/* * QEMU KVM support * * Copyright IBM, Corp. 2008 * Red Hat, Inc. 2008 * * Authors: * Anthony Liguori <aliguori@us.ibm.com> * Glauber Costa <gcosta@redhat.com> * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include <sys/types.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <stdarg.h> #include <linux/kvm.h> #include "qemu-common.h" #include "qemu-barrier.h" #include "sysemu.h" #include "hw/hw.h" #include "gdbstub.h" #include "kvm.h" #include "bswap.h" /* This check must be after config-host.h is included */ #ifdef CONFIG_EVENTFD #include <sys/eventfd.h> #endif /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ #define PAGE_SIZE TARGET_PAGE_SIZE //#define DEBUG_KVM #ifdef DEBUG_KVM #define DPRINTF(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif typedef struct KVMSlot { target_phys_addr_t start_addr; ram_addr_t memory_size; ram_addr_t phys_offset; int slot; int flags; } KVMSlot; typedef struct kvm_dirty_log KVMDirtyLog; struct KVMState { KVMSlot slots[32]; int fd; int vmfd; int coalesced_mmio; struct kvm_coalesced_mmio_ring *coalesced_mmio_ring; int broken_set_mem_region; int migration_log; int vcpu_events; int robust_singlestep; int debugregs; #ifdef KVM_CAP_SET_GUEST_DEBUG struct kvm_sw_breakpoint_head kvm_sw_breakpoints; #endif int irqchip_in_kernel; int pit_in_kernel; int xsave, xcrs; int many_ioeventfds; }; KVMState *kvm_state; static const KVMCapabilityInfo kvm_required_capabilites[] = { KVM_CAP_INFO(USER_MEMORY), KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS), KVM_CAP_LAST_INFO }; static KVMSlot *kvm_alloc_slot(KVMState *s) { int i; for (i = 0; i < ARRAY_SIZE(s->slots); i++) { if (s->slots[i].memory_size == 0) { return &s->slots[i]; } } fprintf(stderr, "%s: no free slot available\n", __func__); abort(); } static KVMSlot *kvm_lookup_matching_slot(KVMState *s, target_phys_addr_t start_addr, target_phys_addr_t end_addr) { int i; for (i = 0; i < ARRAY_SIZE(s->slots); i++) { KVMSlot *mem = &s->slots[i]; if (start_addr == mem->start_addr && end_addr == mem->start_addr + mem->memory_size) { return mem; } } return NULL; } /* * Find overlapping slot with lowest start address */ static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s, target_phys_addr_t start_addr, target_phys_addr_t end_addr) { KVMSlot *found = NULL; int i; for (i = 0; i < ARRAY_SIZE(s->slots); i++) { KVMSlot *mem = &s->slots[i]; if (mem->memory_size == 0 || (found && found->start_addr < mem->start_addr)) { continue; } if (end_addr > mem->start_addr && start_addr < mem->start_addr + mem->memory_size) { found = mem; } } return found; } int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr, target_phys_addr_t *phys_addr) { int i; for (i = 0; i < ARRAY_SIZE(s->slots); i++) { KVMSlot *mem = &s->slots[i]; if (ram_addr >= mem->phys_offset && ram_addr < mem->phys_offset + mem->memory_size) { *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset); return 1; } } return 0; } static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) { struct kvm_userspace_memory_region mem; mem.slot = slot->slot; mem.guest_phys_addr = slot->start_addr; mem.memory_size = slot->memory_size; mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset); mem.flags = slot->flags; if (s->migration_log) { mem.flags |= KVM_MEM_LOG_DIRTY_PAGES; } return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); } static void kvm_reset_vcpu(void *opaque) { CPUState *env = opaque; kvm_arch_reset_vcpu(env); } int kvm_irqchip_in_kernel(void) { return kvm_state->irqchip_in_kernel; } int kvm_pit_in_kernel(void) { return kvm_state->pit_in_kernel; } int kvm_init_vcpu(CPUState *env) { KVMState *s = kvm_state; long mmap_size; int ret; DPRINTF("kvm_init_vcpu\n"); ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); if (ret < 0) { DPRINTF("kvm_create_vcpu failed\n"); goto err; } env->kvm_fd = ret; env->kvm_state = s; env->kvm_vcpu_dirty = 1; mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); if (mmap_size < 0) { ret = mmap_size; DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n"); goto err; } env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, env->kvm_fd, 0); if (env->kvm_run == MAP_FAILED) { ret = -errno; DPRINTF("mmap'ing vcpu state failed\n"); goto err; } if (s->coalesced_mmio && !s->coalesced_mmio_ring) { s->coalesced_mmio_ring = (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE; } ret = kvm_arch_init_vcpu(env); if (ret == 0) { qemu_register_reset(kvm_reset_vcpu, env); kvm_arch_reset_vcpu(env); } err: return ret; } /* * dirty pages logging control */ static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, ram_addr_t size, int flags, int mask) { KVMState *s = kvm_state; KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); int old_flags; if (mem == NULL) { fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" TARGET_FMT_plx "\n", __func__, phys_addr, (target_phys_addr_t)(phys_addr + size - 1)); return -EINVAL; } old_flags = mem->flags; flags = (mem->flags & ~mask) | flags; mem->flags = flags; /* If nothing changed effectively, no need to issue ioctl */ if (s->migration_log) { flags |= KVM_MEM_LOG_DIRTY_PAGES; } if (flags == old_flags) { return 0; } return kvm_set_user_memory_region(s, mem); } static int kvm_log_start(CPUPhysMemoryClient *client, target_phys_addr_t phys_addr, ram_addr_t size) { return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES, KVM_MEM_LOG_DIRTY_PAGES); } static int kvm_log_stop(CPUPhysMemoryClient *client, target_phys_addr_t phys_addr, ram_addr_t size) { return kvm_dirty_pages_log_change(phys_addr, size, 0, KVM_MEM_LOG_DIRTY_PAGES); } static int kvm_set_migration_log(int enable) { KVMState *s = kvm_state; KVMSlot *mem; int i, err; s->migration_log = enable; for (i = 0; i < ARRAY_SIZE(s->slots); i++) { mem = &s->slots[i]; if (!mem->memory_size) { continue; } if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) { continue; } err = kvm_set_user_memory_region(s, mem); if (err) { return err; } } return 0; } /* get kvm's dirty pages bitmap and update qemu's */ static int kvm_get_dirty_pages_log_range(unsigned long start_addr, unsigned long *bitmap, unsigned long offset, unsigned long mem_size) { unsigned int i, j; unsigned long page_number, addr, addr1, c; ram_addr_t ram_addr; unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS; /* * bitmap-traveling is faster than memory-traveling (for addr...) * especially when most of the memory is not dirty. */ for (i = 0; i < len; i++) { if (bitmap[i] != 0) { c = leul_to_cpu(bitmap[i]); do { j = ffsl(c) - 1; c &= ~(1ul << j); page_number = i * HOST_LONG_BITS + j; addr1 = page_number * TARGET_PAGE_SIZE; addr = offset + addr1; ram_addr = cpu_get_physical_page_desc(addr); cpu_physical_memory_set_dirty(ram_addr); } while (c != 0); } } return 0; } #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1)) /** * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). * This means all bits are set to dirty. * * @start_add: start of logged region. * @end_addr: end of logged region. */ static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr) { KVMState *s = kvm_state; unsigned long size, allocated_size = 0; KVMDirtyLog d; KVMSlot *mem; int ret = 0; d.dirty_bitmap = NULL; while (start_addr < end_addr) { mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr); if (mem == NULL) { break; } size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8; if (!d.dirty_bitmap) { d.dirty_bitmap = qemu_malloc(size); } else if (size > allocated_size) { d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size); } allocated_size = size; memset(d.dirty_bitmap, 0, allocated_size); d.slot = mem->slot; if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { DPRINTF("ioctl failed %d\n", errno); ret = -1; break; } kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap, mem->start_addr, mem->memory_size); start_addr = mem->start_addr + mem->memory_size; } qemu_free(d.dirty_bitmap); return ret; } int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) { int ret = -ENOSYS; KVMState *s = kvm_state; if (s->coalesced_mmio) { struct kvm_coalesced_mmio_zone zone; zone.addr = start; zone.size = size; ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); } return ret; } int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) { int ret = -ENOSYS; KVMState *s = kvm_state; if (s->coalesced_mmio) { struct kvm_coalesced_mmio_zone zone; zone.addr = start; zone.size = size; ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); } return ret; } int kvm_check_extension(KVMState *s, unsigned int extension) { int ret; ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension); if (ret < 0) { ret = 0; } return ret; } static int kvm_check_many_ioeventfds(void) { /* Userspace can use ioeventfd for io notification. This requires a host * that supports eventfd(2) and an I/O thread; since eventfd does not * support SIGIO it cannot interrupt the vcpu. * * Older kernels have a 6 device limit on the KVM io bus. Find out so we * can avoid creating too many ioeventfds. */ #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD) int ioeventfds[7]; int i, ret = 0; for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) { ioeventfds[i] = eventfd(0, EFD_CLOEXEC); if (ioeventfds[i] < 0) { break; } ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true); if (ret < 0) { close(ioeventfds[i]); break; } } /* Decide whether many devices are supported or not */ ret = i == ARRAY_SIZE(ioeventfds); while (i-- > 0) { kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false); close(ioeventfds[i]); } return ret; #else return 0; #endif } static const KVMCapabilityInfo * kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list) { while (list->name) { if (!kvm_check_extension(s, list->value)) { return list; } list++; } return NULL; } static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size, ram_addr_t phys_offset) { KVMState *s = kvm_state; ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; KVMSlot *mem, old; int err; /* kvm works in page size chunks, but the function may be called with sub-page size and unaligned start address. */ size = TARGET_PAGE_ALIGN(size); start_addr = TARGET_PAGE_ALIGN(start_addr); /* KVM does not support read-only slots */ phys_offset &= ~IO_MEM_ROM; while (1) { mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size); if (!mem) { break; } if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr && (start_addr + size <= mem->start_addr + mem->memory_size) && (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) { /* The new slot fits into the existing one and comes with * identical parameters - nothing to be done. */ return; } old = *mem; /* unregister the overlapping slot */ mem->memory_size = 0; err = kvm_set_user_memory_region(s, mem); if (err) { fprintf(stderr, "%s: error unregistering overlapping slot: %s\n", __func__, strerror(-err)); abort(); } /* Workaround for older KVM versions: we can't join slots, even not by * unregistering the previous ones and then registering the larger * slot. We have to maintain the existing fragmentation. Sigh. * * This workaround assumes that the new slot starts at the same * address as the first existing one. If not or if some overlapping * slot comes around later, we will fail (not seen in practice so far) * - and actually require a recent KVM version. */ if (s->broken_set_mem_region && old.start_addr == start_addr && old.memory_size < size && flags < IO_MEM_UNASSIGNED) { mem = kvm_alloc_slot(s); mem->memory_size = old.memory_size; mem->start_addr = old.start_addr; mem->phys_offset = old.phys_offset; mem->flags = 0; err = kvm_set_user_memory_region(s, mem); if (err) { fprintf(stderr, "%s: error updating slot: %s\n", __func__, strerror(-err)); abort(); } start_addr += old.memory_size; phys_offset += old.memory_size; size -= old.memory_size; continue; } /* register prefix slot */ if (old.start_addr < start_addr) { mem = kvm_alloc_slot(s); mem->memory_size = start_addr - old.start_addr; mem->start_addr = old.start_addr; mem->phys_offset = old.phys_offset; mem->flags = 0; err = kvm_set_user_memory_region(s, mem); if (err) { fprintf(stderr, "%s: error registering prefix slot: %s\n", __func__, strerror(-err)); abort(); } } /* register suffix slot */ if (old.start_addr + old.memory_size > start_addr + size) { ram_addr_t size_delta; mem = kvm_alloc_slot(s); mem->start_addr = start_addr + size; size_delta = mem->start_addr - old.start_addr; mem->memory_size = old.memory_size - size_delta; mem->phys_offset = old.phys_offset + size_delta; mem->flags = 0; err = kvm_set_user_memory_region(s, mem); if (err) { fprintf(stderr, "%s: error registering suffix slot: %s\n", __func__, strerror(-err)); abort(); } } } /* in case the KVM bug workaround already "consumed" the new slot */ if (!size) { return; } /* KVM does not need to know about this memory */ if (flags >= IO_MEM_UNASSIGNED) { return; } mem = kvm_alloc_slot(s); mem->memory_size = size; mem->start_addr = start_addr; mem->phys_offset = phys_offset; mem->flags = 0; err = kvm_set_user_memory_region(s, mem); if (err) { fprintf(stderr, "%s: error registering slot: %s\n", __func__, strerror(-err)); abort(); } } static void kvm_client_set_memory(struct CPUPhysMemoryClient *client, target_phys_addr_t start_addr, ram_addr_t size, ram_addr_t phys_offset) { kvm_set_phys_mem(start_addr, size, phys_offset); } static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client, target_phys_addr_t start_addr, target_phys_addr_t end_addr) { return kvm_physical_sync_dirty_bitmap(start_addr, end_addr); } static int kvm_client_migration_log(struct CPUPhysMemoryClient *client, int enable) { return kvm_set_migration_log(enable); } static CPUPhysMemoryClient kvm_cpu_phys_memory_client = { .set_memory = kvm_client_set_memory, .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap, .migration_log = kvm_client_migration_log, .log_start = kvm_log_start, .log_stop = kvm_log_stop, }; int kvm_init(void) { static const char upgrade_note[] = "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n" "(see http://sourceforge.net/projects/kvm).\n"; KVMState *s; const KVMCapabilityInfo *missing_cap; int ret; int i; s = qemu_mallocz(sizeof(KVMState)); #ifdef KVM_CAP_SET_GUEST_DEBUG QTAILQ_INIT(&s->kvm_sw_breakpoints); #endif for (i = 0; i < ARRAY_SIZE(s->slots); i++) { s->slots[i].slot = i; } s->vmfd = -1; s->fd = qemu_open("/dev/kvm", O_RDWR); if (s->fd == -1) { fprintf(stderr, "Could not access KVM kernel module: %m\n"); ret = -errno; goto err; } ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); if (ret < KVM_API_VERSION) { if (ret > 0) { ret = -EINVAL; } fprintf(stderr, "kvm version too old\n"); goto err; } if (ret > KVM_API_VERSION) { ret = -EINVAL; fprintf(stderr, "kvm version not supported\n"); goto err; } s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); if (s->vmfd < 0) { #ifdef TARGET_S390X fprintf(stderr, "Please add the 'switch_amode' kernel parameter to " "your host kernel command line\n"); #endif goto err; } missing_cap = kvm_check_extension_list(s, kvm_required_capabilites); if (!missing_cap) { missing_cap = kvm_check_extension_list(s, kvm_arch_required_capabilities); } if (missing_cap) { ret = -EINVAL; fprintf(stderr, "kvm does not support %s\n%s", missing_cap->name, upgrade_note); goto err; } s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO); s->broken_set_mem_region = 1; #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS); if (ret > 0) { s->broken_set_mem_region = 0; } #endif s->vcpu_events = 0; #ifdef