/* * Virtual hardware watchdog. * * Copyright (C) 2009 Red Hat Inc. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . * * By Richard W.M. Jones (rjones@redhat.com). */ #include #include "qemu-common.h" #include "qemu-timer.h" #include "watchdog.h" #include "hw.h" #include "pc.h" #include "pci.h" /*#define I6300ESB_DEBUG 1*/ #ifdef I6300ESB_DEBUG #define i6300esb_debug(fs,...) \ fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__) #else #define i6300esb_debug(fs,...) #endif #ifndef PCI_DEVICE_ID_INTEL_ESB_9 #define PCI_DEVICE_ID_INTEL_ESB_9 0x25ab #endif /* PCI configuration registers */ #define ESB_CONFIG_REG 0x60 /* Config register */ #define ESB_LOCK_REG 0x68 /* WDT lock register */ /* Memory mapped registers (offset from base address) */ #define ESB_TIMER1_REG 0x00 /* Timer1 value after each reset */ #define ESB_TIMER2_REG 0x04 /* Timer2 value after each reset */ #define ESB_GINTSR_REG 0x08 /* General Interrupt Status Register */ #define ESB_RELOAD_REG 0x0c /* Reload register */ /* Lock register bits */ #define ESB_WDT_FUNC (0x01 << 2) /* Watchdog functionality */ #define ESB_WDT_ENABLE (0x01 << 1) /* Enable WDT */ #define ESB_WDT_LOCK (0x01 << 0) /* Lock (nowayout) */ /* Config register bits */ #define ESB_WDT_REBOOT (0x01 << 5) /* Enable reboot on timeout */ #define ESB_WDT_FREQ (0x01 << 2) /* Decrement frequency */ #define ESB_WDT_INTTYPE (0x11 << 0) /* Interrupt type on timer1 timeout */ /* Reload register bits */ #define ESB_WDT_RELOAD (0x01 << 8) /* prevent timeout */ /* Magic constants */ #define ESB_UNLOCK1 0x80 /* Step 1 to unlock reset registers */ #define ESB_UNLOCK2 0x86 /* Step 2 to unlock reset registers */ /* Device state. */ struct I6300State { PCIDevice dev; int reboot_enabled; /* "Reboot" on timer expiry. The real action * performed depends on the -watchdog-action * param passed on QEMU command line. */ int clock_scale; /* Clock scale. */ #define CLOCK_SCALE_1KHZ 0 #define CLOCK_SCALE_1MHZ 1 int int_type; /* Interrupt type generated. */ #define INT_TYPE_IRQ 0 /* APIC 1, INT 10 */ #define INT_TYPE_SMI 2 #define INT_TYPE_DISABLED 3 int free_run; /* If true, reload timer on expiry. */ int locked; /* If true, enabled field cannot be changed. */ int enabled; /* If true, watchdog is enabled. */ QEMUTimer *timer; /* The actual watchdog timer. */ uint32_t timer1_preload; /* Values preloaded into timer1, timer2. */ uint32_t timer2_preload; int stage; /* Stage (1 or 2). */ int unlock_state; /* Guest writes 0x80, 0x86 to unlock the * registers, and we transition through * states 0 -> 1 -> 2 when this happens. */ int previous_reboot_flag; /* If the watchdog caused the previous * reboot, this flag will be set. */ }; typedef struct I6300State I6300State; /* This function is called when the watchdog has either been enabled * (hence it starts counting down) or has been keep-alived. */ static void i6300esb_restart_timer(I6300State *d, int stage) { int64_t timeout; if (!d->enabled) return; d->stage = stage; if (d->stage <= 1) timeout = d->timer1_preload; else timeout = d->timer2_preload; if (d->clock_scale == CLOCK_SCALE_1KHZ) timeout <<= 15; else timeout <<= 5; /* Get the timeout in units of ticks_per_sec. */ timeout = ticks_per_sec * timeout / 33000000; i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout); qemu_mod_timer(d->timer, qemu_get_clock(vm_clock) + timeout); } /* This is called when the guest disables the watchdog. */ static void i6300esb_disable_timer(I6300State *d) { i6300esb_debug("timer disabled\n"); qemu_del_timer(d->timer); } static void i6300esb_reset(I6300State *d) { /* XXX We should probably reset other parts of the state here, * but we should also reset our state on general machine reset * too. For now just disable the timer so it doesn't fire * again after the reboot. */ i6300esb_disable_timer(d); } /* This