, 2) MIPS_SYS(sys_clock_getres, 2) MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */ MIPS_SYS(sys_tgkill , 3) MIPS_SYS(sys_utimes , 2) MIPS_SYS(sys_mbind , 4) MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */ MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */ MIPS_SYS(sys_mq_open , 4) MIPS_SYS(sys_mq_unlink , 1) MIPS_SYS(sys_mq_timedsend, 5) MIPS_SYS(sys_mq_timedreceive, 5) MIPS_SYS(sys_mq_notify , 2) /* 4275 */ MIPS_SYS(sys_mq_getsetattr, 3) MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */ MIPS_SYS(sys_waitid , 4) MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */ MIPS_SYS(sys_add_key , 5) MIPS_SYS(sys_request_key, 4) MIPS_SYS(sys_keyctl , 5) MIPS_SYS(sys_set_thread_area, 1) MIPS_SYS(sys_inotify_init, 0) MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */ MIPS_SYS(sys_inotify_rm_watch, 2) MIPS_SYS(sys_migrate_pages, 4) MIPS_SYS(sys_openat, 4) MIPS_SYS(sys_mkdirat, 3) MIPS_SYS(sys_mknodat, 4) /* 4290 */ MIPS_SYS(sys_fchownat, 5) MIPS_SYS(sys_futimesat, 3) MIPS_SYS(sys_fstatat64, 4) MIPS_SYS(sys_unlinkat, 3) MIPS_SYS(sys_renameat, 4) /* 4295 */ MIPS_SYS(sys_linkat, 5) MIPS_SYS(sys_symlinkat, 3) MIPS_SYS(sys_readlinkat, 4) MIPS_SYS(sys_fchmodat, 3) MIPS_SYS(sys_faccessat, 3) /* 4300 */ MIPS_SYS(sys_pselect6, 6) MIPS_SYS(sys_ppoll, 5) MIPS_SYS(sys_unshare, 1) MIPS_SYS(sys_splice, 4) MIPS_SYS(sys_sync_file_range, 7) /* 4305 */ MIPS_SYS(sys_tee, 4) MIPS_SYS(sys_vmsplice, 4) MIPS_SYS(sys_move_pages, 6) MIPS_SYS(sys_set_robust_list, 2) MIPS_SYS(sys_get_robust_list, 3) /* 4310 */ MIPS_SYS(sys_kexec_load, 4) MIPS_SYS(sys_getcpu, 3) MIPS_SYS(sys_epoll_pwait, 6) MIPS_SYS(sys_ioprio_set, 3) MIPS_SYS(sys_ioprio_get, 2) }; #undef MIPS_SYS static int do_store_exclusive(CPUMIPSState *env) { target_ulong addr; target_ulong page_addr; target_ulong val; int flags; int segv = 0; int reg; int d; addr = env->CP0_LLAddr; page_addr = addr & TARGET_PAGE_MASK; start_exclusive(); mmap_lock(); flags = page_get_flags(page_addr); if ((flags & PAGE_READ) == 0) { segv = 1; } else { reg = env->llreg & 0x1f; d = (env->llreg & 0x20) != 0; if (d) { segv = get_user_s64(val, addr); } else { segv = get_user_s32(val, addr); } if (!segv) { if (val != env->llval) { env->active_tc.gpr[reg] = 0; } else { if (d) { segv = put_user_u64(env->llnewval, addr); } else { segv = put_user_u32(env->llnewval, addr); } if (!segv) { env->active_tc.gpr[reg] = 1; } } } } env->CP0_LLAddr = -1; if (!segv) { env->active_tc.PC += 4; } mmap_unlock(); end_exclusive(); return segv; } void cpu_loop(CPUMIPSState *env) { target_siginfo_t info; int trapnr, ret; unsigned int syscall_num; for(;;) { cpu_exec_start(env); trapnr = cpu_mips_exec(env); cpu_exec_end(env); switch(trapnr) { case EXCP_SYSCALL: syscall_num = env->active_tc.gpr[2] - 4000; env->active_tc.PC += 4; if (syscall_num >= sizeof(mips_syscall_args)) { ret = -ENOSYS; } else { int nb_args; abi_ulong sp_reg; abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0; nb_args = mips_syscall_args[syscall_num]; sp_reg = env->active_tc.gpr[29]; switch (nb_args) { /* these arguments are taken from the stack */ /* FIXME - what to do if get_user() fails? */ case 8: get_user_ual(arg8, sp_reg + 28); case 7: get_user_ual(arg7, sp_reg + 24); case 6: get_user_ual(arg6, sp_reg + 20); case 5: get_user_ual(arg5, sp_reg + 16); default: break; } ret = do_syscall(env, env->active_tc.gpr[2], env->active_tc.gpr[4], env->active_tc.gpr[5], env->active_tc.gpr[6], env->active_tc.gpr[7], arg5, arg6/*, arg7, arg8*/); } if (ret == -TARGET_QEMU_ESIGRETURN) { /* Returning from a successful sigreturn syscall. Avoid clobbering register state. */ break; } if ((unsigned int)ret >= (unsigned int)(-1133)) { env->active_tc.gpr[7] = 1; /* error flag */ ret = -ret; } else { env->active_tc.gpr[7] = 0; /* error flag */ } env->active_tc.gpr[2] = ret; break; case EXCP_TLBL: case EXCP_TLBS: info.si_signo = TARGET_SIGSEGV; info.si_errno = 0; /* XXX: check env->error_code */ info.si_code = TARGET_SEGV_MAPERR; info._sifields._sigfault._addr = env->CP0_BadVAddr; queue_signal(env, info.si_signo, &info); break; case EXCP_CpU: case EXCP_RI: info.si_signo = TARGET_SIGILL; info.si_errno = 0; info.si_code = 0; queue_signal(env, info.si_signo, &info); break; case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; case EXCP_DEBUG: { int sig; sig = gdb_handlesig (env, TARGET_SIGTRAP); if (sig) { info.si_signo = sig; info.si_errno = 0; info.si_code = TARGET_TRAP_BRKPT; queue_signal(env, info.si_signo, &info); } } break; case EXCP_SC: if (do_store_exclusive(env)) { info.si_signo = TARGET_SIGSEGV; info.si_errno = 0; info.si_code = TARGET_SEGV_MAPERR; info._sifields._sigfault._addr = env->active_tc.PC; queue_signal(env, info.si_signo, &info); } break; default: // error: fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); cpu_dump_state(env, stderr, fprintf, 0); abort(); } process_pending_signals(env); } } #endif #ifdef TARGET_SH4 void cpu_loop (CPUState *env) { int trapnr, ret; target_siginfo_t info; while (1) { trapnr = cpu_sh4_exec (env); switch (trapnr) { case 0x160: env->pc += 2; ret = do_syscall(env, env->gregs[3], env->gregs[4], env->gregs[5], env->gregs[6], env->gregs[7], env->gregs[0], env->gregs[1]); env->gregs[0] = ret; break; case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; case EXCP_DEBUG: { int sig; sig = gdb_handlesig (env, TARGET_SIGTRAP); if (sig) { info.si_signo = sig; info.si_errno = 0; info.si_code = TARGET_TRAP_BRKPT; queue_signal(env, info.si_signo, &info); } } break; case 0xa0: case 0xc0: info.si_signo = SIGSEGV; info.si_errno = 0; info.si_code = TARGET_SEGV_MAPERR; info._sifields._sigfault._addr = env->tea; queue_signal(env, info.si_signo, &info); break; default: printf ("Unhandled trap: 0x%x\n", trapnr); cpu_dump_state(env, stderr, fprintf, 0); exit (1); } process_pending_signals (env); } } #endif #ifdef TARGET_CRIS void cpu_loop (CPUState *env) { int trapnr, ret; target_siginfo_t info; while (1) { trapnr = cpu_cris_exec (env); switch (trapnr) { case 0xaa: { info.si_signo = SIGSEGV; info.si_errno = 0; /* XXX: check env->error_code */ info.si_code = TARGET_SEGV_MAPERR; info._sifields._sigfault._addr = env->pregs[PR_EDA]; queue_signal(env, info.si_signo, &info); } break; case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; case EXCP_BREAK: ret = do_syscall(env, env->regs[9], env->regs[10], env->regs[11], env->regs[12], env->regs[13], env->pregs[7], env->pregs[11]); env->regs[10] = ret; break; case