/* * DMA helper functions * * Copyright (c) 2009, 2020 Red Hat * * This work is licensed under the terms of the GNU General Public License * (GNU GPL), version 2 or later. */ #ifndef DMA_H #define DMA_H #include "exec/memory.h" #include "exec/address-spaces.h" #include "block/block.h" #include "block/accounting.h" typedef struct ScatterGatherEntry ScatterGatherEntry; typedef enum { DMA_DIRECTION_TO_DEVICE = 0, DMA_DIRECTION_FROM_DEVICE = 1, } DMADirection; struct QEMUSGList { ScatterGatherEntry *sg; int nsg; int nalloc; size_t size; DeviceState *dev; AddressSpace *as; }; #ifndef CONFIG_USER_ONLY /* * When an IOMMU is present, bus addresses become distinct from * CPU/memory physical addresses and may be a different size. Because * the IOVA size depends more on the bus than on the platform, we more * or less have to treat these as 64-bit always to cover all (or at * least most) cases. */ typedef uint64_t dma_addr_t; #define DMA_ADDR_BITS 64 #define DMA_ADDR_FMT "%" PRIx64 static inline void dma_barrier(AddressSpace *as, DMADirection dir) { /* * This is called before DMA read and write operations * unless the _relaxed form is used and is responsible * for providing some sane ordering of accesses vs * concurrently running VCPUs. * * Users of map(), unmap() or lower level st/ld_* * operations are responsible for providing their own * ordering via barriers. * * This primitive implementation does a simple smp_mb() * before each operation which provides pretty much full * ordering. * * A smarter implementation can be devised if needed to * use lighter barriers based on the direction of the * transfer, the DMA context, etc... */ smp_mb(); } /* Checks that the given range of addresses is valid for DMA. This is * useful for certain cases, but usually you should just use * dma_memory_{read,write}() and check for errors */ static inline bool dma_memory_valid(AddressSpace *as, dma_addr_t addr, dma_addr_t len, DMADirection dir, MemTxAttrs attrs) { return address_space_access_valid(as, addr, len, dir == DMA_DIRECTION_FROM_DEVICE, attrs); } static inline MemTxResult dma_memory_rw_relaxed(AddressSpace *as, dma_addr_t addr, void *buf, dma_addr_t len, DMADirection dir, MemTxAttrs attrs) { return address_space_rw(as, addr, attrs, buf, len, dir == DMA_DIRECTION_FROM_DEVICE); } static inline MemTxResult dma_memory_read_relaxed(AddressSpace *as, dma_addr_t addr, void *buf, dma_addr_t len) { return dma_memory_rw_relaxed(as, addr, buf, len, DMA_DIRECTION_TO_DEVICE, MEMTXATTRS_UNSPECIFIED); } static inline MemTxResult dma_memory_write_relaxed(AddressSpace *as, dma_addr_t addr, const void *buf, dma_addr_t len) { return dma_memory_rw_relaxed(as, addr, (void *)buf, len, DMA_DIRECTION_FROM_DEVICE, MEMTXATTRS_UNSPECIFIED); } /** * dma_memory_rw: Read from or write to an address space from DMA controller. * * Return a MemTxResult indicating whether the operation succeeded * or failed (eg unassigned memory, device rejected the transaction, * IOMMU fault). * * @as: #AddressSpace to be accessed * @addr: address within that address space * @buf: buffer with the data transferred * @len: the number of bytes to read or write * @dir: indicates the transfer direction * @attrs: memory transaction attributes */ static inline MemTxResult dma_memory_rw(AddressSpace *as, dma_addr_t addr, void *buf, dma_addr_t len, DMADirection dir, MemTxAttrs attrs) { dma_barrier(as, dir); return dma_memory_rw_relaxed(as, addr, buf, len, dir, attrs); } /** * dma_memory_read: Read from an address space from DMA controller. * * Return a MemTxResult indicating whether the operation succeeded * or failed (eg unassigned memory, device rejected the transaction, * IOMMU fault). Called within RCU critical section. * * @as: #AddressSpace to be accessed * @addr: address within that address space * @buf: buffer with the data transferred * @len: length of the data transferred * @attrs: memory transaction attributes */ static inline MemTxResult dma_memory_read(AddressSpace *as, dma_addr_t addr, void *buf, dma_addr_t len, MemTxAttrs attrs) { return dma_memory_rw(as, addr, buf, len, DMA_DIRECTION_TO_DEVICE, attrs); } /** * address_space_write: Write to address space from DMA controller. * * Return a MemTxResult indicating whether the operation succeeded * or failed (eg unassigned memory, device rejected the transaction, * IOMMU fault). * * @as: #AddressSpace to be accessed * @addr: address within that address space * @buf: buffer with the data transferred * @len: the number of bytes to write * @attrs: memory transaction attributes */ static inline MemTxResult dma_memory_write(AddressSpace *as, dma_addr_t addr, const void *buf, dma_addr_t len, MemTxAttrs