/* * QEMU KVM support * * Copyright IBM, Corp. 2008 * Red Hat, Inc. 2008 * * Authors: * Anthony Liguori <aliguori@us.ibm.com> * Glauber Costa <gcosta@redhat.com> * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include <sys/types.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <stdarg.h> #include <linux/kvm.h> #include "qemu-common.h" #include "qemu/atomic.h" #include "qemu/option.h" #include "qemu/config-file.h" #include "sysemu/sysemu.h" #include "hw/hw.h" #include "hw/pci/msi.h" #include "exec/gdbstub.h" #include "sysemu/kvm.h" #include "qemu/bswap.h" #include "exec/memory.h" #include "exec/address-spaces.h" #include "qemu/event_notifier.h" #include "trace.h" /* This check must be after config-host.h is included */ #ifdef CONFIG_EVENTFD #include <sys/eventfd.h> #endif #ifdef CONFIG_VALGRIND_H #include <valgrind/memcheck.h> #endif /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */ #define PAGE_SIZE TARGET_PAGE_SIZE //#define DEBUG_KVM #ifdef DEBUG_KVM #define DPRINTF(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif #define KVM_MSI_HASHTAB_SIZE 256 typedef struct KVMSlot { hwaddr start_addr; ram_addr_t memory_size; void *ram; int slot; int flags; } KVMSlot; typedef struct kvm_dirty_log KVMDirtyLog; struct KVMState { KVMSlot slots[32]; int fd; int vmfd; int coalesced_mmio; struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; bool coalesced_flush_in_progress; int broken_set_mem_region; int migration_log; int vcpu_events; int robust_singlestep; int debugregs; #ifdef KVM_CAP_SET_GUEST_DEBUG struct kvm_sw_breakpoint_head kvm_sw_breakpoints; #endif int pit_state2; int xsave, xcrs; int many_ioeventfds; int intx_set_mask; /* The man page (and posix) say ioctl numbers are signed int, but * they're not. Linux, glibc and *BSD all treat ioctl numbers as * unsigned, and treating them as signed here can break things */ unsigned irq_set_ioctl; #ifdef KVM_CAP_IRQ_ROUTING struct kvm_irq_routing *irq_routes; int nr_allocated_irq_routes; uint32_t *used_gsi_bitmap; unsigned int gsi_count; QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE]; bool direct_msi; #endif }; KVMState *kvm_state; bool kvm_kernel_irqchip; bool kvm_async_interrupts_allowed; bool kvm_irqfds_allowed; bool kvm_msi_via_irqfd_allowed; bool kvm_gsi_routing_allowed; bool kvm_allowed; static const KVMCapabilityInfo kvm_required_capabilites[] = { KVM_CAP_INFO(USER_MEMORY), KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), KVM_CAP_LAST_INFO }; static KVMSlot *kvm_alloc_slot(KVMState *s) { int i; for (i = 0; i < ARRAY_SIZE(s->slots); i++) { if (s->slots[i].memory_size == 0) { return &s->slots[i]; } } fprintf(stderr, "%s: no free slot available\n", __func__); abort(); } static KVMSlot *kvm_lookup_matching_slot(KVMState *s, hwaddr start_addr, hwaddr end_addr) { int i; for (i = 0; i < ARRAY_SIZE(s->slots); i++) { KVMSlot *mem = &s->slots[i]; if (start_addr == mem->start_addr && end_addr == mem->start_addr + mem->memory_size) { return mem; } } return NULL; } /* * Find overlapping slot with lowest start address */ static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, hwaddr start_addr, hwaddr end_addr) { KVMSlot *found = NULL; int i; for (i = 0; i < ARRAY_SIZE(s->slots); i++) { KVMSlot *mem = &s->slots[i]; if (mem->memory_size == 0 || (found && found->start_addr < mem->start_addr)) { continue; } if (end_addr > mem->start_addr && start_addr < mem->start_addr + mem->memory_size) { found = mem; } } return found; } int kvm_physical_memory_addr_from_host(KVMState *s, void *ram, hwaddr *phys_addr) { int i; for (i = 0; i < ARRAY_SIZE(s->slots); i++) { KVMSlot *mem = &s->slots[i]; if (ram >= mem->ram && ram < mem->ram + mem->memory_size) { *phys_addr = mem->start_addr + (ram - mem->ram); return 1; } } return 0; } static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) { struct kvm_userspace_memory_region mem; mem.slot = slot->slot; mem.guest_phys_addr = slot->start_addr; mem.memory_size = slot->memory_size; mem.userspace_addr = (unsigned long)slot->ram; mem.flags = slot->flags; if (s->migration_log) { mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; } return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); } static void kvm_reset_vcpu(void *opaque) { CPUState *cpu = opaque; kvm_arch_reset_vcpu(cpu); } int kvm_init_vcpu(CPUState *cpu) { KVMState *s = kvm_state; long mmap_size; int ret; DPRINTF("kvm_init_vcpu\n"); ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu)); if (ret < 0) { DPRINTF("kvm_create_vcpu failed\n"); goto err; } cpu->kvm_fd = ret; cpu->kvm_state = s; cpu->kvm_vcpu_dirty = true; mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); if (mmap_size < 0) { ret = mmap_size; DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); goto err; } cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, cpu->kvm_fd, 0); if (cpu->kvm_run == MAP_FAILED) { ret = -errno; DPRINTF("mmap'ing vcpu state failed\n"); goto err; } if (s->coalesced_mmio && !s->coalesced_mmio_ring) { s->coalesced_mmio_ring = (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE; } ret = kvm_arch_init_vcpu(cpu); if (ret == 0) { qemu_register_reset(kvm_reset_vcpu, cpu); kvm_arch_reset_vcpu(cpu); } err: return ret; } /* * dirty pages logging