EXCP_DEBUG: { int sig; sig = gdb_handlesig (env, TARGET_SIGTRAP); if (sig) { info.si_signo = sig; info.si_errno = 0; info.si_code = TARGET_TRAP_BRKPT; queue_signal(env, info.si_signo, &info); } } break; default: printf ("Unhandled trap: 0x%x\n", trapnr); cpu_dump_state(env, stderr, fprintf, 0); exit (1); } process_pending_signals (env); } } #endif #ifdef TARGET_MICROBLAZE void cpu_loop (CPUState *env) { int trapnr, ret; target_siginfo_t info; while (1) { trapnr = cpu_mb_exec (env); switch (trapnr) { case 0xaa: { info.si_signo = SIGSEGV; info.si_errno = 0; /* XXX: check env->error_code */ info.si_code = TARGET_SEGV_MAPERR; info._sifields._sigfault._addr = 0; queue_signal(env, info.si_signo, &info); } break; case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; case EXCP_BREAK: /* Return address is 4 bytes after the call. */ env->regs[14] += 4; ret = do_syscall(env, env->regs[12], env->regs[5], env->regs[6], env->regs[7], env->regs[8], env->regs[9], env->regs[10]); env->regs[3] = ret; env->sregs[SR_PC] = env->regs[14]; break; case EXCP_DEBUG: { int sig; sig = gdb_handlesig (env, TARGET_SIGTRAP); if (sig) { info.si_signo = sig; info.si_errno = 0; info.si_code = TARGET_TRAP_BRKPT; queue_signal(env, info.si_signo, &info); } } break; default: printf ("Unhandled trap: 0x%x\n", trapnr); cpu_dump_state(env, stderr, fprintf, 0); exit (1); } process_pending_signals (env); } } #endif #ifdef TARGET_M68K void cpu_loop(CPUM68KState *env) { int trapnr; unsigned int n; target_siginfo_t info; TaskState *ts = env->opaque; for(;;) { trapnr = cpu_m68k_exec(env); switch(trapnr) { case EXCP_ILLEGAL: { if (ts->sim_syscalls) { uint16_t nr; nr = lduw(env->pc + 2); env->pc += 4; do_m68k_simcall(env, nr); } else { goto do_sigill; } } break; case EXCP_HALT_INSN: /* Semihosing syscall. */ env->pc += 4; do_m68k_semihosting(env, env->dregs[0]); break; case EXCP_LINEA: case EXCP_LINEF: case EXCP_UNSUPPORTED: do_sigill: info.si_signo = SIGILL; info.si_errno = 0; info.si_code = TARGET_ILL_ILLOPN; info._sifields._sigfault._addr = env->pc; queue_signal(env, info.si_signo, &info); break; case EXCP_TRAP0: { ts->sim_syscalls = 0; n = env->dregs[0]; env->pc += 2; env->dregs[0] = do_syscall(env, n, env->dregs[1], env->dregs[2], env->dregs[3], env->dregs[4], env->dregs[5], env->aregs[0]); } break; case EXCP_INTERRUPT: /* just indicate that signals should be handled asap */ break; case EXCP_ACCESS: { info.si_signo = SIGSEGV; info.si_errno = 0; /* XXX: check env->error_code */ info.si_code = TARGET_SEGV_MAPERR; info._sifields._sigfault._addr = env->mmu.ar; queue_signal(env, info.si_signo, &info); } break; case EXCP_DEBUG: { int sig; sig = gdb_handlesig (env, TARGET_SIGTRAP); if (sig) { info.si_signo = sig; info.si_errno = 0; info.si_code = TARGET_TRAP_BRKPT; queue_signal(env, info.si_signo, &info); } } break; default: fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); cpu_dump_state(env, stderr, fprintf, 0); abort(); } process_pending_signals(env); } } #endif /* TARGET_M68K */ #ifdef TARGET_ALPHA void cpu_loop (CPUState *env) { int trapnr; target_siginfo_t info; while (1) { trapnr = cpu_alpha_exec (env); switch (trapnr) { case EXCP_RESET: fprintf(stderr, "Reset requested. Exit\n"); exit(1); break; case EXCP_MCHK: fprintf(stderr, "Machine check exception. Exit\n"); exit(1); break; case EXCP_ARITH: fprintf(stderr, "Arithmetic trap.