/* * defines common to all virtual CPUs * * Copyright (c) 2003 Fabrice Bellard * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #ifndef CPU_ALL_H #define CPU_ALL_H #include "qemu-common.h" #include "qemu/tls.h" #include "exec/cpu-common.h" #include "qemu/thread.h" /* some important defines: * * WORDS_ALIGNED : if defined, the host cpu can only make word aligned * memory accesses. * * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and * otherwise little endian. * * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet)) * * TARGET_WORDS_BIGENDIAN : same for target cpu */ #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN) #define BSWAP_NEEDED #endif #ifdef BSWAP_NEEDED static inline uint16_t tswap16(uint16_t s) { return bswap16(s); } static inline uint32_t tswap32(uint32_t s) { return bswap32(s); } static inline uint64_t tswap64(uint64_t s) { return bswap64(s); } static inline void tswap16s(uint16_t *s) { *s = bswap16(*s); } static inline void tswap32s(uint32_t *s) { *s = bswap32(*s); } static inline void tswap64s(uint64_t *s) { *s = bswap64(*s); } #else static inline uint16_t tswap16(uint16_t s) { return s; } static inline uint32_t tswap32(uint32_t s) { return s; } static inline uint64_t tswap64(uint64_t s) { return s; } static inline void tswap16s(uint16_t *s) { } static inline void tswap32s(uint32_t *s) { } static inline void tswap64s(uint64_t *s) { } #endif #if TARGET_LONG_SIZE == 4 #define tswapl(s) tswap32(s) #define tswapls(s) tswap32s((uint32_t *)(s)) #define bswaptls(s) bswap32s(s) #else #define tswapl(s) tswap64(s) #define tswapls(s) tswap64s((uint64_t *)(s)) #define bswaptls(s) bswap64s(s) #endif /* CPU memory access without any memory or io remapping */ /* * the generic syntax for the memory accesses is: * * load: ld{type}{sign}{size}{endian}_{access_type}(ptr) * * store: st{type}{size}{endian}_{access_type}(ptr, val) * * type is: * (empty): integer access * f : float access * * sign is: * (empty): for floats or 32 bit size * u : unsigned * s : signed * * size is: * b: 8 bits * w: 16 bits * l: 32 bits * q: 64 bits * * endian is: * (empty): target cpu endianness or 8 bit access * r : reversed target cpu endianness (not implemented yet) * be : big endian (not implemented yet) * le : little endian (not implemented yet) * * access_type is: * raw : host memory access * user : user mode access using soft MMU * kernel : kernel mode access using soft MMU */ /* target-endianness CPU memory access functions */ #if defined(TARGET_WORDS_BIGENDIAN) #define lduw_p(p) lduw_be_p(p) #define ldsw_p(p) ldsw_be_p(p) #define ldl_p(p) ldl_be_p(p) #define ldq_p(p) ldq_be_p(p) #define ldfl_p(p) ldfl_be_p(p) #define ldfq_p(p) ldfq_be_p(p) #define stw_p(p, v) stw_be_p(p, v) #define stl_p(p, v) stl_be_p(p, v) #define stq_p(p, v) stq_be_p(p, v) #define stfl_p(p, v) stfl_be_p(p, v) #define stfq_p(p, v) stfq_be_p(p, v) #else #define lduw_p(p) lduw_le_p(p) #define ldsw_p(p) ldsw_le_p(p) #define ldl_p(p) ldl_le_p(p) #define ldq_p(p) ldq_le_p(p) #define ldfl_p(p) ldfl_le_p(p) #define ldfq_p(p) ldfq_le_p(p) #define stw_p(p, v) stw_le_p(p, v) #define stl_p(p, v) stl_le_p(p, v) #define stq_p(p, v) stq_le_p(p, v) #define stfl_p(p, v) stfl_le_p(p, v) #define stfq_p(p, v) stfq_le_p(p, v) #endif /* MMU memory access macros */ #if defined(CONFIG_USER_ONLY) #include #include "exec/user/abitypes.h" /* On some host systems the guest address space is reserved on the host. * This allows the guest address space to be offset to a convenient location. */ #if defined(CONFIG_USE_GUEST_BASE) extern unsigned long guest_base; extern int have_guest_base; extern unsigned long reserved_va; #define