function is called when the watchdog expires. Note that * the hardware has two timers, and so expiry happens in two stages. * If d->stage == 1 then we perform the first stage action (usually, * sending an interrupt) and then restart the timer again for the * second stage. If the second stage expires then the watchdog * really has run out. */ static void i6300esb_timer_expired(void *vp) { I6300State *d = (I6300State *) vp; i6300esb_debug("stage %d\n", d->stage); if (d->stage == 1) { /* What to do at the end of stage 1? */ switch (d->int_type) { case INT_TYPE_IRQ: fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n"); break; case INT_TYPE_SMI: fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n"); break; } /* Start the second stage. */ i6300esb_restart_timer(d, 2); } else { /* Second stage expired, reboot for real. */ if (d->reboot_enabled) { d->previous_reboot_flag = 1; watchdog_perform_action(); /* This reboots, exits, etc */ i6300esb_reset(d); } /* In "free running mode" we start stage 1 again. */ if (d->free_run) i6300esb_restart_timer(d, 1); } } static void i6300esb_config_write(PCIDevice *dev, uint32_t addr, uint32_t data, int len) { I6300State *d = container_of(dev, I6300State, dev); int old; i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len); if (addr == ESB_CONFIG_REG && len == 2) { d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0; d->clock_scale = (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ; d->int_type = (data & ESB_WDT_INTTYPE); } else if (addr == ESB_LOCK_REG && len == 1) { if (!d->locked) { d->locked = (data & ESB_WDT_LOCK) != 0; d->free_run = (data & ESB_WDT_FUNC) != 0; old = d->enabled; d->enabled = (data & ESB_WDT_ENABLE) != 0; if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */ i6300esb_restart_timer(d, 1); else if (!d->enabled) i6300esb_disable_timer(d); } } else { pci_default_write_config(dev, addr, data, len); } } static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len) { I6300State *d = container_of(dev, I6300State, dev); uint32_t data; i6300esb_debug ("addr = %x, len = %d\n", addr, len); if (addr == ESB_CONFIG_REG && len == 2) { data = (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) | (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) | d->int_type; return data; } else if (addr == ESB_LOCK_REG && len == 1) { data = (d->free_run ? ESB_WDT_FUNC : 0) | (d->locked ? ESB_WDT_LOCK : 0) | (d->enabled ? ESB_WDT_ENABLE : 0); return data; } else { return pci_default_read_config(dev, addr, len); } } static uint32_t i6300esb_mem_readb(void *vp, target_phys_addr_t addr) { i6300esb_debug ("addr = %x\n", (int) addr); return 0; } static uint32_t i6300esb_mem_readw(void *vp, target_phys_addr_t addr) { uint32_t data = 0; I6300State *d = (I6300State *) vp; i6300esb_debug("addr = %x\n", (int) addr); if (addr == 0xc) { /* The previous reboot flag is really bit 9, but there is * a bug in the Linux driver where it thinks it's bit 12. * Set both. */ data = d->previous_reboot_flag ? 0x1200 : 0; } return data; } static uint32_t i6300esb_mem_readl(void *vp, target_phys_addr_t addr) { i6300esb_debug("addr = %x\n", (int) addr); return 0; } static void i6300esb_mem_writeb(void *vp, target_phys_addr_t addr, uint32_t val) { I6300State *d = (I6300State *) vp; i6300esb_debug("addr = %x, val = %x\n", (int) addr, val); if (addr == 0xc && val == 0x80) d->unlock_state = 1; else if (addr == 0xc && val == 0x86 && d->unlock_state == 1) d->unlock_state = 2; } static void i6300esb_mem_writew(void *vp, target_phys_addr_t addr, uint32_t val) { I6300State *d = (I6300State *) vp; i6300esb_debug("addr = %x, val = %x\n", (int) addr, val); if (addr == 0xc && val == 0x80) d->unlock_state = 1; else if (addr == 0xc && val == 0x86 && d->unlock_state == 1) d->unlock_state = 2; else { if (d->unlock_state == 2) { if (addr == 0xc) { if ((val & 0x100) != 0) /* This is the "ping" from the userspace watchdog in * the guest ... */ i6300esb_restart_timer(d, 1); /* Setting bit 9 resets the previous reboot flag. * There's a bug in the Linux driver where it sets * bit 12 instead. */ if ((val & 0x200) != 0 || (val & 0x1000) != 0) { d->previous_reboot_flag = 0; } } d->unlock_state = 0; } } } static void i6300esb_mem_writel(void *vp, target_phys_addr_t addr, uint32_t val) { I6300State *d = (I6300State *) vp; i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val); if (addr == 0xc && val == 0x80) d->unlock_state = 1; else if (addr == 0xc && val == 0x86 && d->unlock_state == 1) d->unlock_state = 2; else { if (d->unlock_state == 2) { if (addr == 0) d->timer1_preload = val & 0xfffff; else if (addr == 4) d->timer2_preload = val & 0xfffff; d->unlock_state = 0; } } } static void i6300esb_map(PCIDevice *dev, int region_num, uint32_t addr, uint32_t size, int type) { static CPUReadMemoryFunc * const mem_read[3] = { i6300esb_mem_readb, i6300esb_mem_readw, i6300esb_mem_readl, }; static CPUWriteMemoryFunc * const mem_write[3] = { i6300esb_mem_writeb, i6300esb_mem_writew, i6300esb_mem_writel, }; I6300State *d = container_of(dev, I6300State, dev); int io_mem; i6300esb_debug("addr = %x, size = %x, type = %d\n", addr, size, type); io_mem = cpu_register_io_memory(mem_read, mem_write, d); cpu_register_physical_memory (addr, 0x10, io_mem); /* qemu_register_coalesced_mmio (addr, 0x10); ? */ } static void i6300esb_save(QEMUFile *f, void *vp) { I6300State *d = (I6300State *) vp; pci_device_save(&d->dev, f); qemu_put_be32(f, d->reboot_enabled); qemu_put_be32(f, d->clock_scale); qemu_put_be32(f, d->int_type); qemu_put_be32(f, d->free_run); qemu_put_be32(f, d->locked); qemu_put_be32(f, d->enabled); qemu_put_timer(f, d->timer); qemu_put_be32(f, d->timer1_preload); qemu_put_be32(f, d->timer2_preload); qemu_put_be32(f, d->stage); qemu_put_be32(f, d->unlock_state); qemu_put_be32(f, d->previous_reboot_flag); } static int i6300esb_load(QEMUFile *f, void *vp, int version) { I6300State *d = (I6300State *) vp; if (version != sizeof (I6300State)) return -EINVAL; pci_device_load(&d->dev, f); d->reboot_enabled = qemu_get_be32(f); d->clock_scale = qemu_get_be32(f); d->int_type = qemu_get_be32(f); d->free_run = qemu_get_be32(f); d->locked = qemu_get_be32(f); d->enabled = qemu_get_be32(f); qemu_get_timer(f, d->timer); d->timer1_preload = qemu_get_be32(f); d->timer2_preload = qemu_get_be32(f); d->stage = qemu_get_be32(f); d->unlock_state = qemu_get_be32(f); d->previous_reboot_flag = qemu_get_be32(f); return 0; } static void i6300esb_init(PCIDevice *dev) { I6300State *d = container_of(dev, I6300State, dev); uint8_t *pci_conf; d->reboot_enabled = 1; d->clock_scale = CLOCK_SCALE_1KHZ; d->int_type = INT_TYPE_IRQ; d->free_run = 0; d->locked = 0; d->enabled = 0; d->timer = qemu_new_timer(vm_clock, i6300esb_timer_expired, d); d->timer1_preload = 0xfffff; d->timer2_preload = 0xfffff; d->stage = 1; d->unlock_state = 0; d->previous_reboot_flag = 0; pci_conf = d->dev.config; pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_ESB_9); pci_config_set_class(pci_conf, PCI_CLASS_SYSTEM_OTHER); pci_conf[0x0e] = 0x00; pci_register_bar(&d->dev, 0, 0x10, PCI_ADDRESS_SPACE_MEM, i6300esb_map); register_savevm("i6300esb_wdt", -1, sizeof(I6300State), i6300esb_save, i6300esb_load, d); } static WatchdogTimerModel model = { .wdt_name = "i6300esb", .wdt_description = "Intel 6300ESB", }; static PCIDeviceInfo i6300esb_info = { .qdev.name = "i6300esb", .qdev.size = sizeof(I6300State), .config_read = i6300esb_config_read, .config_write = i6300esb_config_write, .init = i6300esb_init, }; static void i6300esb_register_devices(void) { watchdog_add_model(&model); pci_qdev_register(&i6300esb_info); } device_init(i6300esb_register_devices);