/* * defines common to all virtual CPUs * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #ifndef CPU_ALL_H #define CPU_ALL_H #include "qemu-common.h" #include "exec/cpu-common.h" #include "exec/memory.h" #include "qemu/thread.h" #include "qom/cpu.h" #include "qemu/rcu.h" #define EXCP_INTERRUPT 0x10000 /* async interruption */ #define EXCP_HLT 0x10001 /* hlt instruction reached */ #define EXCP_DEBUG 0x10002 /* cpu stopped after a breakpoint or singlestep */ #define EXCP_HALTED 0x10003 /* cpu is halted (waiting for external event) */ #define EXCP_YIELD 0x10004 /* cpu wants to yield timeslice to another */ #define EXCP_ATOMIC 0x10005 /* stop-the-world and emulate atomic */ /* some important defines: * * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and * otherwise little endian. * * TARGET_WORDS_BIGENDIAN : same for target cpu */ #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) #define BSWAP_NEEDED #endif #ifdef BSWAP_NEEDED static inline uint16_t tswap16(uint16_t s) { return bswap16(s); } static inline uint32_t tswap32(uint32_t s) { return bswap32(s); } static inline uint64_t tswap64(uint64_t s) { return bswap64(s); } static inline void tswap16s(uint16_t *s) { *s = bswap16(*s); } static inline void tswap32s(uint32_t *s) { *s = bswap32(*s); } static inline void tswap64s(uint64_t *s) { *s = bswap64(*s); } #else static inline uint16_t tswap16(uint16_t s) { return s; } static inline uint32_t tswap32(uint32_t s) { return s; } static inline uint64_t tswap64(uint64_t s) { return s; } static inline void tswap16s(uint16_t *s) { } static inline void tswap32s(uint32_t *s) { } static inline void tswap64s(uint64_t *s) { } #endif #if TARGET_LONG_SIZE == 4 #define tswapl(s) tswap32(s) #define tswapls(s) tswap32s((uint32_t *)(s)) #define bswaptls(s) bswap32s(s) #else #define tswapl(s) tswap64(s) #define tswapls(s) tswap64s((uint64_t *)(s)) #define bswaptls(s) bswap64s(s) #endif /* Target-endianness CPU memory access functions. These fit into the * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h. */ #if defined(TARGET_WORDS_BIGENDIAN) #define lduw_p(p) lduw_be_p(p) #define ldsw_p(p) ldsw_be_p(p) #define ldl_p(p) ldl_be_p(p) #define ldq_p(p) ldq_be_p(p) #define ldfl_p(p) ldfl_be_p(p) #define ldfq_p(p) ldfq_be_p(p) #define stw_p(p, v) stw_be_p(p, v) #define stl_p(p, v) stl_be_p(p, v) #define stq_p(p, v) stq_be_p(p, v) #define stfl_p(p, v) stfl_be_p(p, v) #define stfq_p(p, v) stfq_be_p(p, v) #define ldn_p(p, sz) ldn_be_p(p, sz) #define stn_p(p, sz, v) stn_be_p(p, sz, v) #else #define lduw_p(p) lduw_le_p(p) #define ldsw_p(p) ldsw_le_p(p) #define ldl_p(p) ldl_le_p(p) #define ldq_p(p) ldq_le_p(p) #define ldfl_p(p) ldfl_le_p(p) #define ldfq_p(p) ldfq_le_p(p) #define stw_p(p, v) stw_le_p(p, v) #define stl_p(p, v) stl_le_p(p, v) #define stq_p(p, v) stq_le_p(p, v) #define stfl_p(p, v) stfl_le_p(p, v) #define stfq_p(p, v) stfq_le_p(p, v) #define ldn_p(p, sz) ldn_le_p(p, sz) #define stn_p(p, sz, v) stn_le_p(p, sz, v) #endif /* MMU memory access macros */ #if defined(CONFIG_USER_ONLY) #include "exec/user/abitypes.h" /* On some host systems the guest address space is reserved on the host. * This allows the guest address space to be offset to a convenient location. */ extern unsigned long guest_base; extern int have_guest_base; extern unsigned long reserved_va; #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS #define GUEST_ADDR_MAX (~0ul) #else #define GUEST_ADDR_MAX (reserved_va ? reserved_va - 1 : \ (1ul << TARGET_VIRT_ADDR_SPACE_BITS) - 1) #endif #else #include "exec/hwaddr.h" #define SUFFIX #define ARG1 as #define ARG1_DECL AddressSpace *as #define TARGET_ENDIANNESS #include "exec/memory_ldst.inc.h" #define