\n"); exit(1); break; case EXCP_HW_INTERRUPT: fprintf(stderr, "External interrupt. Exit\n"); exit(1); break; case EXCP_DFAULT: fprintf(stderr, "MMU data fault\n"); exit(1); break; case EXCP_DTB_MISS_PAL: fprintf(stderr, "MMU data TLB miss in PALcode\n"); exit(1); break; case EXCP_ITB_MISS: fprintf(stderr, "MMU instruction TLB miss\n"); exit(1); break; case EXCP_ITB_ACV: fprintf(stderr, "MMU instruction access violation\n"); exit(1); break; case EXCP_DTB_MISS_NATIVE: fprintf(stderr, "MMU data TLB miss\n"); exit(1); break; case EXCP_UNALIGN: fprintf(stderr, "Unaligned access\n"); exit(1); break; case EXCP_OPCDEC: fprintf(stderr, "Invalid instruction\n"); exit(1); break; case EXCP_FEN: fprintf(stderr, "Floating-point not allowed\n"); exit(1); break; case EXCP_CALL_PAL ... (EXCP_CALL_PALP - 1): call_pal(env, (trapnr >> 6) | 0x80); break; case EXCP_CALL_PALP ... (EXCP_CALL_PALE - 1): fprintf(stderr, "Privileged call to PALcode\n"); exit(1); break; case EXCP_DEBUG: { int sig; sig = gdb_handlesig (env, TARGET_SIGTRAP); if (sig) { info.si_signo = sig; info.si_errno = 0; info.si_code = TARGET_TRAP_BRKPT; queue_signal(env, info.si_signo, &info); } } break; default: printf ("Unhandled trap: 0x%x\n", trapnr); cpu_dump_state(env, stderr, fprintf, 0); exit (1); } process_pending_signals (env); } } #endif /* TARGET_ALPHA */ static void usage(void) { printf("qemu-" TARGET_ARCH " version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n" "usage: qemu-" TARGET_ARCH " [options] program [arguments...]\n" "Linux CPU emulator (compiled for %s emulation)\n" "\n" "Standard options:\n" "-h print this help\n" "-g port wait gdb connection to port\n" "-L path set the elf interpreter prefix (default=%s)\n" "-s size set the stack size in bytes (default=%ld)\n" "-cpu model select CPU (-cpu ? for list)\n" "-drop-ld-preload drop LD_PRELOAD for target process\n" "-E var=value sets/modifies targets environment variable(s)\n" "-U var unsets targets environment variable(s)\n" "-0 argv0 forces target process argv[0] to be argv0\n" #if defined(CONFIG_USE_GUEST_BASE) "-B address set guest_base address to address\n" #endif "\n" "Debug options:\n" "-d options activate log (logfile=%s)\n" "-p pagesize set the host page size to 'pagesize'\n" "-singlestep always run in singlestep mode\n" "-strace log system calls\n" "\n" "Environment variables:\n" "QEMU_STRACE Print system calls and arguments similar to the\n" " 'strace' program. Enable by setting to any value.\n" "You can use -E and -U options to set/unset environment variables\n" "for target process. It is possible to provide several variables\n" "by repeating the option. For example:\n" " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" "Note that if you provide several changes to single variable\n" "last change will stay in effect.