/* * Software MMU support * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . * */ /* * Generate inline load/store functions for all MMU modes (typically * at least _user and _kernel) as well as _data versions, for all data * sizes. * * Used by target op helpers. * * The syntax for the accessors is: * * load: cpu_ld{sign}{size}_{mmusuffix}(env, ptr) * cpu_ld{sign}{size}_{mmusuffix}_ra(env, ptr, retaddr) * cpu_ld{sign}{size}_mmuidx_ra(env, ptr, mmu_idx, retaddr) * * store: cpu_st{size}_{mmusuffix}(env, ptr, val) * cpu_st{size}_{mmusuffix}_ra(env, ptr, val, retaddr) * cpu_st{size}_mmuidx_ra(env, ptr, val, mmu_idx, retaddr) * * sign is: * (empty): for 32 and 64 bit sizes * u : unsigned * s : signed * * size is: * b: 8 bits * w: 16 bits * l: 32 bits * q: 64 bits * * mmusuffix is one of the generic suffixes "data" or "code", or "mmuidx". * The "mmuidx" suffix carries an extra mmu_idx argument that specifies * the index to use; the "data" and "code" suffixes take the index from * cpu_mmu_index(). */ #ifndef CPU_LDST_H #define CPU_LDST_H #if defined(CONFIG_USER_ONLY) /* sparc32plus has 64bit long but 32bit space address * this can make bad result with g2h() and h2g() */ #if TARGET_VIRT_ADDR_SPACE_BITS <= 32 typedef uint32_t abi_ptr; #define TARGET_ABI_FMT_ptr "%x" #else typedef uint64_t abi_ptr; #define TARGET_ABI_FMT_ptr "%"PRIx64 #endif /* All direct uses of g2h and h2g need to go away for usermode softmmu. */ #define g2h(x) ((void *)((unsigned long)(abi_ptr)(x) + guest_base)) #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS #define guest_addr_valid(x) (1) #else #define guest_addr_valid(x) ((x) <= GUEST_ADDR_MAX) #endif #define h2g_valid(x) guest_addr_valid((unsigned long)(x) - guest_base) static inline int guest_range_valid(unsigned long start, unsigned long len) { return len - 1 <= GUEST_ADDR_MAX && start <= GUEST_ADDR_MAX - len + 1; } #define h2g_nocheck(x) ({ \ unsigned long __ret = (unsigned long)(x) - guest_base; \ (abi_ptr)__ret; \ }) #define h2g(x) ({ \ /* Check if given address fits target address space */ \ assert(h2g_valid(x)); \ h2g_nocheck(x); \ }) #else typedef target_ulong abi_ptr; #define TARGET_ABI_FMT_ptr TARGET_ABI_FMT_lx #endif uint32_t cpu_ldub_data(CPUArchState *env, abi_ptr ptr); uint32_t cpu_lduw_data(CPUArchState *env, abi_ptr ptr); uint32_t cpu_ldl_data(CPUArchState *env, abi_ptr ptr); uint64_t cpu_ldq_data(CPUArchState *env, abi_ptr ptr); int cpu_ldsb_data(CPUArchState *env, abi_ptr ptr); int cpu_ldsw_data(CPUArchState *env, abi_ptr ptr); uint32_t cpu_ldub_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr); uint32_t cpu_lduw_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr); uint32_t cpu_ldl_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr); uint64_t cpu_ldq_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr); int cpu_ldsb_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr); int cpu_ldsw_data_ra(CPUArchState *env, abi_ptr ptr, uintptr_t retaddr); void cpu_stb_data(CPUArchState *env, abi_ptr ptr, uint32_t val); void cpu_stw_data(CPUArchState *env, abi_ptr ptr, uint32_t val); void cpu_stl_data(CPUArchState *env, abi_ptr ptr, uint32_t val); void cpu_stq_data(CPUArchState *env, abi_ptr ptr, uint64_t val); void cpu_stb_data_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, uintptr_t retaddr); void cpu_stw_data_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, uintptr_t retaddr); void cpu_stl_data_ra(CPUArchState *env, abi_ptr ptr, uint32_t val, uintptr_t retaddr); void cpu_stq_data_ra(CPUArchState *env, abi_ptr ptr, uint64_t val, uintptr_t retaddr); #if defined(CONFIG_USER_ONLY) extern __thread uintptr_t helper_retaddr; static inline void set_helper_retaddr(uintptr_t ra) { helper_retaddr = ra; /* * Ensure that this write is visible to the SIGSEGV handler that * may be invoked due to a subsequent invalid memory operation. */ signal_barrier(); } static inline void clear_helper_retaddr(void) { /* * Ensure that previous memory operations have succeeded before * removing the data visible to the signal handler. */ signal_barrier(); helper_retaddr = 0; } /* * Provide the same *_mmuidx_ra interface as for softmmu. * The mmu_idx argument is ignored. */ static inline uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { return cpu_ldub_data_ra(env, addr, ra); } static