/* Interface definition for configurable Xtensa ISA support. * * Copyright (c) 2001-2013 Tensilica Inc. * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #ifndef XTENSA_LIBISA_H #define XTENSA_LIBISA_H #include #ifdef __cplusplus extern "C" { #endif /* * Version number: This is intended to help support code that works with * versions of this library from multiple Xtensa releases. */ #define XTENSA_ISA_VERSION 7000 /* * This file defines the interface to the Xtensa ISA library. This * library contains most of the ISA-specific information for a * particular Xtensa processor. For example, the set of valid * instructions, their opcode encodings and operand fields are all * included here. * * This interface basically defines a number of abstract data types. * * . an instruction buffer - for holding the raw instruction bits * . ISA info - information about the ISA as a whole * . instruction formats - instruction size and slot structure * . opcodes - information about individual instructions * . operands - information about register and immediate instruction operands * . stateOperands - information about processor state instruction operands * . interfaceOperands - information about interface instruction operands * . register files - register file information * . processor states - internal processor state information * . system registers - "special registers" and "user registers" * . interfaces - TIE interfaces that are external to the processor * . functional units - TIE shared functions * * The interface defines a set of functions to access each data type. * With the exception of the instruction buffer, the internal * representations of the data structures are hidden. All accesses must * be made through the functions defined here. */ typedef struct xtensa_isa_opaque { int unused; } *xtensa_isa; /* * Most of the Xtensa ISA entities (e.g., opcodes, regfiles, etc.) are * represented here using sequential integers beginning with 0. The * specific values are only fixed for a particular instantiation of an * xtensa_isa structure, so these values should only be used * internally. */ typedef int xtensa_opcode; typedef int xtensa_format; typedef int xtensa_regfile; typedef int xtensa_state; typedef int xtensa_sysreg; typedef int xtensa_interface; typedef int xtensa_funcUnit; /* Define a unique value for undefined items. */ #define XTENSA_UNDEFINED -1 /* * Overview of using this interface to decode/encode instructions: * * Each Xtensa instruction is associated with a particular instruction * format, where the format defines a fixed number of slots for * operations. The formats for the core Xtensa ISA have only one slot, * but FLIX instructions may have multiple slots. Within each slot, * there is a single opcode and some number of associated operands. * * The encoding and decoding functions operate on instruction buffers, * not on the raw bytes of the instructions. The same instruction * buffer data structure is used for both entire instructions and * individual slots in those instructions -- the contents of a slot need * to be extracted from or inserted into the buffer for the instruction * as a whole. * * Decoding an instruction involves first finding the format, which * identifies the number of slots, and then decoding each slot * separately. A slot is decoded by finding the opcode and then using * the opcode to determine how many operands there are. For example: * * xtensa_insnbuf_from_chars * xtensa_format_decode * for each slot { * xtensa_format_get_slot * xtensa_opcode_decode * for each operand { * xtensa_operand_get_field * xtensa_operand_decode * } * } * * Encoding an instruction is roughly the same procedure in reverse: * * xtensa_format_encode * for each slot { * xtensa_opcode_encode * for each operand { * xtensa_operand_encode * xtensa_operand_set_field * } * xtensa_format_set_slot * } * xtensa_insnbuf_to_chars */ /* Error handling. */ /* * Error codes. The code for the most recent error condition can