\n" , TARGET_ARCH, interp_prefix, x86_stack_size, DEBUG_LOGFILE); exit(1); } THREAD CPUState *thread_env; void task_settid(TaskState *ts) { if (ts->ts_tid == 0) { #ifdef CONFIG_USE_NPTL ts->ts_tid = (pid_t)syscall(SYS_gettid); #else /* when no threads are used, tid becomes pid */ ts->ts_tid = getpid(); #endif } } void stop_all_tasks(void) { /* * We trust that when using NPTL, start_exclusive() * handles thread stopping correctly. */ start_exclusive(); } /* Assumes contents are already zeroed. */ void init_task_state(TaskState *ts) { int i; ts->used = 1; ts->first_free = ts->sigqueue_table; for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) { ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1]; } ts->sigqueue_table[i].next = NULL; } int main(int argc, char **argv, char **envp) { const char *filename; const char *cpu_model; struct target_pt_regs regs1, *regs = ®s1; struct image_info info1, *info = &info1; struct linux_binprm bprm; TaskState ts1, *ts = &ts1; CPUState *env; int optind; const char *r; int gdbstub_port = 0; char **target_environ, **wrk; char **target_argv; int target_argc; envlist_t *envlist = NULL; const char *argv0 = NULL; int i; int ret; if (argc <= 1) usage(); qemu_cache_utils_init(envp); /* init debug */ cpu_set_log_filename(DEBUG_LOGFILE); if ((envlist = envlist_create()) == NULL) { (void) fprintf(stderr, "Unable to allocate envlist\n"); exit(1); } /* add current environment into the list */ for (wrk = environ; *wrk != NULL; wrk++) { (void) envlist_setenv(envlist, *wrk); } cpu_model = NULL; optind = 1; for(;;) { if (optind >= argc) break; r = argv[optind]; if (r[0] != '-') break; optind++; r++; if (!strcmp(r, "-")) { break; } else if (!strcmp(r, "d")) { int mask; const CPULogItem *item; if (optind >= argc) break; r = argv[optind++]; mask = cpu_str_to_log_mask(r); if (!mask) { printf("Log items (comma separated):\n"); for(item = cpu_log_items; item->mask != 0; item++) { printf("%-10s %s\n", item->name, item->help); } exit(1); } cpu_set_log(mask); } else if (!strcmp(r, "E")) { r = argv[optind++]; if (envlist_setenv(envlist, r) != 0) usage(); } else if (!strcmp(r, "U")) { r = argv[optind++]; if (envlist_unsetenv(envlist, r) != 0) usage(); } else if (!strcmp(r, "0")) { r = argv[optind++]; argv0 = r; } else if (!strcmp(r, "s")) { if (optind >= argc) break; r = argv[optind++]; x86_stack_size = strtol(r, (char **)&r, 0); if (x86_stack_size <= 0) usage(); if (*r == 'M') x86_stack_size *= 1024 * 1024; else if (*r == 'k' || *r == 'K') x86_stack_size *= 1024; } else if (!strcmp(r, "L")) { interp_prefix = argv[optind++]; } else if (!strcmp(r, "p")) { if (optind >= argc) break; qemu_host_page_size = atoi(argv[optind++]); if (qemu_host_page_size == 0 || (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { fprintf(stderr, "page size must be a power of two\n"); exit(1); } } else if (!strcmp(r, "g")) { if (optind >= argc) break; gdbstub_port = atoi(argv[optind++]); } else if (!strcmp(r, "r")) { qemu_uname_release = argv[optind++]; } else if (!strcmp(r, "cpu")) { cpu_model = argv[optind++]; if (cpu_model == NULL || strcmp(cpu_model, "?") == 0) { /* XXX: implement xxx_cpu_list for targets that still miss it */ #if defined(cpu_list) cpu_list(stdout, &fprintf); #endif exit(1); } #if defined(CONFIG_USE_GUEST_BASE) } else if (!strcmp(r, "B")) { guest_base = strtol(argv[optind++], NULL, 0); have_guest_base = 1; #endif } else