attrs) { return dma_memory_rw(as, addr, (void *)buf, len, DMA_DIRECTION_FROM_DEVICE, attrs); } /** * dma_memory_set: Fill memory with a constant byte from DMA controller. * * Return a MemTxResult indicating whether the operation succeeded * or failed (eg unassigned memory, device rejected the transaction, * IOMMU fault). * * @as: #AddressSpace to be accessed * @addr: address within that address space * @c: constant byte to fill the memory * @len: the number of bytes to fill with the constant byte * @attrs: memory transaction attributes */ MemTxResult dma_memory_set(AddressSpace *as, dma_addr_t addr, uint8_t c, dma_addr_t len, MemTxAttrs attrs); /** * address_space_map: Map a physical memory region into a host virtual address. * * May map a subset of the requested range, given by and returned in @plen. * May return %NULL and set *@plen to zero(0), if resources needed to perform * the mapping are exhausted. * Use only for reads OR writes - not for read-modify-write operations. * * @as: #AddressSpace to be accessed * @addr: address within that address space * @len: pointer to length of buffer; updated on return * @dir: indicates the transfer direction */ static inline void *dma_memory_map(AddressSpace *as, dma_addr_t addr, dma_addr_t *len, DMADirection dir) { hwaddr xlen = *len; void *p; p = address_space_map(as, addr, &xlen, dir == DMA_DIRECTION_FROM_DEVICE, MEMTXATTRS_UNSPECIFIED); *len = xlen; return p; } /** * address_space_unmap: Unmaps a memory region previously mapped * by dma_memory_map() * * Will also mark the memory as dirty if @dir == %DMA_DIRECTION_FROM_DEVICE. * @access_len gives the amount of memory that was actually read or written * by the caller. * * @as: #AddressSpace used * @buffer: host pointer as returned by address_space_map() * @len: buffer length as returned by address_space_map() * @dir: indicates the transfer direction * @access_len: amount of data actually transferred */ static inline void dma_memory_unmap(AddressSpace *as, void *buffer, dma_addr_t len, DMADirection dir, dma_addr_t access_len) { address_space_unmap(as, buffer, (hwaddr)len, dir == DMA_DIRECTION_FROM_DEVICE, access_len); } #define DEFINE_LDST_DMA(_lname, _sname, _bits, _end) \ static inline uint##_bits##_t ld##_lname##_##_end##_dma(AddressSpace *as, \ dma_addr_t addr) \ { \ uint##_bits##_t val; \ dma_memory_read(as, addr, &val, (_bits) / 8, MEMTXATTRS_UNSPECIFIED); \ return _end##_bits##_to_cpu(val); \ } \ static inline void st##_sname##_##_end##_dma(AddressSpace *as, \ dma_addr_t addr, \ uint##_bits##_t val) \ { \ val = cpu_to_##_end##_bits(val); \ dma_memory_write(as, addr, &val, (_bits) / 8, MEMTXATTRS_UNSPECIFIED); \ } static inline uint8_t ldub_dma(AddressSpace *as, dma_addr_t addr) { uint8_t val; dma_memory_read(as, addr, &val, 1, MEMTXATTRS_UNSPECIFIED); return val; } static inline void stb_dma(AddressSpace *as, dma_addr_t addr, uint8_t val) { dma_memory_write(as, addr, &val, 1, MEMTXATTRS_UNSPECIFIED); } DEFINE_LDST_DMA(uw, w, 16, le); DEFINE_LDST_DMA(l, l, 32, le); DEFINE_LDST_DMA(q, q, 64, le); DEFINE_LDST_DMA(uw, w, 16, be); DEFINE_LDST_DMA(l, l, 32, be); DEFINE_LDST_DMA(q, q, 64, be); #undef DEFINE_LDST_DMA struct ScatterGatherEntry { dma_addr_t base; dma_addr_t len; }; void qemu_sglist_init(QEMUSGList *qsg, DeviceState *dev, int alloc_hint, AddressSpace *as); void qemu_sglist_add(QEMUSGList *qsg, dma_addr_t base, dma_addr_t len); void qemu_sglist_destroy(QEMUSGList *qsg); #endif typedef BlockAIOCB *DMAIOFunc(int64_t offset, QEMUIOVector *iov, BlockCompletionFunc *cb, void *cb_opaque, void *opaque); BlockAIOCB *dma_blk_io(AioContext *ctx, QEMUSGList *sg, uint64_t offset, uint32_t align, DMAIOFunc *io_func, void *io_func_opaque, BlockCompletionFunc *cb, void *opaque, DMADirection dir); BlockAIOCB *dma_blk_read(BlockBackend *blk, QEMUSGList *sg, uint64_t offset, uint32_t align, BlockCompletionFunc *cb, void *opaque); BlockAIOCB *dma_blk_write(BlockBackend *blk, QEMUSGList *sg, uint64_t offset, uint32_t align, BlockCompletionFunc *cb, void *opaque); uint64_t dma_buf_read(uint8_t *ptr, int32_t len, QEMUSGList *sg); uint64_t dma_buf_write(uint8_t *ptr, int32_t len, QEMUSGList *sg); void dma_acct_start(BlockBackend *blk, BlockAcctCookie *cookie, QEMUSGList *sg, enum BlockAcctType type); /** * dma_aligned_pow2_mask: Return the address bit mask of the largest * power of 2 size less or equal than @end - @start + 1, aligned with @start, * and bounded by 1 << @max_addr_bits bits. * * @start: range start address * @end: range end address (greater than @start) * @max_addr_bits: max address bits (<= 64) */ uint64_t dma_aligned_pow2_mask(uint64_t start, uint64_t end, int max_addr_bits); #endif