GUEST_BASE guest_base #define RESERVED_VA reserved_va #else #define GUEST_BASE 0ul #define RESERVED_VA 0ul #endif /* All direct uses of g2h and h2g need to go away for usermode softmmu. */ #define g2h(x) ((void *)((unsigned long)(target_ulong)(x) + GUEST_BASE)) #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS #define h2g_valid(x) 1 #else #define h2g_valid(x) ({ \ unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \ (__guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) && \ (!RESERVED_VA || (__guest < RESERVED_VA)); \ }) #endif #define h2g(x) ({ \ unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \ /* Check if given address fits target address space */ \ assert(h2g_valid(x)); \ (abi_ulong)__ret; \ }) #define saddr(x) g2h(x) #define laddr(x) g2h(x) #else /* !CONFIG_USER_ONLY */ /* NOTE: we use double casts if pointers and target_ulong have different sizes */ #define saddr(x) (uint8_t *)(intptr_t)(x) #define laddr(x) (uint8_t *)(intptr_t)(x) #endif #define ldub_raw(p) ldub_p(laddr((p))) #define ldsb_raw(p) ldsb_p(laddr((p))) #define lduw_raw(p) lduw_p(laddr((p))) #define ldsw_raw(p) ldsw_p(laddr((p))) #define ldl_raw(p) ldl_p(laddr((p))) #define ldq_raw(p) ldq_p(laddr((p))) #define ldfl_raw(p) ldfl_p(laddr((p))) #define ldfq_raw(p) ldfq_p(laddr((p))) #define stb_raw(p, v) stb_p(saddr((p)), v) #define stw_raw(p, v) stw_p(saddr((p)), v) #define stl_raw(p, v) stl_p(saddr((p)), v) #define stq_raw(p, v) stq_p(saddr((p)), v) #define stfl_raw(p, v) stfl_p(saddr((p)), v) #define stfq_raw(p, v) stfq_p(saddr((p)), v) #if defined(CONFIG_USER_ONLY) /* if user mode, no other memory access functions */ #define ldub(p) ldub_raw(p) #define ldsb(p) ldsb_raw(p) #define lduw(p) lduw_raw(p) #define ldsw(p) ldsw_raw(p) #define ldl(p) ldl_raw(p) #define ldq(p) ldq_raw(p) #define ldfl(p) ldfl_raw(p) #define ldfq(p) ldfq_raw(p) #define stb(p, v) stb_raw(p, v) #define stw(p, v) stw_raw(p, v) #define stl(p, v) stl_raw(p, v) #define stq(p, v) stq_raw(p, v) #define stfl(p, v) stfl_raw(p, v) #define stfq(p, v) stfq_raw(p, v) #define cpu_ldub_code(env1, p) ldub_raw(p) #define cpu_ldsb_code(env1, p) ldsb_raw(p) #define cpu_lduw_code(env1, p) lduw_raw(p) #define cpu_ldsw_code(env1, p) ldsw_raw(p) #define cpu_ldl_code(env1, p) ldl_raw(p) #define cpu_ldq_code(env1, p) ldq_raw(p) #define cpu_ldub_data(env, addr) ldub_raw(addr) #define cpu_lduw_data(env, addr) lduw_raw(addr) #define cpu_ldsw_data(env, addr) ldsw_raw(addr) #define cpu_ldl_data(env, addr) ldl_raw(addr) #define cpu_ldq_data(env, addr) ldq_raw(addr) #define cpu_stb_data(env, addr, data) stb_raw(addr, data) #define cpu_stw_data(env, addr, data) stw_raw(addr, data) #define cpu_stl_data(env, addr, data) stl_raw(addr, data) #define cpu_stq_data(env, addr, data) stq_raw(addr, data) #define cpu_ldub_kernel(env, addr) ldub_raw(addr) #define cpu_lduw_kernel(env, addr) lduw_raw(addr) #define cpu_ldsw_kernel(env, addr) ldsw_raw(addr) #define cpu_ldl_kernel(env, addr) ldl_raw(addr) #define cpu_ldq_kernel(env, addr) ldq_raw(addr) #define cpu_stb_kernel(env, addr, data) stb_raw(addr, data) #define cpu_stw_kernel(env, addr, data) stw_raw(addr, data) #define cpu_stl_kernel(env, addr, data) stl_raw(addr, data) #define cpu_stq_kernel(env, addr, data) stq_raw(addr, data) #define ldub_kernel(p) ldub_raw(p) #define ldsb_kernel(p) ldsb_raw(p) #define lduw_kernel(p) lduw_raw(p) #define ldsw_kernel(p) ldsw_raw(p) #define ldl_kernel(p) ldl_raw(p) #define ldq_kernel(p) ldq_raw(p) #define ldfl_kernel(p) ldfl_raw(p) #define ldfq_kernel(p) ldfq_raw(p) #define stb_kernel(p, v) stb_raw(p, v) #define stw_kernel(p, v) stw_raw(p, v) #define