if (!strcmp(r, "drop-ld-preload")) { (void) envlist_unsetenv(envlist, "LD_PRELOAD"); } else if (!strcmp(r, "singlestep")) { singlestep = 1; } else if (!strcmp(r, "strace")) { do_strace = 1; } else { usage(); } } if (optind >= argc) usage(); filename = argv[optind]; exec_path = argv[optind]; /* Zero out regs */ memset(regs, 0, sizeof(struct target_pt_regs)); /* Zero out image_info */ memset(info, 0, sizeof(struct image_info)); memset(&bprm, 0, sizeof (bprm)); /* Scan interp_prefix dir for replacement files. */ init_paths(interp_prefix); if (cpu_model == NULL) { #if defined(TARGET_I386) #ifdef TARGET_X86_64 cpu_model = "qemu64"; #else cpu_model = "qemu32"; #endif #elif defined(TARGET_ARM) cpu_model = "any"; #elif defined(TARGET_M68K) cpu_model = "any"; #elif defined(TARGET_SPARC) #ifdef TARGET_SPARC64 cpu_model = "TI UltraSparc II"; #else cpu_model = "Fujitsu MB86904"; #endif #elif defined(TARGET_MIPS) #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) cpu_model = "20Kc"; #else cpu_model = "24Kf"; #endif #elif defined(TARGET_PPC) #ifdef TARGET_PPC64 cpu_model = "970"; #else cpu_model = "750"; #endif #else cpu_model = "any"; #endif } cpu_exec_init_all(0); /* NOTE: we need to init the CPU at this stage to get qemu_host_page_size */ env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to find CPU definition\n"); exit(1); } thread_env = env; if (getenv("QEMU_STRACE")) { do_strace = 1; } target_environ = envlist_to_environ(envlist, NULL); envlist_free(envlist); #if defined(CONFIG_USE_GUEST_BASE) /* * Now that page sizes are configured in cpu_init() we can do * proper page alignment for guest_base. */ guest_base = HOST_PAGE_ALIGN(guest_base); /* * Read in mmap_min_addr kernel parameter. This value is used * When loading the ELF image to determine whether guest_base * is needed. * * When user has explicitly set the quest base, we skip this * test. */ if (!have_guest_base) { FILE *fp; if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { unsigned long tmp; if (fscanf(fp, "%lu", &tmp) == 1) { mmap_min_addr = tmp; qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr); } fclose(fp); } } #endif /* CONFIG_USE_GUEST_BASE */ /* * Prepare copy of argv vector for target. */ target_argc = argc - optind; target_argv = calloc(target_argc + 1, sizeof (char *)); if (target_argv == NULL) { (void) fprintf(stderr, "Unable to allocate memory for target_argv\n"); exit(1); } /* * If argv0 is specified (using '-0' switch) we replace * argv[0] pointer with the given one. */ i = 0; if (argv0 != NULL) { target_argv[i++] = strdup(argv0); } for (; i < target_argc; i++) { target_argv[i] = strdup(argv[optind + i]); } target_argv[target_argc] = NULL; memset(ts, 0, sizeof(TaskState)); init_task_state(ts); /* build Task State */ ts->info = info; ts->bprm = &bprm; env->opaque = ts; task_settid(ts); ret = loader_exec(filename, target_argv, target_environ, regs, info, &bprm); if (ret != 0) { printf("Error %d while loading %s\n", ret, filename); _exit(1); } for (i = 0; i < target_argc; i++) { free(target_argv[i]); } free(target_argv); for (wrk = target_environ; *wrk; wrk++) { free(*wrk); } free(target_environ); if (qemu_log_enabled()) { #if defined(CONFIG_USE_GUEST_BASE) qemu_log("guest_base 