KVM_CAP_VCPU_EVENTS s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS); #endif s->robust_singlestep = 0; #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP s->robust_singlestep = kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP); #endif s->debugregs = 0; #ifdef KVM_CAP_DEBUGREGS s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS); #endif s->xsave = 0; #ifdef KVM_CAP_XSAVE s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE); #endif s->xcrs = 0; #ifdef KVM_CAP_XCRS s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS); #endif ret = kvm_arch_init(s); if (ret < 0) { goto err; } kvm_state = s; cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client); s->many_ioeventfds = kvm_check_many_ioeventfds(); return 0; err: if (s) { if (s->vmfd != -1) { close(s->vmfd); } if (s->fd != -1) { close(s->fd); } } qemu_free(s); return ret; } static void kvm_handle_io(uint16_t port, void *data, int direction, int size, uint32_t count) { int i; uint8_t *ptr = data; for (i = 0; i < count; i++) { if (direction == KVM_EXIT_IO_IN) { switch (size) { case 1: stb_p(ptr, cpu_inb(port)); break; case 2: stw_p(ptr, cpu_inw(port)); break; case 4: stl_p(ptr, cpu_inl(port)); break; } } else { switch (size) { case 1: cpu_outb(port, ldub_p(ptr)); break; case 2: cpu_outw(port, lduw_p(ptr)); break; case 4: cpu_outl(port, ldl_p(ptr)); break; } } ptr += size; } } #ifdef KVM_CAP_INTERNAL_ERROR_DATA static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run) { fprintf(stderr, "KVM internal error."); if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) { int i; fprintf(stderr, " Suberror: %d\n", run->internal.suberror); for (i = 0; i < run->internal.ndata; ++i) { fprintf(stderr, "extra data[%d]: %"PRIx64"\n", i, (uint64_t)run->internal.data[i]); } } else { fprintf(stderr, "\n"); } if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) { fprintf(stderr, "emulation failure\n"); if (!kvm_arch_stop_on_emulation_error(env)) { cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); return EXCP_INTERRUPT; } } /* FIXME: Should trigger a qmp message to let management know * something went wrong. */ return -1; } #endif void kvm_flush_coalesced_mmio_buffer(void) { KVMState *s = kvm_state; if (s->coalesced_mmio_ring) { struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring; while (ring->first != ring->last) { struct kvm_coalesced_mmio *ent; ent = &ring->coalesced_mmio[ring->first]; cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); smp_wmb(); ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; } } } static void do_kvm_cpu_synchronize_state(void *_env) { CPUState *env = _env; if (!env->kvm_vcpu_dirty) { kvm_arch_get_registers(env); env->kvm_vcpu_dirty = 1; } } void kvm_cpu_synchronize_state(CPUState *env) { if (!env->kvm_vcpu_dirty) { run_on_cpu(env, do_kvm_cpu_synchronize_state, env); } } void kvm_cpu_synchronize_post_reset(CPUState *env) { kvm_arch_put_registers(env, KVM_PUT_RESET_STATE); env->kvm_vcpu_dirty = 0; } void kvm_cpu_synchronize_post_init(CPUState *env) { kvm_arch_put_registers(env, KVM_PUT_FULL_STATE); env->kvm_vcpu_dirty = 0; } int kvm_cpu_exec(CPUState *env) { struct kvm_run *run = env->kvm_run; int ret, run_ret; DPRINTF("kvm_cpu_exec()\n"); if (kvm_arch_process_async_events(env)) { env->exit_request = 0; return EXCP_HLT; } cpu_single_env = env; do { if (env->kvm_vcpu_dirty) { kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE); env->kvm_vcpu_dirty = 0; } kvm_arch_pre_run(env, run); if (env->exit_request) { DPRINTF("interrupt exit requested\n"); /* * KVM requires us to reenter the kernel after IO exits to complete * instruction emulation. This self-signal will ensure that we * leave ASAP again. */ qemu_cpu_kick_self(); } cpu_single_env = NULL; qemu_mutex_unlock_iothread(); run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); qemu_mutex_lock_iothread(); cpu_single_env = env; kvm_arch_post_run(env, run); kvm_flush_coalesced_mmio_buffer(); if (run_ret < 0) { if (run_ret == -EINTR || run_ret == -EAGAIN) { DPRINTF("io window exit\n"); ret = EXCP_INTERRUPT; break; } DPRINTF("kvm run failed %s\n", strerror(-run_ret)); abort(); } switch (run->exit_reason) { case KVM_EXIT_IO: DPRINTF("handle_io\n"); kvm_handle_io(run->io.port, (uint8_t *)run + run->io.data_offset, run->io.direction, run->io.size, run->io.count); ret = 0; break; case KVM_EXIT_MMIO: DPRINTF("handle_mmio\n"); cpu_physical_memory_rw(run->mmio.phys_addr, run->mmio.data, run->mmio.len, run->mmio.is_write); ret = 0; break; case KVM_EXIT_IRQ_WINDOW_OPEN: DPRINTF("irq_window_open\n"); ret = EXCP_INTERRUPT; break; case KVM_EXIT_SHUTDOWN: DPRINTF("shutdown\n"); qemu_system_reset_request(); ret = EXCP_INTERRUPT; break; case KVM_EXIT_UNKNOWN: fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n", (uint64_t)run->hw.hardware_exit_reason); ret = -1; break; #ifdef KVM_CAP_INTERNAL_ERROR_DATA case KVM_EXIT_INTERNAL_ERROR: ret = kvm_handle_internal_error(env, run); break; #endif default: DPRINTF("kvm_arch_handle_exit\n"); ret = kvm_arch_handle_exit(env, run); break; } } while (ret == 0); if (ret < 0) { cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE); vm_stop(VMSTOP_PANIC); } env->exit_request = 0; cpu_single_env = NULL; return ret; } int kvm_ioctl(KVMState *s, int type, ...) { int ret; void *arg; va_list ap; va_start(ap, type); arg = va_arg(ap, void *); va_end(ap); ret = ioctl(s->fd, type, arg); if (ret == -1) { ret = -errno; } return ret; } int kvm_vm_ioctl(KVMState *s, int type, ...) { int ret; void *arg; va_list ap; va_start(ap, type); arg = va_arg(ap, void *); va_end(ap); ret = ioctl(s->vmfd, type, arg); if (ret == -1) { ret = -errno; } return ret; } int kvm_vcpu_ioctl(CPUState *env, int type, ...) { int ret; void *arg; va_list ap; va_start(ap, type); arg = va_arg(ap, void *); va_end(ap); ret = ioctl(env->kvm_fd, type, arg); if (ret == -1) { ret = -errno; } return ret; } int kvm_has_sync_mmu(void) { return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU); } int kvm_has_vcpu_events(void) { return kvm_state->vcpu_events; } int kvm_has_robust_singlestep(void) { return kvm_state->robust_singlestep; } int kvm_has_debugregs(void) { return kvm_state->debugregs; } int kvm_has_xsave(void) { return kvm_state->xsave; } int kvm_has_xcrs(void) { return kvm_state->xcrs; } int kvm_has_many_ioeventfds(void) { if (!kvm_enabled()) { return 0; } return kvm_state->many_ioeventfds; } void kvm_setup_guest_memory(void *start, size_t size) { if (!kvm_has_sync_mmu()) { int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK); if (ret) { perror("qemu_madvise"); fprintf(stderr, "Need MADV_DONTFORK in absence of synchronous KVM MMU\n"); exit(1); } } } #ifdef KVM_CAP_SET_GUEST_DEBUG struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, target_ulong pc) { struct kvm_sw_breakpoint *bp; QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { if (bp->pc == pc) { return bp; } } return NULL; } int kvm_sw_breakpoints_active(CPUState *env) { return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); } struct kvm_set_guest_debug_data { struct kvm_guest_debug dbg; CPUState *env; int err; }; static void kvm_invoke_set_guest_debug(void *data) { struct kvm_set_guest_debug_data *dbg_data = data; CPUState *env = dbg_data->env; dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg); } int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) { struct kvm_set_guest_debug_data data; data.dbg.control = reinject_trap; if (env->singlestep_enabled) { data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; } kvm_arch_update_guest_debug(env, &data.dbg); data.env = env; run_on_cpu(env, kvm_invoke_set_guest_debug, &data); return data.err; } int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, target_ulong len, int