stl_kernel(p, v) stl_raw(p, v) #define stq_kernel(p, v) stq_raw(p, v) #define stfl_kernel(p, v) stfl_raw(p, v) #define stfq_kernel(p, vt) stfq_raw(p, v) #define cpu_ldub_data(env, addr) ldub_raw(addr) #define cpu_lduw_data(env, addr) lduw_raw(addr) #define cpu_ldl_data(env, addr) ldl_raw(addr) #define cpu_stb_data(env, addr, data) stb_raw(addr, data) #define cpu_stw_data(env, addr, data) stw_raw(addr, data) #define cpu_stl_data(env, addr, data) stl_raw(addr, data) #endif /* defined(CONFIG_USER_ONLY) */ /* page related stuff */ #define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS) #define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1) #define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK) /* ??? These should be the larger of uintptr_t and target_ulong. */ extern uintptr_t qemu_real_host_page_size; extern uintptr_t qemu_host_page_size; extern uintptr_t qemu_host_page_mask; #define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask) /* same as PROT_xxx */ #define PAGE_READ 0x0001 #define PAGE_WRITE 0x0002 #define PAGE_EXEC 0x0004 #define PAGE_BITS (PAGE_READ | PAGE_WRITE | PAGE_EXEC) #define PAGE_VALID 0x0008 /* original state of the write flag (used when tracking self-modifying code */ #define PAGE_WRITE_ORG 0x0010 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY) /* FIXME: Code that sets/uses this is broken and needs to go away. */ #define PAGE_RESERVED 0x0020 #endif #if defined(CONFIG_USER_ONLY) void page_dump(FILE *f); typedef int (*walk_memory_regions_fn)(void *, abi_ulong, abi_ulong, unsigned long); int walk_memory_regions(void *, walk_memory_regions_fn); int page_get_flags(target_ulong address); void page_set_flags(target_ulong start, target_ulong end, int flags); int page_check_range(target_ulong start, target_ulong len, int flags); #endif CPUArchState *cpu_copy(CPUArchState *env); #define CPU_DUMP_CODE 0x00010000 #define CPU_DUMP_FPU 0x00020000 /* dump FPU register state, not just integer */ /* dump info about TCG QEMU's condition code optimization state */ #define CPU_DUMP_CCOP 0x00040000 void cpu_dump_state(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf, int flags); void cpu_dump_statistics(CPUArchState *env, FILE *f, fprintf_function cpu_fprintf, int flags); void QEMU_NORETURN cpu_abort(CPUArchState *env, const char *fmt, ...) GCC_FMT_ATTR(2, 3); extern CPUArchState *first_cpu; DECLARE_TLS(CPUArchState *,cpu_single_env); #define cpu_single_env tls_var(cpu_single_env) /* Flags for use in ENV->INTERRUPT_PENDING. The numbers assigned here are non-sequential in order to preserve binary compatibility with the vmstate dump. Bit 0 (0x0001) was previously used for CPU_INTERRUPT_EXIT, and is cleared when loading the vmstate dump. */ /* External hardware interrupt pending. This is typically used for interrupts from devices. */ #define CPU_INTERRUPT_HARD 0x0002 /* Exit the current TB. This is typically used when some system-level device makes some change to the memory mapping. E.g. the a20 line change. */ #define CPU_INTERRUPT_EXITTB 0x0004 /* Halt the CPU. */ #define CPU_INTERRUPT_HALT 0x0020 /* Debug event pending. */ #define CPU_INTERRUPT_DEBUG 0x0080 /* Several target-specific external hardware interrupts. Each target/cpu.h should define proper names based on these defines. */ #define CPU_INTERRUPT_TGT_EXT_0 0x0008 #define CPU_INTERRUPT_TGT_EXT_1 0x0010 #define CPU_INTERRUPT_TGT_EXT_2 0x0040 #define CPU_INTERRUPT_TGT_EXT_3 0x0200 #define CPU_INTERRUPT_TGT_EXT_4 0x1000 /* Several target-specific internal interrupts. These differ from the preceding target-specific interrupts in that they are intended to originate from within the cpu itself, typically