SUFFIX _cached_slow #define ARG1 cache #define ARG1_DECL MemoryRegionCache *cache #define TARGET_ENDIANNESS #include "exec/memory_ldst.inc.h" static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val) { address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL); } #define SUFFIX #define ARG1 as #define ARG1_DECL AddressSpace *as #define TARGET_ENDIANNESS #include "exec/memory_ldst_phys.inc.h" /* Inline fast path for direct RAM access. */ #define ENDIANNESS #include "exec/memory_ldst_cached.inc.h" #define SUFFIX _cached #define ARG1 cache #define ARG1_DECL MemoryRegionCache *cache #define TARGET_ENDIANNESS #include "exec/memory_ldst_phys.inc.h" #endif /* page related stuff */ #ifdef TARGET_PAGE_BITS_VARY extern bool target_page_bits_decided; extern int target_page_bits; #define TARGET_PAGE_BITS ({ assert(target_page_bits_decided); \ target_page_bits; }) #else #define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS #endif #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1) #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK) /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even * when intptr_t is 32-bit and we are aligning a long long. */ extern uintptr_t qemu_host_page_size; extern intptr_t qemu_host_page_mask; #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask) #define REAL_HOST_PAGE_ALIGN(addr) (((addr) + qemu_real_host_page_size - 1) & \ qemu_real_host_page_mask) /* same as PROT_xxx */ #define PAGE_READ 0x0001 #define PAGE_WRITE 0x0002 #define PAGE_EXEC 0x0004 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC) #define PAGE_VALID 0x0008 /* original state of the write flag (used when tracking self-modifying code */ #define PAGE_WRITE_ORG 0x0010 /* Invalidate the TLB entry immediately, helpful for s390x * Low-Address-Protection. Used with PAGE_WRITE in tlb_set_page_with_attrs() */ #define PAGE_WRITE_INV 0x0040 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) /* FIXME: Code that sets/uses this is broken and needs to go away. */ #define PAGE_RESERVED 0x0020 #endif #if defined(CONFIG_USER_ONLY) void page_dump(FILE *f); typedef int (*walk_memory_regions_fn)(void *, target_ulong, target_ulong, unsigned long); int walk_memory_regions(void *, walk_memory_regions_fn); int page_get_flags(target_ulong address); void page_set_flags(target_ulong start, target_ulong end, int flags); int page_check_range(target_ulong start, target_ulong len, int flags); #endif CPUArchState *cpu_copy(CPUArchState *env); /* Flags for use in ENV->INTERRUPT_PENDING. The numbers assigned here are non-sequential in order to preserve binary compatibility with the vmstate dump. Bit 0 (0x0001) was previously used for CPU_INTERRUPT_EXIT, and is cleared when loading the vmstate dump. */ /* External hardware interrupt pending. This is typically used for interrupts from devices. */ #define CPU_INTERRUPT_HARD 0x0002 /* Exit the current TB. This is typically used when some system-level device makes some change to the memory mapping. E.g. the a20 line change. */ #define CPU_INTERRUPT_EXITTB 0x0004 /* Halt the CPU. */ #define CPU_INTERRUPT_HALT 0x0020 /* Debug event pending. */ #define CPU_INTERRUPT_DEBUG 0x0080 /* Reset signal. */ #define CPU_INTERRUPT_RESET 0x0400 /* Several target-specific external hardware interrupts. Each target/cpu.h should define proper names based on these defines. */ #define CPU_INTERRUPT_TGT_EXT_0 0x0008 #define CPU_INTERRUPT_TGT_EXT_1 0x0010 #define CPU_INTERRUPT_TGT_EXT_2 0x0040 #define CPU_INTERRUPT_TGT_EXT_3 0x0200 #define CPU_INTERRUPT_TGT_EXT_4 0x1000 /* Several target-specific internal interrupts. These differ from the preceding target-specific interrupts in