/* * Virtio Support * * Copyright IBM, Corp. 2007 * * Authors: * Anthony Liguori <aliguori@us.ibm.com> * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include <inttypes.h> #include "virtio.h" #include "sysemu.h" //#define VIRTIO_ZERO_COPY /* from Linux's linux/virtio_pci.h */ /* A 32-bit r/o bitmask of the features supported by the host */ #define VIRTIO_PCI_HOST_FEATURES 0 /* A 32-bit r/w bitmask of features activated by the guest */ #define VIRTIO_PCI_GUEST_FEATURES 4 /* A 32-bit r/w PFN for the currently selected queue */ #define VIRTIO_PCI_QUEUE_PFN 8 /* A 16-bit r/o queue size for the currently selected queue */ #define VIRTIO_PCI_QUEUE_NUM 12 /* A 16-bit r/w queue selector */ #define VIRTIO_PCI_QUEUE_SEL 14 /* A 16-bit r/w queue notifier */ #define VIRTIO_PCI_QUEUE_NOTIFY 16 /* An 8-bit device status register. */ #define VIRTIO_PCI_STATUS 18 /* An 8-bit r/o interrupt status register. Reading the value will return the * current contents of the ISR and will also clear it. This is effectively * a read-and-acknowledge. */ #define VIRTIO_PCI_ISR 19 #define VIRTIO_PCI_CONFIG 20 /* Virtio ABI version, if we increment this, we break the guest driver. */ #define VIRTIO_PCI_ABI_VERSION 0 /* How many bits to shift physical queue address written to QUEUE_PFN. * 12 is historical, and due to x86 page size. */ #define VIRTIO_PCI_QUEUE_ADDR_SHIFT 12 /* The alignment to use between consumer and producer parts of vring. * x86 pagesize again. */ #define VIRTIO_PCI_VRING_ALIGN 4096 /* QEMU doesn't strictly need write barriers since everything runs in * lock-step. We'll leave the calls to wmb() in though to make it obvious for * KVM or if kqemu gets SMP support. */ #define wmb() do { } while (0) typedef struct VRingDesc { uint64_t addr; uint32_t len; uint16_t flags; uint16_t next; } VRingDesc; typedef struct VRingAvail { uint16_t flags; uint16_t idx; uint16_t ring[0]; } VRingAvail; typedef struct VRingUsedElem { uint32_t id; uint32_t len; } VRingUsedElem; typedef struct VRingUsed { uint16_t flags; uint16_t idx; VRingUsedElem ring[0]; } VRingUsed; typedef struct VRing { unsigned int num; target_phys_addr_t desc; target_phys_addr_t avail; target_phys_addr_t used; } VRing; struct VirtQueue { VRing vring; uint32_t pfn; uint16_t last_avail_idx; int inuse; void (*handle_output)(VirtIODevice *vdev, VirtQueue *vq); }; #define VIRTIO_PCI_QUEUE_MAX 16 /* virt queue functions */ #ifdef VIRTIO_ZERO_COPY static void *virtio_map_gpa(target_phys_addr_t addr, size_t size) { ram_addr_t off; target_phys_addr_t addr1; off = cpu_get_physical_page_desc(addr); if ((off & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { fprintf(stderr, "virtio DMA to IO ram\n"); exit(1); } off = (off & TARGET_PAGE_MASK) | (addr & ~TARGET_PAGE_MASK); for (addr1 = addr + TARGET_PAGE_SIZE; addr1 < TARGET_PAGE_ALIGN(addr + size); addr1 += TARGET_PAGE_SIZE) { ram_addr_t off1; off1 = cpu_get_physical_page_desc(addr1); if ((off1 & ~TARGET_PAGE_MASK) != IO_MEM_RAM) { fprintf(stderr, "virtio DMA to IO ram\n"); exit(1); } off1 = (off1 & TARGET_PAGE_MASK) | (addr1 & ~TARGET_PAGE_MASK); if (off1 != (off + (addr1 - addr))) { fprintf(stderr, "discontigous virtio memory\n"); exit(1); } } return phys_ram_base + off; } #endif static void virtqueue_init(VirtQueue *vq, target_phys_addr_t pa) { vq->vring.desc = pa; vq->vring.avail = pa + vq->vring.num * sizeof(VRingDesc); vq->vring.used = vring_align(vq->vring.avail + offsetof(VRingAvail, ring[vq->vring.num]), VIRTIO_PCI_VRING_ALIGN); } static inline uint64_t vring_desc_addr(VirtQueue *vq, int i) { target_phys_addr_t pa; pa = vq->vring.desc + sizeof(VRingDesc) * i + offsetof(VRingDesc, addr); return ldq_phys(pa); } static inline uint32_t vring_desc_len(VirtQueue *vq, int i) { target_phys_addr_t pa; pa = vq->vring.desc + sizeof(VRingDesc) * i + offsetof(VRingDesc, len); return ldl_phys(pa); } static inline uint16_t vring_desc_flags(VirtQueue *vq, int i) { target_phys_addr_t pa; pa = vq->vring.desc + sizeof(VRingDesc) * i + offsetof(VRingDesc, flags); return lduw_phys(pa); } static inline uint16_t vring_desc_next(VirtQueue *vq, int i) { target_phys_addr_t pa; pa = vq->vring.desc + sizeof(VRingDesc) * i + offsetof(VRingDesc, next); return lduw_phys(pa); } static inline uint16_t vring_avail_flags(VirtQueue *vq) { target_phys_addr_t pa; pa = vq->vring.avail + offsetof(VRingAvail, flags); return lduw_phys(pa); } static inline uint16_t vring_avail_idx(VirtQueue *vq) { target_phys_addr_t pa; pa = vq->vring.avail + offsetof(VRingAvail, idx); return lduw_phys(pa); } static inline uint16_t vring_avail_ring(VirtQueue *vq, int i) { target_phys_addr_t pa; pa = vq->vring.avail + offsetof(VRingAvail, ring[i]); return lduw_phys(pa); } static inline void vring_used_ring_id(VirtQueue *vq, int i, uint32_t val) { target_phys_addr_t pa; pa = vq->vring.used + offsetof(VRingUsed, ring[i].id); stl_phys(pa, val); } static inline void vring_used_ring_len(VirtQueue *vq, int i, uint32_t val) { target_phys_addr_t pa; pa = vq->vring.used + offsetof(VRingUsed, ring[i].len); stl_phys(pa, val); } static uint16_t vring_used_idx(VirtQueue *vq) { target_phys_addr_t pa; pa = vq->vring.used + offsetof(VRingUsed, idx); return lduw_phys(pa); } static inline void vring_used_idx_increment(VirtQueue *vq, uint16_t val) { target_phys_addr_t pa; pa = vq->vring.used + offsetof(VRingUsed, idx); stw_phys(pa, vring_used_idx(vq) + val); } static inline void vring_used_flags_set_bit(VirtQueue *vq, int mask) { target_phys_addr_t pa; pa = vq->vring.used + offsetof(VRingUsed, flags); stw_phys(pa, lduw_phys(pa) | mask); } static inline void vring_used_flags_unset_bit(VirtQueue *vq, int mask) { target_phys_addr_t pa; pa = vq->vring.used + offsetof(VRingUsed, flags); stw_phys(pa, lduw_phys(pa) & ~mask); } void virtio_queue_set_notification(VirtQueue *vq, int enable) { if (enable) vring_used_flags_unset_bit(vq, VRING_USED_F_NO_NOTIFY); else vring_used_flags_set_bit(vq, VRING_USED_F_NO_NOTIFY); } int virtio_queue_ready(VirtQueue *vq) { return vq->vring.avail != 0; } int virtio_queue_empty(VirtQueue *vq) { return vring_avail_idx(vq) == vq->last_avail_idx; } void virtqueue_fill(VirtQueue *vq, const VirtQueueElement *elem, unsigned int len, unsigned int idx) { unsigned int offset; int i; #ifndef VIRTIO_ZERO_COPY for (i = 0; i < elem->out_num; i++) qemu_free(elem->out_sg[i].iov_base); #endif offset = 0; for (i = 0; i < elem->in_num; i++) { size_t size = MIN(len - offset, elem->in_sg[i].iov_len); #ifdef VIRTIO_ZERO_COPY if (size) { ram_addr_t addr = (uint8_t *)elem->in_sg[i].iov_base - phys_ram_base; ram_addr_t off; for (off = 0; off < size; off += TARGET_PAGE_SIZE) cpu_physical_memory_set_dirty(addr + off); } #else if (size) cpu_physical_memory_write(elem->in_addr[i], elem->in_sg[i].iov_base, size); qemu_free(elem->in_sg[i].iov_base); #endif offset += size; } idx = (idx + vring_used_idx(vq)) % vq->vring.num; /* Get a pointer to the next entry in the used ring. */ vring_used_ring_id(vq, idx, elem->index); vring_used_ring_len(vq, idx, len); } void virtqueue_flush(VirtQueue *vq, unsigned int count) { /* Make sure buffer is written before we update index. */ wmb(); vring_used_idx_increment(vq, count); vq->inuse -= count; } void virtqueue_push(VirtQueue *vq, const VirtQueueElement *elem, unsigned int len) { virtqueue_fill(vq, elem, len, 0); virtqueue_flush(vq, 1); } static int virtqueue_num_heads(VirtQueue *vq, unsigned int idx) { uint16_t num_heads = vring_avail_idx(vq) - idx; /* Check it isn't doing very strange things with descriptor numbers. */ if (num_heads > vq->vring.num) { fprintf(stderr, "Guest moved used index from %u to %u", idx, vring_avail_idx(vq)); exit(1); } return num_heads; } static unsigned int virtqueue_get_head(VirtQueue *vq, unsigned int idx) { unsigned int head; /* Grab the next descriptor number they're advertising, and increment * the index we've seen. */ head = vring_avail_ring(vq, idx % vq->vring.num); /* If their number is silly, that's a fatal mistake. */ if (head >= vq->vring.num) { fprintf(stderr, "Guest says index %u is available", head); exit(1); } return head; } static unsigned virtqueue_next_desc(VirtQueue *vq, unsigned int i) { unsigned int next; /* If this descriptor says it doesn't chain, we're done. */ if (!(vring_desc_flags(vq, i) & VRING_DESC_F_NEXT)) return vq->vring.num; /* Check they're not leading us off end of descriptors. */ next = vring_desc_next(vq, i); /* Make sure compiler knows to grab that: we don't want it changing! */ wmb(); if (next >= vq->vring.num) { fprintf(stderr, "Desc next is %u", next); exit(1); } return next; } int virtqueue_avail_bytes(VirtQueue *vq, int in_bytes, int out_bytes) { unsigned int idx; int num_bufs, in_total, out_total; idx = vq->last_avail_idx; num_bufs = in_total = out_total = 0; while (virtqueue_num_heads(vq, idx)) { int i; i = virtqueue_get_head(vq, idx++); do { /* If we've got too many, that implies a descriptor loop. */ if (++num_bufs > vq->vring.num) { fprintf(stderr, "Looped descriptor"); exit(1); } if (vring_desc_flags(vq, i) & VRING_DESC_F_WRITE) { if (in_bytes > 0 && (in_total += vring_desc_len(vq, i)) >= in_bytes) return 1; } else { if (out_bytes > 0 && (out_total += vring_desc_len(vq, i)) >= out_bytes) return 1; } } while ((i = virtqueue_next_desc(vq, i)) != vq->vring.num); } return 0; } int virtqueue_pop(VirtQueue *vq, VirtQueueElement *elem) { unsigned int i, head; if (!virtqueue_num_heads(vq, vq->last_avail_idx)) return 0; /* When we start there are none of either input nor output. */ elem->out_num = elem->in_num = 0; i = head = virtqueue_get_head(vq, vq->last_avail_idx++); do { struct iovec *sg; if (vring_desc_flags(vq, i) & VRING_DESC_F_WRITE) { elem->in_addr[elem->in_num] = vring_desc_addr(vq, i); sg = &elem->in_sg[elem->in_num++]; } else sg = &elem->out_sg[elem->out_num++]; /* Grab the first descriptor, and check it's OK. */ sg->iov_len = vring_desc_len(vq, i); #ifdef VIRTIO_ZERO_COPY sg->iov_base = virtio_map_gpa(vring_desc_addr(vq, i), sg->iov_len); #else /* cap individual scatter element size to prevent unbounded allocations of memory from the guest. Practically speaking, no virtio driver will ever pass more than a page in each element. We set the cap to be 2MB in case for some reason a large page makes it way into the sg list. When we implement a zero copy API, this limitation will disappear */ if (sg->iov_len > (2 << 20)) sg->iov_len = 2 << 20; sg->iov_base = qemu_malloc(sg->iov_len); if (sg->iov_base && !(vring_desc_flags(vq, i) & VRING_DESC_F_WRITE)) { cpu_physical_memory_read(vring_desc_addr(vq, i), sg->iov_base, sg->iov_len); } #endif if (sg->iov_base == NULL) { fprintf(stderr, "Invalid mapping\n"); exit(1); } /* If we've got too many, that implies a descriptor loop. */ if ((elem->in_num + elem->out_num) > vq->vring.num) { fprintf(stderr, "Looped descriptor"); exit(1); } } while ((i = virtqueue_next_desc(vq, i)) != vq->vring.num); elem->index = head; vq->inuse++; return elem->in_num + elem->out_num; } /* virtio device */ static VirtIODevice *to_virtio_device(PCIDevice *pci_dev) { return (VirtIODevice *)pci_dev; } static void virtio_update_irq(VirtIODevice *vdev) { qemu_set_irq(vdev->pci_dev.irq[0], vdev->isr & 1); } static void virtio_reset(void *opaque) { VirtIODevice *vdev = opaque; int i; if (vdev->reset) vdev->reset(vdev); vdev->features = 0; vdev->queue_sel = 0; vdev->status = 0; vdev->isr = 0; virtio_update_irq(vdev); for(i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) { vdev->vq[i].vring.desc = 0; vdev->vq[i].vring.avail = 0; vdev->vq[i].vring.used = 0; vdev->vq[i].last_avail_idx = 0; vdev->vq[i].pfn = 0; } } static void virtio_ioport_write(void *opaque, uint32_t addr, uint32_t val) { VirtIODevice *vdev = to_virtio_device(opaque); ram_addr_t pa; addr -= vdev->addr; switch (addr) { case VIRTIO_PCI_GUEST_FEATURES: if (vdev->set_features) vdev->set_features(vdev, val); vdev->features = val; break; case VIRTIO_PCI_QUEUE_PFN: pa = (ram_addr_t)val << VIRTIO_PCI_QUEUE_ADDR_SHIFT; vdev->vq[vdev->queue_sel].pfn = val; if (pa == 0) { virtio_reset(vdev); } else { virtqueue_init(&vdev->vq[vdev->queue_sel], pa); } break; case