in response to some instruction being executed. These, therefore, are not masked while single-stepping within the debugger. */ #define CPU_INTERRUPT_TGT_INT_0 0x0100 #define CPU_INTERRUPT_TGT_INT_1 0x0400 #define CPU_INTERRUPT_TGT_INT_2 0x0800 #define CPU_INTERRUPT_TGT_INT_3 0x2000 /* First unused bit: 0x4000. */ /* The set of all bits that should be masked when single-stepping. */ #define CPU_INTERRUPT_SSTEP_MASK \ (CPU_INTERRUPT_HARD \ | CPU_INTERRUPT_TGT_EXT_0 \ | CPU_INTERRUPT_TGT_EXT_1 \ | CPU_INTERRUPT_TGT_EXT_2 \ | CPU_INTERRUPT_TGT_EXT_3 \ | CPU_INTERRUPT_TGT_EXT_4) #ifndef CONFIG_USER_ONLY typedef void (*CPUInterruptHandler)(CPUArchState *, int); extern CPUInterruptHandler cpu_interrupt_handler; static inline void cpu_interrupt(CPUArchState *s, int mask) { cpu_interrupt_handler(s, mask); } #else /* USER_ONLY */ void cpu_interrupt(CPUArchState *env, int mask); #endif /* USER_ONLY */ void cpu_exit(CPUArchState *s); /* Breakpoint/watchpoint flags */ #define BP_MEM_READ 0x01 #define BP_MEM_WRITE 0x02 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) #define BP_STOP_BEFORE_ACCESS 0x04 #define BP_WATCHPOINT_HIT 0x08 #define BP_GDB 0x10 #define BP_CPU 0x20 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags, CPUBreakpoint **breakpoint); int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags); void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint); void cpu_breakpoint_remove_all(CPUArchState *env, int mask); int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len, int flags, CPUWatchpoint **watchpoint); int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len, int flags); void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint); void cpu_watchpoint_remove_all(CPUArchState *env, int mask); #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ void cpu_single_step(CPUArchState *env, int enabled); #if !defined(CONFIG_USER_ONLY) /* Return the physical page corresponding to a virtual one. Use it only for debugging because no protection checks are done. Return -1 if no page found. */ hwaddr cpu_get_phys_page_debug(CPUArchState *env, target_ulong addr); /* memory API */ extern int phys_ram_fd; extern ram_addr_t ram_size; /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */ #define RAM_PREALLOC_MASK (1 << 0) typedef struct RAMBlock { struct MemoryRegion *mr; uint8_t *host; ram_addr_t offset; ram_addr_t length; uint32_t flags; char idstr[256]; /* Reads can take either the iothread or the ramlist lock. * Writes must take both locks. */ QTAILQ_ENTRY(RAMBlock) next; #if defined(__linux__) && !defined(TARGET_S390X) int fd; #endif } RAMBlock; typedef struct RAMList { QemuMutex mutex; /* Protected by the iothread lock. */ uint8_t *phys_dirty; RAMBlock *mru_block; /* Protected by the ramlist lock. */ QTAILQ_HEAD(, RAMBlock) blocks; uint32_t version; } RAMList; extern RAMList ram_list; extern const char *mem_path; extern int mem_prealloc; /* Flags stored in the low bits of the TLB virtual address. These are defined so that fast path ram access is all zeros. */ /* Zero if TLB entry is valid. */ #define TLB_INVALID_MASK (1 << 3) /* Set if TLB entry references a clean RAM page. The iotlb entry will contain the page physical address. */ #define TLB_NOTDIRTY (1 << 4) /* Set if TLB entry is an IO callback. */ #define TLB_MMIO (1 << 5) void dump_exec_info(FILE *f, fprintf_function cpu_fprintf); ram_addr_t last_ram_offset(void); void qemu_mutex_lock_ramlist(void); void qemu_mutex_unlock_ramlist(void); #endif /* !CONFIG_USER_ONLY */ int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr, uint8_t *buf, int len, int is_write); #endif /* CPU_ALL_H */