that they are intended to originate from within the cpu itself, typically in response to some instruction being executed. These, therefore, are not masked while single-stepping within the debugger. */ #define CPU_INTERRUPT_TGT_INT_0 0x0100 #define CPU_INTERRUPT_TGT_INT_1 0x0800 #define CPU_INTERRUPT_TGT_INT_2 0x2000 /* First unused bit: 0x4000. */ /* The set of all bits that should be masked when single-stepping. */ #define CPU_INTERRUPT_SSTEP_MASK \ (CPU_INTERRUPT_HARD \ | CPU_INTERRUPT_TGT_EXT_0 \ | CPU_INTERRUPT_TGT_EXT_1 \ | CPU_INTERRUPT_TGT_EXT_2 \ | CPU_INTERRUPT_TGT_EXT_3 \ | CPU_INTERRUPT_TGT_EXT_4) #if !defined(CONFIG_USER_ONLY) /* Flags stored in the low bits of the TLB virtual address. These are * defined so that fast path ram access is all zeros. * The flags all must be between TARGET_PAGE_BITS and * maximum address alignment bit. */ /* Zero if TLB entry is valid. */ #define TLB_INVALID_MASK (1 << (TARGET_PAGE_BITS - 1)) /* Set if TLB entry references a clean RAM page. The iotlb entry will contain the page physical address. */ #define TLB_NOTDIRTY (1 << (TARGET_PAGE_BITS - 2)) /* Set if TLB entry is an IO callback. */ #define TLB_MMIO (1 << (TARGET_PAGE_BITS - 3)) /* Set if TLB entry must have MMU lookup repeated for every access */ #define TLB_RECHECK (1 << (TARGET_PAGE_BITS - 4)) /* Use this mask to check interception with an alignment mask * in a TCG backend. */ #define TLB_FLAGS_MASK (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO \ | TLB_RECHECK) /** * tlb_hit_page: return true if page aligned @addr is a hit against the * TLB entry @tlb_addr * * @addr: virtual address to test (must be page aligned) * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) */ static inline bool tlb_hit_page(target_ulong tlb_addr, target_ulong addr) { return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK)); } /** * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr * * @addr: virtual address to test (need not be page aligned) * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value) */ static inline bool tlb_hit(target_ulong tlb_addr, target_ulong addr) { return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK); } void dump_exec_info(void); void dump_opcount_info(void); #endif /* !CONFIG_USER_ONLY */ int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr, uint8_t *buf, target_ulong len, int is_write); int cpu_exec(CPUState *cpu); /** * cpu_set_cpustate_pointers(cpu) * @cpu: The cpu object * * Set the generic pointers in CPUState into the outer object. */ static inline void cpu_set_cpustate_pointers(ArchCPU *cpu) { cpu->parent_obj.env_ptr = &cpu->env; cpu->parent_obj.icount_decr_ptr = &cpu->neg.icount_decr; } /** * env_archcpu(env) * @env: The architecture environment * * Return the ArchCPU associated with the environment. */ static inline ArchCPU *env_archcpu(CPUArchState *env) { return container_of(env, ArchCPU, env); } /** * env_cpu(env) * @env: The architecture environment * * Return the CPUState associated with the environment. */ static inline CPUState *env_cpu(CPUArchState *env) { return &env_archcpu(env)->parent_obj; } /** * env_neg(env) * @env: The architecture environment * * Return the CPUNegativeOffsetState associated with the environment. */ static inline CPUNegativeOffsetState *env_neg(CPUArchState *env) { ArchCPU *arch_cpu = container_of(env, ArchCPU, env); return &arch_cpu->neg; } /** * cpu_neg(cpu) * @cpu: The generic CPUState * * Return the CPUNegativeOffsetState associated with the cpu. */ static inline CPUNegativeOffsetState *cpu_neg(CPUState *cpu) { ArchCPU *arch_cpu = container_of(cpu, ArchCPU, parent_obj); return &arch_cpu->neg; } #endif /* CPU_ALL_H */