control */ static int kvm_mem_flags(KVMState *s, bool log_dirty) { return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0; } static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty) { KVMState *s = kvm_state; int flags, mask = KVM_MEM_LOG_DIRTY_PAGES; int old_flags; old_flags = mem->flags; flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty); mem->flags = flags; /* If nothing changed effectively, no need to issue ioctl */ if (s->migration_log) { flags |= KVM_MEM_LOG_DIRTY_PAGES; } if (flags == old_flags) { return 0; } return kvm_set_user_memory_region(s, mem); } static int kvm_dirty_pages_log_change(hwaddr phys_addr, ram_addr_t size, bool log_dirty) { KVMState *s = kvm_state; KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); if (mem == NULL) { fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" TARGET_FMT_plx "\n", __func__, phys_addr, (hwaddr)(phys_addr + size - 1)); return -EINVAL; } return kvm_slot_dirty_pages_log_change(mem, log_dirty); } static void kvm_log_start(MemoryListener *listener, MemoryRegionSection *section) { int r; r = kvm_dirty_pages_log_change(section->offset_within_address_space, section->size, true); if (r < 0) { abort(); } } static void kvm_log_stop(MemoryListener *listener, MemoryRegionSection *section) { int r; r = kvm_dirty_pages_log_change(section->offset_within_address_space, section->size, false); if (r < 0) { abort(); } } static int kvm_set_migration_log(int enable) { KVMState *s = kvm_state; KVMSlot *mem; int i, err; s->migration_log = enable; for (i = 0; i < ARRAY_SIZE(s->slots); i++) { mem = &s->slots[i]; if (!mem->memory_size) { continue; } if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { continue; } err = kvm_set_user_memory_region(s, mem); if (err) { return err; } } return 0; } /* get kvm's dirty pages bitmap and update qemu's */ static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section, unsigned long *bitmap) { unsigned int i, j; unsigned long page_number, c; hwaddr addr, addr1; unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS; unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; /* * bitmap-traveling is faster than memory-traveling (for addr...) * especially when most of the memory is not dirty. */ for (i = 0; i < len; i++) { if (bitmap[i] != 0) { c = leul_to_cpu(bitmap[i]); do { j = ffsl(c) - 1; c &= ~(1ul << j); page_number = (i * HOST_LONG_BITS + j) * hpratio; addr1 = page_number * TARGET_PAGE_SIZE; addr = section->offset_within_region + addr1; memory_region_set_dirty(section->mr, addr, TARGET_PAGE_SIZE * hpratio); } while (c != 0); } } return 0; } #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) /** * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space * This function updates qemu's dirty bitmap using * memory_region_set_dirty(). This means all bits are set * to dirty. * * @start_add: start of logged region. * @end_addr: end of logged region. */ static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection *section) { KVMState *s = kvm_state; unsigned long size, allocated_size = 0; KVMDirtyLog d; KVMSlot *mem; int ret = 0; hwaddr start_addr = section->offset_within_address_space; hwaddr end_addr = start_addr + section->size; d.dirty_bitmap = NULL; while (start_addr < end_addr) { mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); if (mem == NULL) { break; } /* XXX bad kernel interface alert * For dirty bitmap, kernel allocates array of size aligned to * bits-per-long. But for case when the kernel is 64bits and * the userspace is 32bits, userspace can't align to the same * bits-per-long, since sizeof(long) is different between kernel * and user space. This way, userspace will provide buffer which * may be 4 bytes less than the kernel will use, resulting in * userspace memory corruption (which is not detectable by valgrind * too, in most cases). * So for now, let's align to 64 instead of HOST_LONG_BITS here, in * a hope that sizeof(long) wont become >8 any time soon. */ size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), /*HOST_LONG_BITS*/ 64) / 8; if (!d.dirty_bitmap) { d.dirty_bitmap = g_malloc(size); } else if (size > allocated_size) { d.dirty_bitmap = g_realloc(d.dirty_bitmap, size); } allocated_size = size; memset(d.dirty_bitmap, 0, allocated_size); d.slot = mem->slot; if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { DPRINTF("ioctl failed %d\n", errno); ret = -1; break; } kvm_get_dirty_pages_log_range(section, d.dirty_bitmap); start_addr = mem->start_addr + mem->memory_size; } g_free(d.dirty_bitmap); return ret; } static void kvm_coalesce_mmio_region(MemoryListener *listener, MemoryRegionSection *secion, hwaddr start, hwaddr size) { KVMState *s = kvm_state; if (s->coalesced_mmio) { struct kvm_coalesced_mmio_zone zone; zone.addr = start; zone.size = size; zone.pad = 0; (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); } } static void kvm_uncoalesce_mmio_region(MemoryListener *listener, MemoryRegionSection *secion, hwaddr start, hwaddr size) { KVMState *s = kvm_state; if (s->coalesced_mmio) { struct kvm_coalesced_mmio_zone zone; zone.addr = start; zone.size = size; zone.pad = 0; (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); } } int kvm_check_extension(KVMState *s, unsigned int extension) { int ret; ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); if (ret < 0) { ret = 0; } return ret; } static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign, uint32_t size, bool datamatch) { int ret; struct kvm_ioeventfd iofd; iofd.datamatch = datamatch ? val : 0; iofd.addr = addr; iofd.len = size; iofd.flags = 0; iofd.fd = fd; if (!kvm_enabled()) { return -ENOSYS; } if (datamatch) { iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; } if (!assign) { iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; } ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); if (ret < 0) { return -errno; } return 0; } static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val, bool assign, uint32_t size, bool datamatch) { struct kvm_ioeventfd kick = { .datamatch = datamatch ? val : 0, .addr = addr, .flags = KVM_IOEVENTFD_FLAG_PIO, .len = size, .fd = fd, }; int r; if (!kvm_enabled()) { return -ENOSYS; } if (datamatch) { kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH; } if (!assign) { kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; } r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); if (r < 0) { return r; } return 0; } static int kvm_check_many_ioeventfds(void) { /* Userspace can use ioeventfd for io notification. This requires a host * that supports eventfd(2) and an I/O thread; since eventfd does not * support SIGIO it cannot interrupt the vcpu. * * Older kernels have a 6 device limit on the KVM io bus. Find out so we * can avoid creating too many ioeventfds. */ #if defined(CONFIG_EVENTFD) int ioeventfds[7]; int i, ret = 0; for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { ioeventfds[i] = eventfd(0, EFD_CLOEXEC); if (ioeventfds[i] < 0) { break; } ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true); if (ret < 0) { close(ioeventfds[i]); break; } } /* Decide whether many devices are supported or not */ ret = i == ARRAY_SIZE(ioeventfds); while (i-- > 0) { kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true); close(ioeventfds[i]); } return ret; #else return 0; #endif } static const KVMCapabilityInfo * kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) { while (list->name) { if (!kvm_check_extension(s, list->value)) { return list; } list++; } return NULL; } static void kvm_set_phys_mem(MemoryRegionSection *section, bool add) { KVMState *s = kvm_state; KVMSlot *mem, old; int err; MemoryRegion *mr = section->mr; bool log_dirty = memory_region_is_logging(mr); hwaddr start_addr = section->offset_within_address_space; ram_addr_t size = section->size; void *ram = NULL; unsigned delta; /* kvm works in page size chunks, but the function may be called with sub-page size and unaligned start address. */ delta = TARGET_PAGE_ALIGN(size) - size; if (delta > size) { return; } start_addr += delta; size -= delta; size &= TARGET_PAGE_MASK; if (!size || (start_addr & ~TARGET_PAGE_MASK)) { return; } if (!memory_region_is_ram(mr)) { return; } ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta; while (1) { mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); if (!mem) { break; } if (add && start_addr >= mem->start_addr && (start_addr + size <= mem->start_addr + mem->memory_size) && (ram - start_addr == mem->ram - mem->start_addr)) { /* The new slot fits into the existing one and comes with * identical parameters - update flags and done. */ kvm_slot_dirty_pages_log_change(mem, log_dirty); return; } old = *mem; if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) { kvm_physical_sync_dirty_bitmap(section); } /* unregister the overlapping slot */ mem->memory_size = 0; err = kvm_set_user_memory_region(s, mem); if (err) { fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", __func__, strerror(-err)); abort(); } /* Workaround for older KVM versions: we can't join slots, even not by * unregistering the previous ones and then registering the larger * slot. We have to maintain the existing fragmentation. Sigh. * * This workaround assumes that the new slot starts at the same * address as the first existing one. If not or if some overlapping * slot comes around later, we will fail (not seen in practice so far) * - and actually require a recent KVM version. */ if (s->broken_set_mem_region && old.start_addr == start_addr && old.memory_size < size && add) { mem = kvm_alloc_slot(s); mem->memory_size = old.memory_size; mem->start_addr = old.start_addr; mem->ram = old.ram; mem->flags = kvm_mem_flags(s, log_dirty); err = kvm_set_user_memory_region(s, mem); if (err) { fprintf(stderr, "%s: error updating slot: %s\n", __func__, strerror(-err)); abort(); } start_addr += old.memory_size; ram += old.memory_size; size -= old.memory_size; continue; } /* register prefix slot */ if (old.start_addr < start_addr) { mem = kvm_alloc_slot(s); mem->memory_size = start_addr - old.start_addr; mem->start_addr = old.start_addr; mem->ram = old.ram; mem->flags = kvm_mem_flags(s, log_dirty); err = kvm_set_user_memory_region(s, mem); if (err) { fprintf(stderr, "%s: error registering prefix slot: %s\n", __func__, strerror(-err)); #ifdef TARGET_PPC fprintf(stderr, "%s: This is probably because your kernel's " \ "PAGE_SIZE is too big. Please try to use 4k " \ "PAGE_SIZE!