be * retrieved with the "errno" function. For any result other than * xtensa_isa_ok, an error message containing additional information * about the problem can be retrieved using the "error_msg" function. * The error messages are stored in an internal buffer, which should * not be freed and may be overwritten by subsequent operations. */ typedef enum xtensa_isa_status_enum { xtensa_isa_ok = 0, xtensa_isa_bad_format, xtensa_isa_bad_slot, xtensa_isa_bad_opcode, xtensa_isa_bad_operand, xtensa_isa_bad_field, xtensa_isa_bad_iclass, xtensa_isa_bad_regfile, xtensa_isa_bad_sysreg, xtensa_isa_bad_state, xtensa_isa_bad_interface, xtensa_isa_bad_funcUnit, xtensa_isa_wrong_slot, xtensa_isa_no_field, xtensa_isa_out_of_memory, xtensa_isa_buffer_overflow, xtensa_isa_internal_error, xtensa_isa_bad_value } xtensa_isa_status; xtensa_isa_status xtensa_isa_errno(xtensa_isa isa); char *xtensa_isa_error_msg(xtensa_isa isa); /* Instruction buffers. */ typedef uint32_t xtensa_insnbuf_word; typedef xtensa_insnbuf_word *xtensa_insnbuf; /* Get the size in "insnbuf_words" of the xtensa_insnbuf array. */ int xtensa_insnbuf_size(xtensa_isa isa); /* Allocate an xtensa_insnbuf of the right size. */ xtensa_insnbuf xtensa_insnbuf_alloc(xtensa_isa isa); /* Release an xtensa_insnbuf. */ void xtensa_insnbuf_free(xtensa_isa isa, xtensa_insnbuf buf); /* * Conversion between raw memory (char arrays) and our internal * instruction representation. This is complicated by the Xtensa ISA's * variable instruction lengths. When converting to chars, the buffer * must contain a valid instruction so we know how many bytes to copy; * thus, the "to_chars" function returns the number of bytes copied or * XTENSA_UNDEFINED on error. The "from_chars" function first reads the * minimal number of bytes required to decode the instruction length and * then proceeds to copy the entire instruction into the buffer; if the * memory does not contain a valid instruction, it copies the maximum * number of bytes required for the longest Xtensa instruction. The * "num_chars" argument may be used to limit the number of bytes that * can be read or written. Otherwise, if "num_chars" is zero, the * functions may read or write past the end of the code. */ int xtensa_insnbuf_to_chars(xtensa_isa isa, const xtensa_insnbuf insn, unsigned char *cp, int num_chars); void xtensa_insnbuf_from_chars(xtensa_isa isa, xtensa_insnbuf insn, const unsigned char *cp, int num_chars); /* ISA information. */ /* Initialize the ISA information. */ xtensa_isa xtensa_isa_init(void *xtensa_modules, xtensa_isa_status *errno_p, char **error_msg_p); /* Deallocate an xtensa_isa structure. */ void xtensa_isa_free(xtensa_isa isa); /* Get the maximum instruction size in bytes. */ int xtensa_isa_maxlength(xtensa_isa isa); /* * Decode the length in bytes of an instruction in raw memory (not an * insnbuf). This function reads only the minimal number of bytes * required to decode the instruction length. Returns * XTENSA_UNDEFINED on error. */ int xtensa_isa_length_from_chars(xtensa_isa isa, const unsigned char *cp); /* * Get the number of stages in the processor's pipeline. The pipeline * stage values returned by other functions in this library will range * from 0 to N-1, where N is the value returned by this function. * Note that the stage numbers used here may not correspond to the * actual processor hardware, e.g., the hardware may have additional * stages before stage 0. Returns XTENSA_UNDEFINED on error. */ int xtensa_isa_num_pipe_stages(xtensa_isa isa); /* Get the number of various entities that are defined for this processor. */ int xtensa_isa_num_formats(xtensa_isa isa); int xtensa_isa_num_opcodes(xtensa_isa isa); int xtensa_isa_num_regfiles(xtensa_isa isa); int xtensa_isa_num_states(xtensa_isa isa); int xtensa_isa_num_sysregs(xtensa_isa isa); int xtensa_isa_num_interfaces(xtensa_isa isa); int xtensa_isa_num_funcUnits(xtensa_isa isa); /* Instruction formats. */ /* Get the name of a format. Returns null