static void glue(bswap_ehdr, SZ)(struct elfhdr *ehdr) { bswap16s(&ehdr->e_type); /* Object file type */ bswap16s(&ehdr->e_machine); /* Architecture */ bswap32s(&ehdr->e_version); /* Object file version */ bswapSZs(&ehdr->e_entry); /* Entry point virtual address */ bswapSZs(&ehdr->e_phoff); /* Program header table file offset */ bswapSZs(&ehdr->e_shoff); /* Section header table file offset */ bswap32s(&ehdr->e_flags); /* Processor-specific flags */ bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ bswap16s(&ehdr->e_phnum); /* Program header table entry count */ bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ bswap16s(&ehdr->e_shnum); /* Section header table entry count */ bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ } static void glue(bswap_phdr, SZ)(struct elf_phdr *phdr) { bswap32s(&phdr->p_type); /* Segment type */ bswapSZs(&phdr->p_offset); /* Segment file offset */ bswapSZs(&phdr->p_vaddr); /* Segment virtual address */ bswapSZs(&phdr->p_paddr); /* Segment physical address */ bswapSZs(&phdr->p_filesz); /* Segment size in file */ bswapSZs(&phdr->p_memsz); /* Segment size in memory */ bswap32s(&phdr->p_flags); /* Segment flags */ bswapSZs(&phdr->p_align); /* Segment alignment */ } static void glue(bswap_shdr, SZ)(struct elf_shdr *shdr) { bswap32s(&shdr->sh_name); bswap32s(&shdr->sh_type); bswapSZs(&shdr->sh_flags); bswapSZs(&shdr->sh_addr); bswapSZs(&shdr->sh_offset); bswapSZs(&shdr->sh_size); bswap32s(&shdr->sh_link); bswap32s(&shdr->sh_info); bswapSZs(&shdr->sh_addralign); bswapSZs(&shdr->sh_entsize); } static void glue(bswap_sym, SZ)(struct elf_sym *sym) { bswap32s(&sym->st_name); bswapSZs(&sym->st_value); bswapSZs(&sym->st_size); bswap16s(&sym->st_shndx); } static void glue(bswap_rela, SZ)(struct elf_rela *rela) { bswapSZs(&rela->r_offset); bswapSZs(&rela->r_info); bswapSZs((elf_word *)&rela->r_addend); } static struct elf_shdr *glue(find_section, SZ)(struct elf_shdr *shdr_table, int n, int type) { int i; for(i=0;i<n;i++) { if (shdr_table[i].sh_type == type) return shdr_table + i; } return NULL; } static int glue(symfind, SZ)(const void *s0, const void *s1) { hwaddr addr = *(hwaddr *)s0; struct elf_sym *sym = (struct elf_sym *)s1; int result = 0; if (addr < sym->st_value) { result = -1; } else if (addr >= sym->st_value + sym->st_size) { result = 1; } return result; } static const char *glue(lookup_symbol, SZ)(struct syminfo *s, hwaddr orig_addr) { struct elf_sym *syms = glue(s->disas_symtab.elf, SZ); struct elf_sym *sym; sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), glue(symfind, SZ)); if (sym != NULL) { return s->disas_strtab + sym->st_name; } return ""; } static int glue(symcmp, SZ)(const void *s0, const void *s1) { struct elf_sym *sym0 = (struct elf_sym *)s0; struct elf_sym *sym1 = (struct elf_sym *)s1; return (sym0->st_value < sym1->st_value) ? -1 : ((sym0->st_value > sym1->st_value) ? 1 : 0); } static int glue(load_symbols, SZ)(struct elfhdr *ehdr, int fd, int must_swab, int clear_lsb, symbol_fn_t sym_cb) { struct elf_shdr *symtab, *strtab, *shdr_table = NULL; struct elf_sym *syms = NULL; struct syminfo *s; int nsyms, i; char *str = NULL; shdr_table = load_at(fd, ehdr->e_shoff, sizeof(struct elf_shdr) * ehdr->e_shnum); if (!shdr_table) return -1; if (must_swab) { for (i = 0; i < ehdr->e_shnum; i++) { glue(bswap_shdr, SZ)(shdr_table + i); } } symtab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_SYMTAB); if (!symtab) goto fail; syms = load_at(fd, symtab->sh_offset, symtab->sh_size); if (!syms) goto fail; nsyms = symtab->sh_size / sizeof(struct elf_sym); /* String table */ if (symtab->sh_link >= ehdr->e_shnum) { goto fail; } strtab = &shdr_table[symtab->sh_link]; str = load_at(fd, strtab->sh_offset, strtab->sh_size); if (!str) { goto fail; } i = 0; while (i < nsyms) { if (must_swab) { glue(bswap_sym, SZ)(&syms[i]); } if (sym_cb) { sym_cb(str + syms[i].st_name, syms[i].st_info, syms[i].st_value, syms[i].st_size); } /* We are only interested in function symbols. Throw everything else away. */ if (syms[i].st_shndx == SHN_UNDEF || syms[i].st_shndx >= SHN_LORESERVE || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { nsyms--; if (i < nsyms) { syms[i] = syms[nsyms]; } continue; } if (clear_lsb) { /* The bottom address bit marks a Thumb or MIPS16 symbol. */ syms[i].st_value &= ~(glue(glue(Elf, SZ), _Addr))1; } i++; } syms = g_realloc(syms, nsyms * sizeof(*syms)); qsort(syms, nsyms, sizeof(*syms), glue(symcmp, SZ)); for (i = 0; i < nsyms - 1; i++) { if (syms[i].st_size == 0) { syms[i].st_size = syms[i + 1].st_value - syms[i].st_value; } } /* Commit */ s = g_malloc0(sizeof(*s)); s->lookup_symbol = glue(lookup_symbol, SZ); glue(s->disas_symtab.elf, SZ) = syms; s->disas_num_syms = nsyms; s->disas_strtab = str; s->next = syminfos; syminfos = s; g_free(shdr_table); return 0; fail: g_free(syms); g_free(str); g_free(shdr_table); return -1; } static int glue(elf_reloc, SZ)(struct elfhdr *ehdr, int fd, int must_swab, uint64_t (*translate_fn)(void *, uint64_t), void *translate_opaque, uint8_t *data, struct elf_phdr *ph, int elf_machine) { struct elf_shdr *reltab, *shdr_table = NULL; struct elf_rela *rels = NULL; int nrels, i, ret = -1; elf_word wordval; void *addr; shdr_table = load_at(fd, ehdr->e_shoff, sizeof(struct elf_shdr) * ehdr->e_shnum); if (!shdr_table) { return -1; } if (must_swab) { for (i = 0; i < ehdr->e_shnum; i++) { glue(bswap_shdr, SZ)(&shdr_table[i]); } } reltab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_RELA); if (!reltab) { goto fail; } rels = load_at(fd, reltab->sh_offset, reltab->sh_size); if (!rels) { goto fail; } nrels = reltab->sh_size / sizeof(struct elf_rela); for (i = 0; i < nrels; i++) { if (must_swab) { glue(bswap_rela, SZ)(&rels[i]); } if (rels[i].r_offset < ph->p_vaddr || rels[i].r_offset >= ph->p_vaddr + ph->p_filesz) { continue; } addr = &data[rels[i].r_offset - ph->p_vaddr]; switch (elf_machine) { case EM_S390: switch (rels[i].r_info) { case R_390_RELATIVE: wordval = *(elf_word *)addr; if (must_swab) { bswapSZs(&wordval); } wordval = translate_fn(translate_opaque, wordval); if (must_swab) { bswapSZs(&wordval); } *(elf_word *)addr = wordval; break; default: fprintf(stderr, "Unsupported relocation type %i!\n", (int)rels[i].r_info); } } } ret = 0; fail: g_free(rels); g_free(shdr_table); return ret; } /* * Given 'nhdr', a pointer to a range of ELF Notes, search through them * for a note matching type 'elf_note_type' and return a pointer to * the matching ELF note. */ static struct elf_note *glue(get_elf_note_type, SZ)(struct elf_note *nhdr, elf_word note_size, elf_word phdr_align, elf_word elf_note_type) { elf_word nhdr_size = sizeof(struct elf_note); elf_word elf_note_entry_offset = 0; elf_word note_type; elf_word nhdr_namesz; elf_word nhdr_descsz; if (nhdr == NULL) { return NULL; } note_type = nhdr->n_type; while (note_type != elf_note_type) { nhdr_namesz = nhdr->n_namesz; nhdr_descsz = nhdr->n_descsz; elf_note_entry_offset = nhdr_size + QEMU_ALIGN_UP(nhdr_namesz, phdr_align) + QEMU_ALIGN_UP(nhdr_descsz, phdr_align); /* * If the offset calculated in this iteration exceeds the * supplied size, we are done and no matching note was found. */ if (elf_note_entry_offset > note_size) { return NULL; } /* skip to the next ELF Note entry */ nhdr = (void *)nhdr + elf_note_entry_offset; note_type = nhdr->n_type; } return nhdr; } static int glue(load_elf, SZ)(const char *name, int fd, uint64_t (*elf_note_fn)(void *, void *, bool), uint64_t (*translate_fn)(void *, uint64_t), void *translate_opaque, int must_swab, uint64_t *pentry, uint64_t *lowaddr, uint64_t *highaddr, int elf_machine, int clear_lsb, int data_swab, AddressSpace *as, bool load_rom, symbol_fn_t sym_cb) { struct elfhdr ehdr; struct elf_phdr *phdr = NULL, *ph; int size, i, total_size; elf_word mem_size, file_size; uint64_t addr, low = (uint64_t)-1, high = 0; uint8_t *data = NULL; char label[128]; int ret = ELF_LOAD_FAILED; if (read(fd, &ehdr, sizeof(ehdr)) != sizeof(ehdr)) goto fail; if (must_swab) { glue(bswap_ehdr, SZ)(&ehdr); } if (elf_machine <= EM_NONE) { /* The caller didn't specify an ARCH, we can figure it out */ elf_machine = ehdr.e_machine; } switch (elf_machine) { case EM_PPC64: if (ehdr.e_machine != EM_PPC64) { if (ehdr.e_machine != EM_PPC) { ret = ELF_LOAD_WRONG_ARCH; goto fail; } } break; case EM_X86_64: if (ehdr.e_machine != EM_X86_64) { if (ehdr.e_machine != EM_386) { ret = ELF_LOAD_WRONG_ARCH; goto fail; } } break; case EM_MICROBLAZE: if (ehdr.e_machine != EM_MICROBLAZE) { if (ehdr.e_machine != EM_MICROBLAZE_OLD) { ret = ELF_LOAD_WRONG_ARCH; goto fail; } } break; case EM_MOXIE: if (ehdr.e_machine != EM_MOXIE) { if (ehdr.e_machine != EM_MOXIE_OLD) { ret = ELF_LOAD_WRONG_ARCH; goto fail; } } break; case EM_MIPS: case EM_NANOMIPS: if ((ehdr.e_machine != EM_MIPS) && (ehdr.e_machine != EM_NANOMIPS)) { ret = ELF_LOAD_WRONG_ARCH; goto fail; } break; default: if (elf_machine != ehdr.e_machine) { ret = ELF_LOAD_WRONG_ARCH; goto fail; } } if (pentry) *pentry = (uint64_t)(elf_sword)ehdr.e_entry; glue(load_symbols, SZ)(&ehdr, fd, must_swab, clear_lsb, sym_cb); size = ehdr.e_phnum * sizeof(phdr[0]); if (lseek(fd, ehdr.e_phoff, SEEK_SET) != ehdr.e_phoff) { goto fail; } phdr = g_malloc0(size); if (!phdr) goto fail; if (read(fd, phdr, size) != size) goto fail; if (must_swab) { for(i = 0; i < ehdr.e_phnum; i++) { ph = &phdr[i]; glue(bswap_phdr, SZ)(ph); } } total_size = 0; for(i = 0; i < ehdr.e_phnum; i++) { ph = &phdr[i]; if (ph->p_type == PT_LOAD) { mem_size = ph->p_memsz; /* Size of the ROM */ file_size = ph->p_filesz; /* Size of the allocated data */ data = g_malloc0(file_size); if (ph->p_filesz > 0) { if (lseek(fd, ph->p_offset, SEEK_SET) < 0) { goto fail; } if (read(fd, data, file_size) != file_size) { goto fail; } } /* The ELF spec is somewhat vague about the purpose of the * physical address field. One common use in the embedded world * is that physical address field specifies the load address * and the virtual address field specifies the execution address. * Segments are packed into ROM or flash, and the relocation * and zero-initialization of data is done at runtime. This * means that the memsz header represents the runtime size of the * segment, but the filesz represents the loadtime size. If * we try to honour the memsz value for an ELF file like this * we will end up with overlapping segments (which the * loader.c code will later reject). * We support ELF files using this scheme by by checking whether * paddr + memsz for this segment would overlap with any other * segment. If so, then we assume it's using this scheme and * truncate the loaded segment to the filesz size. * If the segment considered