0x%lx\n", guest_base); #endif log_page_dump(); qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", info->start_code); qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", info->start_data); qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", info->start_stack); qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); } target_set_brk(info->brk); syscall_init(); signal_init(); #if defined(TARGET_I386) cpu_x86_set_cpl(env, 3); env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; env->hflags |= HF_PE_MASK; if (env->cpuid_features & CPUID_SSE) { env->cr[4] |= CR4_OSFXSR_MASK; env->hflags |= HF_OSFXSR_MASK; } #ifndef TARGET_ABI32 /* enable 64 bit mode if possible */ if (!(env->cpuid_ext2_features & CPUID_EXT2_LM)) { fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); exit(1); } env->cr[4] |= CR4_PAE_MASK; env->efer |= MSR_EFER_LMA | MSR_EFER_LME; env->hflags |= HF_LMA_MASK; #endif /* flags setup : we activate the IRQs by default as in user mode */ env->eflags |= IF_MASK; /* linux register setup */ #ifndef TARGET_ABI32 env->regs[R_EAX] = regs->rax; env->regs[R_EBX] = regs->rbx; env->regs[R_ECX] = regs->rcx; env->regs[R_EDX] = regs->rdx; env->regs[R_ESI] = regs->rsi; env->regs[R_EDI] = regs->rdi; env->regs[R_EBP] = regs->rbp; env->regs[R_ESP] = regs->rsp; env->eip = regs->rip; #else env->regs[R_EAX] = regs->eax; env->regs[R_EBX] = regs->ebx; env->regs[R_ECX] = regs->ecx; env->regs[R_EDX] = regs->edx; env->regs[R_ESI] = regs->esi; env->regs[R_EDI] = regs->edi; env->regs[R_EBP] = regs->ebp; env->regs[R_ESP] = regs->esp; env->eip = regs->eip; #endif /* linux interrupt setup */ #ifndef TARGET_ABI32 env->idt.limit = 511; #else env->idt.limit = 255; #endif env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); idt_table = g2h(env->idt.base); set_idt(0, 0); set_idt(1, 0); set_idt(2, 0); set_idt(3, 3); set_idt(4, 3); set_idt(5, 0); set_idt(6, 0); set_idt(7, 0); set_idt(8, 0); set_idt(9, 0); set_idt(10, 0); set_idt(11, 0); set_idt(12, 0); set_idt(13, 0); set_idt(14, 0); set_idt(15, 0); set_idt(16, 0); set_idt(17, 0); set_idt(18, 0); set_idt(19, 0); set_idt(0x80, 3); /* linux segment setup */ { uint64_t *gdt_table; env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; gdt_table = g2h(env->gdt.base); #ifdef TARGET_ABI32 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); #else /* 64 bit code segment */ write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_L_MASK | (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); #endif write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); } cpu_x86_load_seg(env, R_CS, __USER_CS); cpu_x86_load_seg(env, R_SS, __USER_DS); #ifdef TARGET_ABI32 cpu_x86_load_seg(env, R_DS, __USER_DS); cpu_x86_load_seg(env, R_ES, __USER_DS); cpu_x86_load_seg(env, R_FS, __USER_DS); cpu_x86_load_seg(env, R_GS, __USER_DS); /* This hack makes Wine work... */ env->segs[R_FS].selector = 0; #else cpu_x86_load_seg(env, R_DS, 0); cpu_x86_load_seg(env, R_ES, 0); cpu_x86_load_seg(env, R_FS, 0); cpu_x86_load_seg(env, R_GS, 0); #endif #elif defined(TARGET_ARM) { int i; cpsr_write(env, regs->uregs[16], 0xffffffff); for(i = 0; i < 16; i++) { env->regs[i] = regs->uregs[i]; } } #elif