\n", __func__); #endif abort(); } } /* register suffix slot */ if (old.start_addr + old.memory_size > start_addr + size) { ram_addr_t size_delta; mem = kvm_alloc_slot(s); mem->start_addr = start_addr + size; size_delta = mem->start_addr - old.start_addr; mem->memory_size = old.memory_size - size_delta; mem->ram = old.ram + size_delta; mem->flags = kvm_mem_flags(s, log_dirty); err = kvm_set_user_memory_region(s, mem); if (err) { fprintf(stderr, "%s: error registering suffix slot: %s\n", __func__, strerror(-err)); abort(); } } } /* in case the KVM bug workaround already "consumed" the new slot */ if (!size) { return; } if (!add) { return; } mem = kvm_alloc_slot(s); mem->memory_size = size; mem->start_addr = start_addr; mem->ram = ram; mem->flags = kvm_mem_flags(s, log_dirty); err = kvm_set_user_memory_region(s, mem); if (err) { fprintf(stderr, "%s: error registering slot: %s\n", __func__, strerror(-err)); abort(); } } static void kvm_region_add(MemoryListener *listener, MemoryRegionSection *section) { kvm_set_phys_mem(section, true); } static void kvm_region_del(MemoryListener *listener, MemoryRegionSection *section) { kvm_set_phys_mem(section, false); } static void kvm_log_sync(MemoryListener *listener, MemoryRegionSection *section) { int r; r = kvm_physical_sync_dirty_bitmap(section); if (r < 0) { abort(); } } static void kvm_log_global_start(struct MemoryListener *listener) { int r; r = kvm_set_migration_log(1); assert(r >= 0); } static void kvm_log_global_stop(struct MemoryListener *listener) { int r; r = kvm_set_migration_log(0); assert(r >= 0); } static void kvm_mem_ioeventfd_add(MemoryListener *listener, MemoryRegionSection *section, bool match_data, uint64_t data, EventNotifier *e) { int fd = event_notifier_get_fd(e); int r; r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, data, true, section->size, match_data); if (r < 0) { abort(); } } static void kvm_mem_ioeventfd_del(MemoryListener *listener, MemoryRegionSection *section, bool match_data, uint64_t data, EventNotifier *e) { int fd = event_notifier_get_fd(e); int r; r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space, data, false, section->size, match_data); if (r < 0) { abort(); } } static void kvm_io_ioeventfd_add(MemoryListener *listener, MemoryRegionSection *section, bool match_data, uint64_t data, EventNotifier *e) { int fd = event_notifier_get_fd(e); int r; r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, data, true, section->size, match_data); if (r < 0) { abort(); } } static void kvm_io_ioeventfd_del(MemoryListener *listener, MemoryRegionSection *section, bool match_data, uint64_t data, EventNotifier *e) { int fd = event_notifier_get_fd(e); int r; r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space, data, false, section->size, match_data); if (r < 0) { abort(); } } static MemoryListener kvm_memory_listener = { .region_add = kvm_region_add, .region_del = kvm_region_del, .log_start = kvm_log_start, .log_stop = kvm_log_stop, .log_sync = kvm_log_sync, .log_global_start = kvm_log_global_start, .log_global_stop = kvm_log_global_stop, .eventfd_add = kvm_mem_ioeventfd_add, .eventfd_del = kvm_mem_ioeventfd_del, .coalesced_mmio_add = kvm_coalesce_mmio_region, .coalesced_mmio_del = kvm_uncoalesce_mmio_region, .priority = 10, }; static MemoryListener kvm_io_listener = { .eventfd_add = kvm_io_ioeventfd_add, .eventfd_del = kvm_io_ioeventfd_del, .priority = 10, }; static void kvm_handle_interrupt(CPUState *cpu, int mask) { cpu->interrupt_request |= mask; if (!qemu_cpu_is_self(cpu)) { qemu_cpu_kick(cpu); } } int kvm_set_irq(KVMState *s, int irq, int level) { struct kvm_irq_level event; int ret; assert(kvm_async_interrupts_enabled()); event.level = level; event.irq = irq; ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event); if (ret < 0) { perror("kvm_set_irq"); abort(); } return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status; } #ifdef KVM_CAP_IRQ_ROUTING typedef struct KVMMSIRoute { struct kvm_irq_routing_entry kroute; QTAILQ_ENTRY(KVMMSIRoute) entry; } KVMMSIRoute; static void set_gsi(KVMState *s, unsigned int gsi) { s->used_gsi_bitmap[gsi / 32] |= 1U << (gsi % 32); } static void clear_gsi(KVMState *s, unsigned int gsi) { s->used_gsi_bitmap[gsi / 32] &= ~(1U << (gsi % 32)); } static void kvm_init_irq_routing(KVMState *s) { int gsi_count, i; gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING); if (gsi_count > 0) { unsigned int gsi_bits, i; /* Round up so we can search ints using ffs */ gsi_bits = ALIGN(gsi_count, 32); s->used_gsi_bitmap = g_malloc0(gsi_bits / 8); s->gsi_count = gsi_count; /* Mark any over-allocated bits as already in use */ for (i = gsi_count; i < gsi_bits; i++) { set_gsi(s, i); } } s->irq_routes = g_malloc0(sizeof(*s->irq_routes)); s->nr_allocated_irq_routes = 0; if (!s->direct_msi) { for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) { QTAILQ_INIT(&s->msi_hashtab[i]); } } kvm_arch_init_irq_routing(s); } static void kvm_irqchip_commit_routes(KVMState *s) { int ret; s->irq_routes->flags = 0; ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes); assert(ret == 0); } static void kvm_add_routing_entry(KVMState *s, struct kvm_irq_routing_entry *entry) { struct kvm_irq_routing_entry *new; int n, size; if (s->irq_routes->nr == s->nr_allocated_irq_routes) { n = s->nr_allocated_irq_routes * 2; if (n < 64) { n = 64; } size = sizeof(struct kvm_irq_routing); size += n * sizeof(*new); s->irq_routes = g_realloc(s->irq_routes, size); s->nr_allocated_irq_routes = n; } n = s->irq_routes->nr++; new = &s->irq_routes->entries[n]; memset(new, 0, sizeof(*new)); new->gsi = entry->gsi; new->type = entry->type; new->flags = entry->flags; new->u = entry->u; set_gsi(s, entry->gsi); kvm_irqchip_commit_routes(s); } static int kvm_update_routing_entry(KVMState *s, struct kvm_irq_routing_entry *new_entry) { struct kvm_irq_routing_entry *entry; int n; for (n = 0; n < s->irq_routes->nr; n++) { entry = &s->irq_routes->entries[n]; if (entry->gsi != new_entry->gsi) { continue; } entry->type = new_entry->type; entry->flags = new_entry->flags; entry->u = new_entry->u; kvm_irqchip_commit_routes(s); return 0; } return -ESRCH; } void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin) { struct kvm_irq_routing_entry e; assert(pin < s->gsi_count); e.gsi = irq; e.type = KVM_IRQ_ROUTING_IRQCHIP; e.flags = 0; e.u.irqchip.irqchip = irqchip; e.u.irqchip.pin = pin; kvm_add_routing_entry(s, &e); } void kvm_irqchip_release_virq(KVMState *s, int virq) { struct kvm_irq_routing_entry *e; int i; for (i = 0; i < s->irq_routes->nr; i++) { e = &s->irq_routes->entries[i]; if (e->gsi == virq) { s->irq_routes->nr--; *e = s->irq_routes->entries[s->irq_routes->nr]; } } clear_gsi(s, virq); } static unsigned int kvm_hash_msi(uint32_t data) { /* This is optimized for IA32 MSI layout. However, no other arch shall * repeat the mistake of not providing a direct MSI injection API. */ return data & 0xff; } static void kvm_flush_dynamic_msi_routes(KVMState *s) { KVMMSIRoute *route, *next; unsigned int hash; for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) { QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) { kvm_irqchip_release_virq(s, route->kroute.gsi); QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry); g_free(route); } } } static int kvm_irqchip_get_virq(KVMState *s) { uint32_t *word = s->used_gsi_bitmap; int max_words = ALIGN(s->gsi_count, 32) / 32; int i, bit; bool retry = true; again: /* Return the lowest unused GSI in the bitmap */ for (i = 0; i < max_words; i++) { bit = ffs(~word[i]); if (!bit) { continue; } return bit - 1 + i * 32; } if (!s->direct_msi && retry) { retry = false; kvm_flush_dynamic_msi_routes(s); goto again; } return -ENOSPC; } static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg) { unsigned int hash = kvm_hash_msi(msg.data); KVMMSIRoute *route; QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) { if (route->kroute.u.msi.address_lo == (uint32_t)msg.address && route->kroute.u.msi.address_hi == (msg.address >> 32) && route->kroute.u.msi.data == msg.data) { return route; } } return NULL; } int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) { struct kvm_msi msi; KVMMSIRoute *route; if (s->direct_msi) { msi.address_lo = (uint32_t)msg.address; msi.address_hi = msg.address >> 32; msi.data = msg.data; msi.flags = 0; memset(msi.pad, 0, sizeof(msi.pad)); return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi); } route = kvm_lookup_msi_route(s, msg); if (!route) { int virq; virq = kvm_irqchip_get_virq(s); if (virq < 0) { return virq; } route = g_malloc(sizeof(KVMMSIRoute)); route->kroute.gsi = virq; route->kroute.type = KVM_IRQ_ROUTING_MSI; route->kroute.flags = 0; route->kroute.u.msi.address_lo = (uint32_t)msg.address; route->kroute.u.msi.address_hi = msg.address >> 32; route->kroute.u.msi.data = msg.data; kvm_add_routing_entry(s, &route->kroute); QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route, entry); } assert(route->kroute.type == KVM_IRQ_ROUTING_MSI); return kvm_set_irq(s, route->kroute.gsi, 1); } int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) { struct kvm_irq_routing_entry kroute; int virq; if (!kvm_gsi_routing_enabled()) { return -ENOSYS; } virq = kvm_irqchip_get_virq(s); if (virq < 0) { return virq; } kroute.gsi = virq; kroute.type = KVM_IRQ_ROUTING_MSI; kroute.flags = 0; kroute.u.msi.address_lo = (uint32_t)msg.address; kroute.u.msi.address_hi = msg.address >> 32; kroute.u.msi.data = msg.data; kvm_add_routing_entry(s, &kroute); return virq; } int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) { struct kvm_irq_routing_entry kroute; if (!kvm_irqchip_in_kernel()) { return -ENOSYS; } kroute.gsi = virq; kroute.type = KVM_IRQ_ROUTING_MSI; kroute.flags = 0; kroute.u.msi.address_lo = (uint32_t)msg.address; kroute.u.msi.address_hi = msg.address >> 32; kroute.u.msi.data = msg.data; return kvm_update_routing_entry(s, &kroute); } static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) { struct kvm_irqfd irqfd = { .fd = fd, .gsi = virq, .