on error. */ const char *xtensa_format_name(xtensa_isa isa, xtensa_format fmt); /* * Given a format name, return the format number. Returns * XTENSA_UNDEFINED if the name is not a valid format. */ xtensa_format xtensa_format_lookup(xtensa_isa isa, const char *fmtname); /* * Decode the instruction format from a binary instruction buffer. * Returns XTENSA_UNDEFINED if the format is not recognized. */ xtensa_format xtensa_format_decode(xtensa_isa isa, const xtensa_insnbuf insn); /* * Set the instruction format field(s) in a binary instruction buffer. * All the other fields are set to zero. Returns non-zero on error. */ int xtensa_format_encode(xtensa_isa isa, xtensa_format fmt, xtensa_insnbuf insn); /* * Find the length (in bytes) of an instruction. Returns * XTENSA_UNDEFINED on error. */ int xtensa_format_length(xtensa_isa isa, xtensa_format fmt); /* * Get the number of slots in an instruction. Returns XTENSA_UNDEFINED * on error. */ int xtensa_format_num_slots(xtensa_isa isa, xtensa_format fmt); /* * Get the opcode for a no-op in a particular slot. * Returns XTENSA_UNDEFINED on error. */ xtensa_opcode xtensa_format_slot_nop_opcode(xtensa_isa isa, xtensa_format fmt, int slot); /* * Get the bits for a specified slot out of an insnbuf for the * instruction as a whole and put them into an insnbuf for that one * slot, and do the opposite to set a slot. Return non-zero on error. */ int xtensa_format_get_slot(xtensa_isa isa, xtensa_format fmt, int slot, const xtensa_insnbuf insn, xtensa_insnbuf slotbuf); int xtensa_format_set_slot(xtensa_isa isa, xtensa_format fmt, int slot, xtensa_insnbuf insn, const xtensa_insnbuf slotbuf); /* Opcode information. */ /* * Translate a mnemonic name to an opcode. Returns XTENSA_UNDEFINED if * the name is not a valid opcode mnemonic. */ xtensa_opcode xtensa_opcode_lookup(xtensa_isa isa, const char *opname); /* * Decode the opcode for one instruction slot from a binary instruction * buffer. Returns the opcode or XTENSA_UNDEFINED if the opcode is * illegal. */ xtensa_opcode xtensa_opcode_decode(xtensa_isa isa, xtensa_format fmt, int slot, const xtensa_insnbuf slotbuf); /* * Set the opcode field(s) for an instruction slot. All other fields * in the slot are set to zero. Returns non-zero if the opcode cannot * be encoded. */ int xtensa_opcode_encode(xtensa_isa isa, xtensa_format fmt, int slot, xtensa_insnbuf slotbuf, xtensa_opcode opc); /* Get the mnemonic name for an opcode. Returns null on error. */ const char *xtensa_opcode_name(xtensa_isa isa, xtensa_opcode opc); /* Check various properties of opcodes. These functions return 0 if * the condition is false, 1 if the condition is true, and * XTENSA_UNDEFINED on error. The instructions are classified as * follows: * * branch: conditional branch; may fall through to next instruction (B*) * jump: unconditional branch (J, JX, RET*, RF*) * loop: zero-overhead loop (LOOP*) * call: unconditional call; control returns to next instruction (CALL*) * * For the opcodes that affect control flow in some way, the branch * target may be specified by an immediate operand or it may be an * address stored in a register. You can distinguish these by * checking if the instruction has a PC-relative immediate * operand. */ int xtensa_opcode_is_branch(xtensa_isa isa, xtensa_opcode opc); int xtensa_opcode_is_jump(xtensa_isa isa, xtensa_opcode opc); int xtensa_opcode_is_loop(xtensa_isa isa, xtensa_opcode opc); int xtensa_opcode_is_call(xtensa_isa isa, xtensa_opcode opc); /* * Find the number of ordinary operands, state operands, and interface * operands for an instruction. These return XTENSA_UNDEFINED on * error. */ int xtensa_opcode_num_operands(xtensa_isa isa, xtensa_opcode opc); int xtensa_opcode_num_stateOperands(xtensa_isa isa, xtensa_opcode opc); int xtensa_opcode_num_interfaceOperands(xtensa_isa isa, xtensa_opcode opc); /* * Get functional unit usage requirements for an opcode. Each "use" * is identified by a pair. The * "num_funcUnit_uses" function