defined(TARGET_SPARC) { int i; env->pc = regs->pc; env->npc = regs->npc; env->y = regs->y; for(i = 0; i < 8; i++) env->gregs[i] = regs->u_regs[i]; for(i = 0; i < 8; i++) env->regwptr[i] = regs->u_regs[i + 8]; } #elif defined(TARGET_PPC) { int i; #if defined(TARGET_PPC64) #if defined(TARGET_ABI32) env->msr &= ~((target_ulong)1 << MSR_SF); #else env->msr |= (target_ulong)1 << MSR_SF; #endif #endif env->nip = regs->nip; for(i = 0; i < 32; i++) { env->gpr[i] = regs->gpr[i]; } } #elif defined(TARGET_M68K) { env->pc = regs->pc; env->dregs[0] = regs->d0; env->dregs[1] = regs->d1; env->dregs[2] = regs->d2; env->dregs[3] = regs->d3; env->dregs[4] = regs->d4; env->dregs[5] = regs->d5; env->dregs[6] = regs->d6; env->dregs[7] = regs->d7; env->aregs[0] = regs->a0; env->aregs[1] = regs->a1; env->aregs[2] = regs->a2; env->aregs[3] = regs->a3; env->aregs[4] = regs->a4; env->aregs[5] = regs->a5; env->aregs[6] = regs->a6; env->aregs[7] = regs->usp; env->sr = regs->sr; ts->sim_syscalls = 1; } #elif defined(TARGET_MICROBLAZE) { env->regs[0] = regs->r0; env->regs[1] = regs->r1; env->regs[2] = regs->r2; env->regs[3] = regs->r3; env->regs[4] = regs->r4; env->regs[5] = regs->r5; env->regs[6] = regs->r6; env->regs[7] = regs->r7; env->regs[8] = regs->r8; env->regs[9] = regs->r9; env->regs[10] = regs->r10; env->regs[11] = regs->r11; env->regs[12] = regs->r12; env->regs[13] = regs->r13; env->regs[14] = regs->r14; env->regs[15] = regs->r15; env->regs[16] = regs->r16; env->regs[17] = regs->r17; env->regs[18] = regs->r18; env->regs[19] = regs->r19; env->regs[20] = regs->r20; env->regs[21] = regs->r21; env->regs[22] = regs->r22; env->regs[23] = regs->r23; env->regs[24] = regs->r24; env->regs[25] = regs->r25; env->regs[26] = regs->r26; env->regs[27] = regs->r27; env->regs[28] = regs->r28; env->regs[29] = regs->r29; env->regs[30] = regs->r30; env->regs[31] = regs->r31; env->sregs[SR_PC] = regs->pc; } #elif defined(TARGET_MIPS) { int i; for(i = 0; i < 32; i++) { env->active_tc.gpr[i] = regs->regs[i]; } env->active_tc.PC = regs->cp0_epc; } #elif defined(TARGET_SH4) { int i; for(i = 0; i < 16; i++) { env->gregs[i] = regs->regs[i]; } env->pc = regs->pc; } #elif defined(TARGET_ALPHA) { int i; for(i = 0; i < 28; i++) { env->ir[i] = ((abi_ulong *)regs)[i]; } env->ipr[IPR_USP] = regs->usp; env->ir[30] = regs->usp; env->pc = regs->pc; env->unique = regs->unique; } #elif defined(TARGET_CRIS) { env->regs[0] = regs->r0; env->regs[1] = regs->r1; env->regs[2] = regs->r2; env->regs[3] = regs->r3; env->regs[4] = regs->r4; env->regs[5] = regs->r5; env->regs[6] = regs->r6; env->regs[7] = regs->r7; env->regs[8] = regs->r8; env->regs[9] = regs->r9; env->regs[10] = regs->r10; env->regs[11] = regs->r11; env->regs[12] = regs->r12; env->regs[13] = regs->r13; env->regs[14] = info->start_stack; env->regs[15] = regs->acr; env->pc = regs->erp; } #else #error unsupported target CPU #endif #if defined(TARGET_ARM) || defined(TARGET_M68K) ts->stack_base = info->start_stack; ts->heap_base = info->brk; /* This will be filled in on the first SYS_HEAPINFO call. */ ts->heap_limit = 0; #endif if (gdbstub_port) { gdbserver_start (gdbstub_port); gdb_handlesig(env, 0); } cpu_loop(env); /* never exits */ return 0; }