as being memsz size doesn't overlap * then we use memsz for the segment length, to handle ELF files * which assume that the loader will do the zero-initialization. */ if (mem_size > file_size) { /* If this segment's zero-init portion overlaps another * segment's data or zero-init portion, then truncate this one. * Invalid ELF files where the segments overlap even when * only file_size bytes are loaded will be rejected by * the ROM overlap check in loader.c, so we don't try to * explicitly detect those here. */ int j; elf_word zero_start = ph->p_paddr + file_size; elf_word zero_end = ph->p_paddr + mem_size; for (j = 0; j < ehdr.e_phnum; j++) { struct elf_phdr *jph = &phdr[j]; if (i != j && jph->p_type == PT_LOAD) { elf_word other_start = jph->p_paddr; elf_word other_end = jph->p_paddr + jph->p_memsz; if (!(other_start >= zero_end || zero_start >= other_end)) { mem_size = file_size; break; } } } } /* address_offset is hack for kernel images that are linked at the wrong physical address. */ if (translate_fn) { addr = translate_fn(translate_opaque, ph->p_paddr); glue(elf_reloc, SZ)(&ehdr, fd, must_swab, translate_fn, translate_opaque, data, ph, elf_machine); } else { addr = ph->p_paddr; } if (data_swab) { int j; for (j = 0; j < file_size; j += (1 << data_swab)) { uint8_t *dp = data + j; switch (data_swab) { case (1): *(uint16_t *)dp = bswap16(*(uint16_t *)dp); break; case (2): *(uint32_t *)dp = bswap32(*(uint32_t *)dp); break; case (3): *(uint64_t *)dp = bswap64(*(uint64_t *)dp); break; default: g_assert_not_reached(); } } } /* the entry pointer in the ELF header is a virtual * address, if the text segments paddr and vaddr differ * we need to adjust the entry */ if (pentry && !translate_fn && ph->p_vaddr != ph->p_paddr && ehdr.e_entry >= ph->p_vaddr && ehdr.e_entry < ph->p_vaddr + ph->p_filesz && ph->p_flags & PF_X) { *pentry = ehdr.e_entry - ph->p_vaddr + ph->p_paddr; } if (mem_size == 0) { /* Some ELF files really do have segments of zero size; * just ignore them rather than trying to create empty * ROM blobs, because the zero-length blob can falsely * trigger the overlapping-ROM-blobs check. */ g_free(data); } else { if (load_rom) { snprintf(label, sizeof(label), "phdr #%d: %s", i, name); /* rom_add_elf_program() seize the ownership of 'data' */ rom_add_elf_program(label, data, file_size, mem_size, addr, as); } else { address_space_write(as ? as : &address_space_memory, addr, MEMTXATTRS_UNSPECIFIED, data, file_size); g_free(data); } } total_size += mem_size; if (addr < low) low = addr; if ((addr + mem_size) > high) high = addr + mem_size; data = NULL; } else if (ph->p_type == PT_NOTE && elf_note_fn) { struct elf_note *nhdr = NULL; file_size = ph->p_filesz; /* Size of the range of ELF notes */ data = g_malloc0(file_size); if (ph->p_filesz > 0) { if (lseek(fd, ph->p_offset, SEEK_SET) < 0) { goto fail; } if (read(fd, data, file_size) != file_size) { goto fail; } } /* * Search the ELF notes to find one with a type matching the * value passed in via 'translate_opaque' */ nhdr = (struct elf_note *)data; assert(translate_opaque != NULL); nhdr = glue(get_elf_note_type, SZ)(nhdr, file_size, ph->p_align, *(uint64_t *)translate_opaque); if (nhdr != NULL) { bool is64 = sizeof(struct elf_note) == sizeof(struct elf64_note); elf_note_fn((void *)nhdr, (void *)&ph->p_align, is64); } g_free(data); data = NULL; } } g_free(phdr); if (lowaddr) *lowaddr = (uint64_t)(elf_sword)low; if (highaddr) *highaddr = (uint64_t)(elf_sword)high; return total_size; fail: g_free(data); g_free(phdr); return ret; }