type) { struct kvm_sw_breakpoint *bp; CPUState *env; int err; if (type == GDB_BREAKPOINT_SW) { bp = kvm_find_sw_breakpoint(current_env, addr); if (bp) { bp->use_count++; return 0; } bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint)); if (!bp) { return -ENOMEM; } bp->pc = addr; bp->use_count = 1; err = kvm_arch_insert_sw_breakpoint(current_env, bp); if (err) { free(bp); return err; } QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); } else { err = kvm_arch_insert_hw_breakpoint(addr, len, type); if (err) { return err; } } for (env = first_cpu; env != NULL; env = env->next_cpu) { err = kvm_update_guest_debug(env, 0); if (err) { return err; } } return 0; } int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, target_ulong len, int type) { struct kvm_sw_breakpoint *bp; CPUState *env; int err; if (type == GDB_BREAKPOINT_SW) { bp = kvm_find_sw_breakpoint(current_env, addr); if (!bp) { return -ENOENT; } if (bp->use_count > 1) { bp->use_count--; return 0; } err = kvm_arch_remove_sw_breakpoint(current_env, bp); if (err) { return err; } QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); qemu_free(bp); } else { err = kvm_arch_remove_hw_breakpoint(addr, len, type); if (err) { return err; } } for (env = first_cpu; env != NULL; env = env->next_cpu) { err = kvm_update_guest_debug(env, 0); if (err) { return err; } } return 0; } void kvm_remove_all_breakpoints(CPUState *current_env) { struct kvm_sw_breakpoint *bp, *next; KVMState *s = current_env->kvm_state; CPUState *env; QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { /* Try harder to find a CPU that currently sees the breakpoint. */ for (env = first_cpu; env != NULL; env = env->next_cpu) { if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) { break; } } } } kvm_arch_remove_all_hw_breakpoints(); for (env = first_cpu; env != NULL; env = env->next_cpu) { kvm_update_guest_debug(env, 0); } } #else /* !KVM_CAP_SET_GUEST_DEBUG */ int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) { return -EINVAL; } int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, target_ulong len, int type) { return -EINVAL; } int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, target_ulong len, int type) { return -EINVAL; } void kvm_remove_all_breakpoints(CPUState *current_env) { } #endif /* !KVM_CAP_SET_GUEST_DEBUG */ int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset) { struct kvm_signal_mask *sigmask; int r; if (!sigset) { return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL); } sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset)); sigmask->len = 8; memcpy(sigmask->sigset, sigset, sizeof(*sigset)); r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask); free(sigmask); return r; } int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign) { #ifdef KVM_IOEVENTFD int ret; struct kvm_ioeventfd iofd; iofd.datamatch = val; iofd.addr = addr; iofd.len = 4; iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH; iofd.fd = fd; if (!kvm_enabled()) { return -ENOSYS; } if (!assign) { iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; } ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd); if (ret < 0) { return -errno; } return 0; #else return -ENOSYS; #endif } int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign) { #ifdef KVM_IOEVENTFD struct kvm_ioeventfd kick = { .datamatch = val, .addr = addr, .len = 2, .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO, .fd = fd, }; int r; if (!kvm_enabled()) { return -ENOSYS; } if (!assign) { kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; } r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); if (r < 0) { return r; } return 0; #else return -ENOSYS; #endif } int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr) { return kvm_arch_on_sigbus_vcpu(env, code, addr); } int kvm_on_sigbus(int code, void *addr) { return kvm_arch_on_sigbus(code, addr); }