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN, }; if (!kvm_irqfds_enabled()) { return -ENOSYS; } return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd); } #else /* !KVM_CAP_IRQ_ROUTING */ static void kvm_init_irq_routing(KVMState *s) { } void kvm_irqchip_release_virq(KVMState *s, int virq) { } int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg) { abort(); } int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg) { return -ENOSYS; } static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign) { abort(); } int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg) { return -ENOSYS; } #endif /* !KVM_CAP_IRQ_ROUTING */ int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) { return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true); } int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq) { return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false); } static int kvm_irqchip_create(KVMState *s) { QemuOptsList *list = qemu_find_opts("machine"); int ret; if (QTAILQ_EMPTY(&list->head) || !qemu_opt_get_bool(QTAILQ_FIRST(&list->head), "kernel_irqchip", true) || !kvm_check_extension(s, KVM_CAP_IRQCHIP)) { return 0; } ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP); if (ret < 0) { fprintf(stderr, "Create kernel irqchip failed\n"); return ret; } kvm_kernel_irqchip = true; /* If we have an in-kernel IRQ chip then we must have asynchronous * interrupt delivery (though the reverse is not necessarily true) */ kvm_async_interrupts_allowed = true; kvm_init_irq_routing(s); return 0; } static int kvm_max_vcpus(KVMState *s) { int ret; /* Find number of supported CPUs using the recommended * procedure from the kernel API documentation to cope with * older kernels that may be missing capabilities. */ ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS); if (ret) { return ret; } ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS); if (ret) { return ret; } return 4; } int kvm_init(void) { static const char upgrade_note[] = "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" "(see http://sourceforge.net/projects/kvm).\n"; KVMState *s; const KVMCapabilityInfo *missing_cap; int ret; int i; int max_vcpus; s = g_malloc0(sizeof(KVMState)); /* * On systems where the kernel can support different base page * sizes, host page size may be different from TARGET_PAGE_SIZE, * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum * page size for the system though. */ assert(TARGET_PAGE_SIZE <= getpagesize()); #ifdef KVM_CAP_SET_GUEST_DEBUG QTAILQ_INIT(&s->kvm_sw_breakpoints); #endif for (i = 0; i < ARRAY_SIZE(s->slots); i++) { s->slots[i].slot = i; } s->vmfd = -1; s->fd = qemu_open("/dev/kvm", O_RDWR); if (s->fd == -1) { fprintf(stderr, "Could not access KVM kernel module: %m\n"); ret = -errno; goto err; } ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); if (ret < KVM_API_VERSION) { if (ret > 0) { ret = -EINVAL; } fprintf(stderr, "kvm version too old\n"); goto err; } if (ret > KVM_API_VERSION) { ret = -EINVAL; fprintf(stderr, "kvm version not supported\n"); goto err; } max_vcpus = kvm_max_vcpus(s); if (smp_cpus > max_vcpus) { ret = -EINVAL; fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus " "supported by KVM (%d)\n", smp_cpus, max_vcpus); goto err; } s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); if (s->vmfd < 0) { #ifdef TARGET_S390X fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " "your host kernel command line\n"); #endif ret = s->vmfd; goto err; } missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); if (!missing_cap) { missing_cap = kvm_check_extension_list(s, kvm_arch_required_capabilities); } if (missing_cap) { ret = -EINVAL; fprintf(stderr, "kvm does not support %s\n%s", missing_cap->name, upgrade_note); goto err; } s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); s->broken_set_mem_region = 1; ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); if (ret > 0) { s->broken_set_mem_region = 0; } #ifdef KVM_CAP_VCPU_EVENTS s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); #endif s->robust_singlestep = kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); #ifdef KVM_CAP_DEBUGREGS s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); #endif #ifdef KVM_CAP_XSAVE s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); #endif #ifdef KVM_CAP_XCRS s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); #endif #ifdef KVM_CAP_PIT_STATE2 s->pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2); #endif #ifdef KVM_CAP_IRQ_ROUTING s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0); #endif s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3); s->irq_set_ioctl = KVM_IRQ_LINE; if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) { s->irq_set_ioctl = KVM_IRQ_LINE_STATUS; } ret = kvm_arch_init(s); if (ret < 0) { goto err; } ret = kvm_irqchip_create(s); if (ret < 0) { goto err; } kvm_state = s; memory_listener_register(&kvm_memory_listener, &address_space_memory); memory_listener_register(&kvm_io_listener, &address_space_io); s->many_ioeventfds = kvm_check_many_ioeventfds(); cpu_interrupt_handler = kvm_handle_interrupt; return 0; err: if (s->vmfd >= 0) { close(s->vmfd); } if (s->fd != -1) { close(s->fd); } g_free(s); return ret; } static void kvm_handle_io(uint16_t port, void *data, int direction, int size, uint32_t count) { int i; uint8_t *ptr = data; for (i = 0; i < count; i++) { if (direction == KVM_EXIT_IO_IN) { switch (size) { case 1: stb_p(ptr, cpu_inb(port)); break; case 2: stw_p(ptr, cpu_inw(port)); break; case 4: stl_p(ptr, cpu_inl(port)); break; } } else { switch (size) { case 1: cpu_outb(port, ldub_p(ptr)); break; case 2: cpu_outw(port, lduw_p(ptr)); break; case 