returns the number of these "uses" or * XTENSA_UNDEFINED on error. The "funcUnit_use" function returns * a pointer to a "use" pair or null on error. */ typedef struct xtensa_funcUnit_use_struct { xtensa_funcUnit unit; int stage; } xtensa_funcUnit_use; int xtensa_opcode_num_funcUnit_uses(xtensa_isa isa, xtensa_opcode opc); xtensa_funcUnit_use *xtensa_opcode_funcUnit_use(xtensa_isa isa, xtensa_opcode opc, int u); /* Operand information. */ /* Get the name of an operand. Returns null on error. */ const char *xtensa_operand_name(xtensa_isa isa, xtensa_opcode opc, int opnd); /* * Some operands are "invisible", i.e., not explicitly specified in * assembly language. When assembling an instruction, you need not set * the values of invisible operands, since they are either hardwired or * derived from other field values. The values of invisible operands * can be examined in the same way as other operands, but remember that * an invisible operand may get its value from another visible one, so * the entire instruction must be available before examining the * invisible operand values. This function returns 1 if an operand is * visible, 0 if it is invisible, or XTENSA_UNDEFINED on error. Note * that whether an operand is visible is orthogonal to whether it is * "implicit", i.e., whether it is encoded in a field in the * instruction. */ int xtensa_operand_is_visible(xtensa_isa isa, xtensa_opcode opc, int opnd); /* * Check if an operand is an input ('i'), output ('o'), or inout ('m') * operand. Note: The output operand of a conditional assignment * (e.g., movnez) appears here as an inout ('m') even if it is declared * in the TIE code as an output ('o'); this allows the compiler to * properly handle register allocation for conditional assignments. * Returns 0 on error. */ char xtensa_operand_inout(xtensa_isa isa, xtensa_opcode opc, int opnd); /* * Get and set the raw (encoded) value of the field for the specified * operand. The "set" function does not check if the value fits in the * field; that is done by the "encode" function below. Both of these * functions return non-zero on error, e.g., if the field is not defined * for the specified slot. */ int xtensa_operand_get_field(xtensa_isa isa, xtensa_opcode opc, int opnd, xtensa_format fmt, int slot, const xtensa_insnbuf slotbuf, uint32_t *valp); int xtensa_operand_set_field(xtensa_isa isa, xtensa_opcode opc, int opnd, xtensa_format fmt, int slot, xtensa_insnbuf slotbuf, uint32_t val); /* * Encode and decode operands. The raw bits in the operand field may * be encoded in a variety of different ways. These functions hide * the details of that encoding. The result values are returned through * the argument pointer. The return value is non-zero on error. */ int xtensa_operand_encode(xtensa_isa isa, xtensa_opcode opc, int opnd, uint32_t *valp); int xtensa_operand_decode(xtensa_isa isa, xtensa_opcode opc, int opnd, uint32_t *valp); /* * An operand may be either a register operand or an immediate of some * sort (e.g., PC-relative or not). The "is_register" function returns * 0 if the operand is an immediate, 1 if it is a register, and * XTENSA_UNDEFINED on error. The "regfile" function returns the * regfile for a register operand, or XTENSA_UNDEFINED on error. */ int xtensa_operand_is_register(xtensa_isa isa, xtensa_opcode opc, int opnd); xtensa_regfile xtensa_operand_regfile(xtensa_isa isa, xtensa_opcode opc, int opnd); /* * Register operands may span multiple consecutive registers, e.g., a * 64-bit data type may occupy two 32-bit registers. Only the first * register is encoded in the operand field. This function specifies * the number of consecutive registers occupied by this operand. For * non-register operands, the return value is undefined. Returns * XTENSA_UNDEFINED on error. */ int xtensa_operand_num_regs(xtensa_isa isa, xtensa_opcode opc, int opnd); /* * Some register operands do not completely identify the register being * accessed. For example, the operand value