inline uint32_t cpu_lduw_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { return cpu_lduw_data_ra(env, addr, ra); } static inline uint32_t cpu_ldl_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { return cpu_ldl_data_ra(env, addr, ra); } static inline uint64_t cpu_ldq_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { return cpu_ldq_data_ra(env, addr, ra); } static inline int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { return cpu_ldsb_data_ra(env, addr, ra); } static inline int cpu_ldsw_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra) { return cpu_ldsw_data_ra(env, addr, ra); } static inline void cpu_stb_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val, int mmu_idx, uintptr_t ra) { cpu_stb_data_ra(env, addr, val, ra); } static inline void cpu_stw_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val, int mmu_idx, uintptr_t ra) { cpu_stw_data_ra(env, addr, val, ra); } static inline void cpu_stl_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val, int mmu_idx, uintptr_t ra) { cpu_stl_data_ra(env, addr, val, ra); } static inline void cpu_stq_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint64_t val, int mmu_idx, uintptr_t ra) { cpu_stq_data_ra(env, addr, val, ra); } #else /* Needed for TCG_OVERSIZED_GUEST */ #include "tcg/tcg.h" static inline target_ulong tlb_addr_write(const CPUTLBEntry *entry) { #if TCG_OVERSIZED_GUEST return entry->addr_write; #else return atomic_read(&entry->addr_write); #endif } /* Find the TLB index corresponding to the mmu_idx + address pair. */ static inline uintptr_t tlb_index(CPUArchState *env, uintptr_t mmu_idx, target_ulong addr) { uintptr_t size_mask = env_tlb(env)->f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS; return (addr >> TARGET_PAGE_BITS) & size_mask; } static inline size_t tlb_n_entries(CPUArchState *env, uintptr_t mmu_idx) { return (env_tlb(env)->f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS) + 1; } /* Find the TLB entry corresponding to the mmu_idx + address pair. */ static inline CPUTLBEntry *tlb_entry(CPUArchState *env, uintptr_t mmu_idx, target_ulong addr) { return &env_tlb(env)->f[mmu_idx].table[tlb_index(env, mmu_idx, addr)]; } uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra); uint32_t cpu_lduw_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra); uint32_t cpu_ldl_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra); uint64_t cpu_ldq_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra); int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra); int cpu_ldsw_mmuidx_ra(CPUArchState *env, abi_ptr addr, int mmu_idx, uintptr_t ra); void cpu_stb_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val, int mmu_idx, uintptr_t retaddr); void cpu_stw_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val, int mmu_idx, uintptr_t retaddr); void cpu_stl_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint32_t val, int mmu_idx, uintptr_t retaddr); void cpu_stq_mmuidx_ra(CPUArchState *env, abi_ptr addr, uint64_t val, int mmu_idx, uintptr_t retaddr); #endif /* defined(CONFIG_USER_ONLY) */ uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr); uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr); uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr); uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr); static inline int cpu_ldsb_code(CPUArchState *env, abi_ptr addr) { return (int8_t)cpu_ldub_code(env, addr); } static inline int cpu_ldsw_code(CPUArchState *env, abi_ptr addr) { return (int16_t)cpu_lduw_code(env, addr); } /** * tlb_vaddr_to_host: * @env: CPUArchState * @addr: guest virtual address to look up * @access_type: 0 for read, 1 for write, 2 for execute * @mmu_idx: MMU index to use for lookup * * Look up the specified guest virtual index in the TCG softmmu TLB. * If we can translate a host virtual address suitable for direct RAM * access, without causing a guest exception, then return it. * Otherwise (TLB entry is for an I/O access, guest software * TLB fill required, etc) return NULL. */ #ifdef CONFIG_USER_ONLY static inline void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, MMUAccessType access_type, int mmu_idx) { return g2h(addr); } #else void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, MMUAccessType access_type, int mmu_idx); #endif #endif /* CPU_LDST_H */