4: cpu_outl(port, ldl_p(ptr)); break; } } ptr += size; } } static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run) { CPUState *cpu = ENV_GET_CPU(env); fprintf(stderr, "KVM internal error."); if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { int i; fprintf(stderr, " Suberror: %d\n", run->internal.suberror); for (i = 0; i < run->internal.ndata; ++i) { fprintf(stderr, "extra data[%d]: %"PRIx64"\n", i, (uint64_t)run->internal.data[i]); } } else { fprintf(stderr, "\n"); } if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { fprintf(stderr, "emulation failure\n"); if (!kvm_arch_stop_on_emulation_error(cpu)) { cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); return EXCP_INTERRUPT; } } /* FIXME: Should trigger a qmp message to let management know * something went wrong. */ return -1; } void kvm_flush_coalesced_mmio_buffer(void) { KVMState *s = kvm_state; if (s->coalesced_flush_in_progress) { return; } s->coalesced_flush_in_progress = true; if (s->coalesced_mmio_ring) { struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; while (ring->first != ring->last) { struct kvm_coalesced_mmio *ent; ent = &ring->coalesced_mmio[ring->first]; cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); smp_wmb(); ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; } } s->coalesced_flush_in_progress = false; } static void do_kvm_cpu_synchronize_state(void *arg) { CPUState *cpu = arg; if (!cpu->kvm_vcpu_dirty) { kvm_arch_get_registers(cpu); cpu->kvm_vcpu_dirty = true; } } void kvm_cpu_synchronize_state(CPUArchState *env) { CPUState *cpu = ENV_GET_CPU(env); if (!cpu->kvm_vcpu_dirty) { run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu); } } void kvm_cpu_synchronize_post_reset(CPUState *cpu) { kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE); cpu->kvm_vcpu_dirty = false; } void kvm_cpu_synchronize_post_init(CPUState *cpu) { kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE); cpu->kvm_vcpu_dirty = false; } int kvm_cpu_exec(CPUArchState *env) { CPUState *cpu = ENV_GET_CPU(env); struct kvm_run *run = cpu->kvm_run; int ret, run_ret; DPRINTF("kvm_cpu_exec()\n"); if (kvm_arch_process_async_events(cpu)) { cpu->exit_request = 0; return EXCP_HLT; } do { if (cpu->kvm_vcpu_dirty) { kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE); cpu->kvm_vcpu_dirty = false; } kvm_arch_pre_run(cpu, run); if (cpu->exit_request) { DPRINTF("interrupt exit requested\n"); /* * KVM requires us to reenter the kernel after IO exits to complete * instruction emulation. This self-signal will ensure that we * leave ASAP again. */ qemu_cpu_kick_self(); } qemu_mutex_unlock_iothread(); run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0); qemu_mutex_lock_iothread(); kvm_arch_post_run(cpu, run); if (run_ret < 0) { if (run_ret == -EINTR || run_ret == -EAGAIN) { DPRINTF("io window exit\n"); ret = EXCP_INTERRUPT; break; } fprintf(stderr, "error: kvm run failed %s\n", strerror(-run_ret)); abort(); } trace_kvm_run_exit(cpu->cpu_index, run->exit_reason); switch (run->exit_reason) { case KVM_EXIT_IO: DPRINTF("handle_io\n"); kvm_handle_io(run->io.port, (uint8_t *)run + run->io.data_offset, run->io.direction, run->io.size, run->io.count); ret = 0; break; case KVM_EXIT_MMIO: DPRINTF("handle_mmio\n"); cpu_physical_memory_rw(run->mmio.phys_addr, run->mmio.data, run->mmio.len, run->mmio.is_write); ret = 0; break; case KVM_EXIT_IRQ_WINDOW_OPEN: DPRINTF("irq_window_open\n"); ret = EXCP_INTERRUPT; break; case KVM_EXIT_SHUTDOWN: DPRINTF("shutdown\n"); qemu_system_reset_request(); ret = EXCP_INTERRUPT; break; case KVM_EXIT_UNKNOWN: fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", (uint64_t)run->hw.hardware_exit_reason); ret = -1; break; case KVM_EXIT_INTERNAL_ERROR: ret = kvm_handle_internal_error(env, run); break; default: DPRINTF("kvm_arch_handle_exit\n"); ret = kvm_arch_handle_exit(cpu, run); break; } } while (ret == 0); if (ret < 0) { cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); vm_stop(RUN_STATE_INTERNAL_ERROR); } cpu->exit_request = 0; return ret; } int kvm_ioctl(KVMState *s, int type, ...) { int ret; void *arg; va_list ap; va_start(ap, type); arg = va_arg(ap, void *); va_end(ap); trace_kvm_ioctl(type, arg); ret = ioctl(s->fd, type, arg); if (ret == -1) { ret = -errno; } return ret; } int kvm_vm_ioctl(KVMState *s, int type, ...) { int ret; void *arg; va_list ap; va_start(ap, type); arg = va_arg(ap, void *); va_end(ap); trace_kvm_vm_ioctl(type, arg); ret = ioctl(s->vmfd, type, arg); if (ret == -1) { ret = -errno; } return ret; } int kvm_vcpu_ioctl(CPUState *cpu, int type, ...) { int ret; void *arg; va_list ap; va_start(ap, type); arg = va_arg(ap, void *); va_end(ap); trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg); ret = ioctl(cpu->kvm_fd, type, arg); if (ret == -1) { ret = -errno; } return ret; } int kvm_has_sync_mmu(void) { return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); } int kvm_has_vcpu_events(void) { return kvm_state->vcpu_events; } int kvm_has_robust_singlestep(void) { return kvm_state->robust_singlestep; } int kvm_has_debugregs(void) { return kvm_state->debugregs; } int kvm_has_xsave(void) { return kvm_state->xsave; } int kvm_has_xcrs(void) { return kvm_state->xcrs; } int