may be added to an internal * state value. By definition, this implies that the corresponding * regfile is not allocatable. Unknown registers should generally be * treated with worst-case assumptions. The function returns 0 if the * register value is unknown, 1 if known, and XTENSA_UNDEFINED on * error. */ int xtensa_operand_is_known_reg(xtensa_isa isa, xtensa_opcode opc, int opnd); /* * Check if an immediate operand is PC-relative. Returns 0 for register * operands and non-PC-relative immediates, 1 for PC-relative * immediates, and XTENSA_UNDEFINED on error. */ int xtensa_operand_is_PCrelative(xtensa_isa isa, xtensa_opcode opc, int opnd); /* * For PC-relative offset operands, the interpretation of the offset may * vary between opcodes, e.g., is it relative to the current PC or that * of the next instruction? The following functions are defined to * perform PC-relative relocations and to undo them (as in the * disassembler). The "do_reloc" function takes the desired address * value and the PC of the current instruction and sets the value to the * corresponding PC-relative offset (which can then be encoded and * stored into the operand field). The "undo_reloc" function takes the * unencoded offset value and the current PC and sets the value to the * appropriate address. The return values are non-zero on error. Note * that these functions do not replace the encode/decode functions; the * operands must be encoded/decoded separately and the encode functions * are responsible for detecting invalid operand values. */ int xtensa_operand_do_reloc(xtensa_isa isa, xtensa_opcode opc, int opnd, uint32_t *valp, uint32_t pc); int xtensa_operand_undo_reloc(xtensa_isa isa, xtensa_opcode opc, int opnd, uint32_t *valp, uint32_t pc); /* State Operands. */ /* * Get the state accessed by a state operand. Returns XTENSA_UNDEFINED * on error. */ xtensa_state xtensa_stateOperand_state(xtensa_isa isa, xtensa_opcode opc, int stOp); /* * Check if a state operand is an input ('i'), output ('o'), or inout * ('m') operand. Returns 0 on error. */ char xtensa_stateOperand_inout(xtensa_isa isa, xtensa_opcode opc, int stOp); /* Interface Operands. */ /* * Get the external interface accessed by an interface operand. * Returns XTENSA_UNDEFINED on error. */ xtensa_interface xtensa_interfaceOperand_interface(xtensa_isa isa, xtensa_opcode opc, int ifOp); /* Register Files. */ /* * Regfiles include both "real" regfiles and "views", where a view * allows a group of adjacent registers in a real "parent" regfile to be * viewed as a single register. A regfile view has all the same * properties as its parent except for its (long) name, bit width, number * of entries, and default ctype. You can use the parent function to * distinguish these two classes. */ /* * Look up a regfile by either its name or its abbreviated "short name". * Returns XTENSA_UNDEFINED on error. The "lookup_shortname" function * ignores "view" regfiles since they always have the same shortname as * their parents. */ xtensa_regfile xtensa_regfile_lookup(xtensa_isa isa, const char *name); xtensa_regfile xtensa_regfile_lookup_shortname(xtensa_isa isa, const char *shortname); /* * Get the name or abbreviated "short name" of a regfile. * Returns null on error. */ const char *xtensa_regfile_name(xtensa_isa isa, xtensa_regfile rf); const char *xtensa_regfile_shortname(xtensa_isa isa, xtensa_regfile rf); /* * Get the parent regfile of a "view" regfile. If the regfile is not a * view, the result is the same as the input parameter. Returns * XTENSA_UNDEFINED on error. */ xtensa_regfile xtensa_regfile_view_parent(xtensa_isa isa, xtensa_regfile rf); /* * Get the bit width of a regfile or regfile view. * Returns XTENSA_UNDEFINED on error. */ int xtensa_regfile_num_bits(xtensa_isa isa, xtensa_regfile rf); /* * Get the number of regfile entries. Returns XTENSA_UNDEFINED on * error. */ int xtensa_regfile_num_entries(xtensa_isa isa, xtensa_regfile rf); /* Processor States. */ /* Look up a state