/* * Declarations for cpu physical memory functions * * Copyright 2011 Red Hat, Inc. and/or its affiliates * * Authors: * Avi Kivity * * This work is licensed under the terms of the GNU GPL, version 2 or * later. See the COPYING file in the top-level directory. * */ /* * This header is for use by exec.c and memory.c ONLY. Do not include it. * The functions declared here will be removed soon. */ #ifndef RAM_ADDR_H #define RAM_ADDR_H #ifndef CONFIG_USER_ONLY #include "hw/xen/xen.h" ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, bool share, const char *mem_path, Error **errp); ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, MemoryRegion *mr, Error **errp); ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp); int qemu_get_ram_fd(ram_addr_t addr); void *qemu_get_ram_block_host_ptr(ram_addr_t addr); void *qemu_get_ram_ptr(ram_addr_t addr); void qemu_ram_free(ram_addr_t addr); void qemu_ram_free_from_ptr(ram_addr_t addr); static inline bool cpu_physical_memory_get_dirty(ram_addr_t start, ram_addr_t length, unsigned client) { unsigned long end, page, next; assert(client < DIRTY_MEMORY_NUM); end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; next = find_next_bit(ram_list.dirty_memory[client], end, page); return next < end; } static inline bool cpu_physical_memory_get_clean(ram_addr_t start, ram_addr_t length, unsigned client) { unsigned long end, page, next; assert(client < DIRTY_MEMORY_NUM); end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; next = find_next_zero_bit(ram_list.dirty_memory[client], end, page); return next < end; } static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr, unsigned client) { return cpu_physical_memory_get_dirty(addr, 1, client); } static inline bool cpu_physical_memory_is_clean(ram_addr_t addr) { bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA); bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE); bool migration = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION); return !(vga && code && migration); } static inline bool cpu_physical_memory_range_includes_clean(ram_addr_t start, ram_addr_t length) { bool vga = cpu_physical_memory_get_clean(start, length, DIRTY_MEMORY_VGA); bool code = cpu_physical_memory_get_clean(start, length, DIRTY_MEMORY_CODE); bool migration = cpu_physical_memory_get_clean(start, length, DIRTY_MEMORY_MIGRATION); return vga || code || migration; } static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr, unsigned client) { assert(client < DIRTY_MEMORY_NUM); set_bit(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]); } static inline void cpu_physical_memory_set_dirty_range_nocode(ram_addr_t start, ram_addr_t length) { unsigned long end, page; end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION], page, end - page); bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_VGA], page, end - page); } static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start, ram_addr_t length) { unsigned long end, page; end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION], page, end - page); bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_VGA], page, end - page); bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_CODE], page, end - page); xen_modified_memory(start, length); } #if !defined(_WIN32) static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap, ram_addr_t start, ram_addr_t pages) { unsigned long i, j; unsigned long page_number, c; hwaddr addr; ram_addr_t ram_addr; unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS; unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS); /* start address is aligned at the start of a word? */ if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) && (hpratio == 1)) { long k; long nr = BITS_TO_LONGS(pages); for (k = 0; k < nr; k++) { if (bitmap[k]) { unsigned long temp = leul_to_cpu(bitmap[k]); ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION][page + k] |= temp; ram_list.dirty_memory[DIRTY_MEMORY_VGA][page + k] |= temp; ram_list.dirty_memory[DIRTY_MEMORY_CODE][page + k] |= temp; } } xen_modified_memory(start, pages); } else { /* * bitmap-traveling is faster than memory-traveling (for addr...) * especially when most of the memory is not dirty. */ for (i = 0; i < len; i++) { if (bitmap[i] != 0) { c = leul_to_cpu(bitmap[i]); do { j = ctzl(c); c &= ~(1ul << j); page_number = (i * HOST_LONG_BITS + j) * hpratio; addr = page_number * TARGET_PAGE_SIZE; ram_addr = start + addr; cpu_physical_memory_set_dirty_range(ram_addr, TARGET_PAGE_SIZE * hpratio); } while (c != 0); } } } } #endif /* not _WIN32 */ static inline void cpu_physical_memory_clear_dirty_range_type(ram_addr_t start, ram_addr_t length, unsigned client) { unsigned long end, page; assert(client < DIRTY_MEMORY_NUM); end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; page = start >> TARGET_PAGE_BITS; bitmap_clear(ram_list.dirty_memory[client], page, end - page); } static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start, ram_addr_t length) { cpu_physical_memory_clear_dirty_range_type(start, length, DIRTY_MEMORY_MIGRATION); cpu_physical_memory_clear_dirty_range_type(start, length, DIRTY_MEMORY_VGA); cpu_physical_memory_clear_dirty_range_type(start, length, DIRTY_MEMORY_CODE); } void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length, unsigned client); #endif #endif