kvm_has_pit_state2(void) { return kvm_state->pit_state2; } int kvm_has_many_ioeventfds(void) { if (!kvm_enabled()) { return 0; } return kvm_state->many_ioeventfds; } int kvm_has_gsi_routing(void) { #ifdef KVM_CAP_IRQ_ROUTING return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING); #else return false; #endif } int kvm_has_intx_set_mask(void) { return kvm_state->intx_set_mask; } void *kvm_vmalloc(ram_addr_t size) { #ifdef TARGET_S390X void *mem; mem = kvm_arch_vmalloc(size); if (mem) { return mem; } #endif return qemu_vmalloc(size); } void kvm_setup_guest_memory(void *start, size_t size) { #ifdef CONFIG_VALGRIND_H VALGRIND_MAKE_MEM_DEFINED(start, size); #endif if (!kvm_has_sync_mmu()) { int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); if (ret) { perror("qemu_madvise"); fprintf(stderr, "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); exit(1); } } } #ifdef KVM_CAP_SET_GUEST_DEBUG struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu, target_ulong pc) { struct kvm_sw_breakpoint *bp; QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) { if (bp->pc == pc) { return bp; } } return NULL; } int kvm_sw_breakpoints_active(CPUState *cpu) { return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints); } struct kvm_set_guest_debug_data { struct kvm_guest_debug dbg; CPUState *cpu; int err; }; static void kvm_invoke_set_guest_debug(void *data) { struct kvm_set_guest_debug_data *dbg_data = data; dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); } int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) { CPUState *cpu = ENV_GET_CPU(env); struct kvm_set_guest_debug_data data; data.dbg.control = reinject_trap; if (env->singlestep_enabled) { data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; } kvm_arch_update_guest_debug(cpu, &data.dbg); data.cpu = cpu; run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data); return data.err; } int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, target_ulong len, int type) { CPUState *current_cpu = ENV_GET_CPU(current_env); struct kvm_sw_breakpoint *bp; CPUArchState *env; int err; if (type == GDB_BREAKPOINT_SW) { bp = kvm_find_sw_breakpoint(current_cpu, addr); if (bp) { bp->use_count++; return 0; } bp = g_malloc(sizeof(struct kvm_sw_breakpoint)); if (!bp) { return -ENOMEM; } bp->pc = addr; bp->use_count = 1; err = kvm_arch_insert_sw_breakpoint(current_cpu, bp); if (err) { g_free(bp); return err; } QTAILQ_INSERT_HEAD(¤t_cpu->kvm_state->kvm_sw_breakpoints, bp, entry); } else { err = kvm_arch_insert_hw_breakpoint(addr, len, type); if (err) { return err; } } for (env = first_cpu; env != NULL; env = env->next_cpu) { err = kvm_update_guest_debug(env, 0); if (err) { return err; } } return 0; } int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, target_ulong len, int type) { CPUState *current_cpu = ENV_GET_CPU(current_env); struct kvm_sw_breakpoint *bp; CPUArchState *env; int err; if (type == GDB_BREAKPOINT_SW) { bp = kvm_find_sw_breakpoint(current_cpu, addr); if (!bp) { return -ENOENT; } if (bp->use_count > 1) { bp->use_count--; return 0; } err = kvm_arch_remove_sw_breakpoint(current_cpu, bp); if (err) { return err; } QTAILQ_REMOVE(¤t_cpu->kvm_state->kvm_sw_breakpoints, bp, entry); g_free(bp); } else { err = kvm_arch_remove_hw_breakpoint(addr, len, type); if (err) { return err; } } for (env = first_cpu; env != NULL; env = env->next_cpu) { err = kvm_update_guest_debug(env, 0); if (err) { return err; } } return 0; } void kvm_remove_all_breakpoints(CPUArchState *current_env) { CPUState *current_cpu = ENV_GET_CPU(current_env); struct kvm_sw_breakpoint *bp, *next; KVMState *s = current_cpu->kvm_state; CPUArchState *env; CPUState *cpu; QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) { /* Try harder to find a CPU that currently sees the breakpoint. */ for (env = first_cpu; env != NULL; env = env->next_cpu) { cpu = ENV_GET_CPU(env); if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) { break; } } } QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry); g_free(bp); } kvm_arch_remove_all_hw_breakpoints(); for (env = first_cpu; env != NULL; env = env->next_cpu) { kvm_update_guest_debug(env, 0); } } #else /* !KVM_CAP_SET_GUEST_DEBUG */ int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap) { return -EINVAL; } int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr, target_ulong len, int type) { return -EINVAL; } int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr, target_ulong len, int type) { return -EINVAL; } void kvm_remove_all_breakpoints(CPUArchState *current_env) { } #endif /* !KVM_CAP_SET_GUEST_DEBUG */ int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset) { CPUState *cpu = ENV_GET_CPU(env); struct kvm_signal_mask *sigmask; int r; if (!sigset) { return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL); } sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset)); sigmask->len = 8; memcpy(sigmask->sigset, sigset, sizeof(*sigset)); r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask); g_free(sigmask); return r; } int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr) { return kvm_arch_on_sigbus_vcpu(cpu, code, addr); } int kvm_on_sigbus(int code, void *addr) { return kvm_arch_on_sigbus(code, addr); }