by name. Returns XTENSA_UNDEFINED on error. */ xtensa_state xtensa_state_lookup(xtensa_isa isa, const char *name); /* Get the name for a processor state. Returns null on error. */ const char *xtensa_state_name(xtensa_isa isa, xtensa_state st); /* * Get the bit width for a processor state. * Returns XTENSA_UNDEFINED on error. */ int xtensa_state_num_bits(xtensa_isa isa, xtensa_state st); /* * Check if a state is exported from the processor core. Returns 0 if * the condition is false, 1 if the condition is true, and * XTENSA_UNDEFINED on error. */ int xtensa_state_is_exported(xtensa_isa isa, xtensa_state st); /* * Check for a "shared_or" state. Returns 0 if the condition is false, * 1 if the condition is true, and XTENSA_UNDEFINED on error. */ int xtensa_state_is_shared_or(xtensa_isa isa, xtensa_state st); /* Sysregs ("special registers" and "user registers"). */ /* * Look up a register by its number and whether it is a "user register" * or a "special register". Returns XTENSA_UNDEFINED if the sysreg does * not exist. */ xtensa_sysreg xtensa_sysreg_lookup(xtensa_isa isa, int num, int is_user); /* * Check if there exists a sysreg with a given name. * If not, this function returns XTENSA_UNDEFINED. */ xtensa_sysreg xtensa_sysreg_lookup_name(xtensa_isa isa, const char *name); /* Get the name of a sysreg. Returns null on error. */ const char *xtensa_sysreg_name(xtensa_isa isa, xtensa_sysreg sysreg); /* Get the register number. Returns XTENSA_UNDEFINED on error. */ int xtensa_sysreg_number(xtensa_isa isa, xtensa_sysreg sysreg); /* * Check if a sysreg is a "special register" or a "user register". * Returns 0 for special registers, 1 for user registers and * XTENSA_UNDEFINED on error. */ int xtensa_sysreg_is_user(xtensa_isa isa, xtensa_sysreg sysreg); /* Interfaces. */ /* * Find an interface by name. The return value is XTENSA_UNDEFINED if * the specified interface is not found. */ xtensa_interface xtensa_interface_lookup(xtensa_isa isa, const char *ifname); /* Get the name of an interface. Returns null on error. */ const char *xtensa_interface_name(xtensa_isa isa, xtensa_interface intf); /* * Get the bit width for an interface. * Returns XTENSA_UNDEFINED on error. */ int xtensa_interface_num_bits(xtensa_isa isa, xtensa_interface intf); /* * Check if an interface is an input ('i') or output ('o') with respect * to the Xtensa processor core. Returns 0 on error. */ char xtensa_interface_inout(xtensa_isa isa, xtensa_interface intf); /* * Check if accessing an interface has potential side effects. * Currently "data" interfaces have side effects and "control" * interfaces do not. Returns 1 if there are side effects, 0 if not, * and XTENSA_UNDEFINED on error. */ int xtensa_interface_has_side_effect(xtensa_isa isa, xtensa_interface intf); /* * Some interfaces may be related such that accessing one interface * has side effects on a set of related interfaces. The interfaces * are partitioned into equivalence classes of related interfaces, and * each class is assigned a unique identifier number. This function * returns the class identifier for an interface, or XTENSA_UNDEFINED * on error. These identifiers can be compared to determine if two * interfaces are related; the specific values of the identifiers have * no particular meaning otherwise. */ int xtensa_interface_class_id(xtensa_isa isa, xtensa_interface intf); /* Functional Units. */ /* * Find a functional unit by name. The return value is XTENSA_UNDEFINED if * the specified unit is not found. */ xtensa_funcUnit xtensa_funcUnit_lookup(xtensa_isa isa, const char *fname); /* Get the name of a functional unit. Returns null on error. */ const char *xtensa_funcUnit_name(xtensa_isa isa, xtensa_funcUnit fun); /* * Functional units may be replicated. See how many instances of a * particular function unit exist. Returns XTENSA_UNDEFINED on error. */ int xtensa_funcUnit_num_copies(xtensa_isa isa, xtensa_funcUnit fun); #ifdef __cplusplus } #endif #endif /* XTENSA_LIBISA_H */