VIRTIO_PCI_QUEUE_SEL: if (val < VIRTIO_PCI_QUEUE_MAX) vdev->queue_sel = val; break; case VIRTIO_PCI_QUEUE_NOTIFY: if (val < VIRTIO_PCI_QUEUE_MAX && vdev->vq[val].vring.desc) vdev->vq[val].handle_output(vdev, &vdev->vq[val]); break; case VIRTIO_PCI_STATUS: vdev->status = val & 0xFF; if (vdev->status == 0) virtio_reset(vdev); break; } } static uint32_t virtio_ioport_read(void *opaque, uint32_t addr) { VirtIODevice *vdev = to_virtio_device(opaque); uint32_t ret = 0xFFFFFFFF; addr -= vdev->addr; switch (addr) { case VIRTIO_PCI_HOST_FEATURES: ret = vdev->get_features(vdev); ret |= (1 << VIRTIO_F_NOTIFY_ON_EMPTY); break; case VIRTIO_PCI_GUEST_FEATURES: ret = vdev->features; break; case VIRTIO_PCI_QUEUE_PFN: ret = vdev->vq[vdev->queue_sel].pfn; break; case VIRTIO_PCI_QUEUE_NUM: ret = vdev->vq[vdev->queue_sel].vring.num; break; case VIRTIO_PCI_QUEUE_SEL: ret = vdev->queue_sel; break; case VIRTIO_PCI_STATUS: ret = vdev->status; break; case VIRTIO_PCI_ISR: /* reading from the ISR also clears it. */ ret = vdev->isr; vdev->isr = 0; virtio_update_irq(vdev); break; default: break; } return ret; } static uint32_t virtio_config_readb(void *opaque, uint32_t addr) { VirtIODevice *vdev = opaque; uint8_t val; vdev->get_config(vdev, vdev->config); addr -= vdev->addr + VIRTIO_PCI_CONFIG; if (addr > (vdev->config_len - sizeof(val))) return (uint32_t)-1; memcpy(&val, vdev->config + addr, sizeof(val)); return val; } static uint32_t virtio_config_readw(void *opaque, uint32_t addr) { VirtIODevice *vdev = opaque; uint16_t val; vdev->get_config(vdev, vdev->config); addr -= vdev->addr + VIRTIO_PCI_CONFIG; if (addr > (vdev->config_len - sizeof(val))) return (uint32_t)-1; memcpy(&val, vdev->config + addr, sizeof(val)); return val; } static uint32_t virtio_config_readl(void *opaque, uint32_t addr) { VirtIODevice *vdev = opaque; uint32_t val; vdev->get_config(vdev, vdev->config); addr -= vdev->addr + VIRTIO_PCI_CONFIG; if (addr > (vdev->config_len - sizeof(val))) return (uint32_t)-1; memcpy(&val, vdev->config + addr, sizeof(val)); return val; } static void virtio_config_writeb(void *opaque, uint32_t addr, uint32_t data) { VirtIODevice *vdev = opaque; uint8_t val = data; addr -= vdev->addr + VIRTIO_PCI_CONFIG; if (addr > (vdev->config_len - sizeof(val))) return; memcpy(vdev->config + addr, &val, sizeof(val)); if (vdev->set_config) vdev->set_config(vdev, vdev->config); } static void virtio_config_writew(void *opaque, uint32_t addr, uint32_t data) { VirtIODevice *vdev = opaque; uint16_t val = data; addr -= vdev->addr + VIRTIO_PCI_CONFIG; if (addr > (vdev->config_len - sizeof(val))) return; memcpy(vdev->config + addr, &val, sizeof(val)); if (vdev->set_config) vdev->set_config(vdev, vdev->config); } static void virtio_config_writel(void *opaque, uint32_t addr, uint32_t data) { VirtIODevice *vdev = opaque; uint32_t val = data; addr -= vdev->addr + VIRTIO_PCI_CONFIG; if (addr > (vdev->config_len - sizeof(val))) return; memcpy(vdev->config + addr, &val, sizeof(val)); if (vdev->set_config) vdev->set_config(vdev, vdev->config); } static void virtio_map(PCIDevice *pci_dev, int region_num, uint32_t addr, uint32_t size, int type) { VirtIODevice *vdev = to_virtio_device(pci_dev); int i; vdev->addr = addr; for (i = 0; i < 3; i++) { register_ioport_write(addr, 20, 1 << i, virtio_ioport_write, vdev); register_ioport_read(addr, 20, 1 << i, virtio_ioport_read, vdev); } if (vdev->config_len) { register_ioport_write(addr + 20, vdev->config_len, 1, virtio_config_writeb, vdev); register_ioport_write(addr + 20, vdev->config_len, 2, virtio_config_writew, vdev); register_ioport_write(addr + 20, vdev->config_len, 4, virtio_config_writel, vdev); register_ioport_read(addr + 20, vdev->config_len, 1, virtio_config_readb, vdev); register_ioport_read(addr + 20, vdev->config_len, 2, virtio_config_readw, vdev); register_ioport_read(addr + 20, vdev->config_len, 4, virtio_config_readl, vdev); vdev->get_config(vdev, vdev->config); } } VirtQueue *virtio_add_queue(VirtIODevice *vdev, int queue_size, void (*handle_output)(VirtIODevice *, VirtQueue *)) { int i; for (i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) { if (vdev->vq[i].vring.num == 0) break; } if (i == VIRTIO_PCI_QUEUE_MAX || queue_size > VIRTQUEUE_MAX_SIZE) abort(); vdev->vq[i].vring.num = queue_size; vdev->vq[i].handle_output = handle_output; return &vdev->vq[i]; } void virtio_notify(VirtIODevice *vdev, VirtQueue *vq) { /* Always notify when queue is empty */ if ((vq->inuse || vring_avail_idx(vq) != vq->last_avail_idx) && (vring_avail_flags(vq) & VRING_AVAIL_F_NO_INTERRUPT)) return; vdev->isr |= 0x01; virtio_update_irq(vdev); } void virtio_notify_config(VirtIODevice *vdev) { vdev->isr |= 0x03; virtio_update_irq(vdev); } void virtio_save(VirtIODevice *vdev, QEMUFile *f) { int i; pci_device_save(&vdev->pci_dev, f); qemu_put_be32s(f, &vdev->addr); qemu_put_8s(f, &vdev->status); qemu_put_8s(f, &vdev->isr); qemu_put_be16s(f, &vdev->queue_sel); qemu_put_be32s(f, &vdev->features); qemu_put_be32(f, vdev->config_len); qemu_put_buffer(f, vdev->config, vdev->config_len); for (i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) { if (vdev->vq[i].vring.num == 0) break; } qemu_put_be32(f, i); for (i = 0; i < VIRTIO_PCI_QUEUE_MAX; i++) { if (vdev->vq[i].vring.num == 0) break; qemu_put_be32(f, vdev->vq[i].vring.num); qemu_put_be32s(f, &vdev->vq[i].pfn); qemu_put_be16s(f, &vdev->vq[i].last_avail_idx); } } void virtio_load(VirtIODevice *vdev, QEMUFile *f) { int num, i; pci_device_load(&vdev->pci_dev, f); qemu_get_be32s(f, &vdev->addr); qemu_get_8s(f, &vdev->status); qemu_get_8s(f, &vdev->isr); qemu_get_be16s(f, &vdev->queue_sel); qemu_get_be32s(f, &vdev->features); vdev->config_len = qemu_get_be32(f); qemu_get_buffer(f, vdev->config, vdev->config_len); num = qemu_get_be32(f); for (i = 0; i < num; i++) { vdev->vq[i].vring.num = qemu_get_be32(f); qemu_get_be32s(f, &vdev->vq[i].pfn); qemu_get_be16s(f, &vdev->vq[i].last_avail_idx); if (vdev->vq[i].pfn) { target_phys_addr_t pa; pa = (ram_addr_t)vdev->vq[i].pfn << VIRTIO_PCI_QUEUE_ADDR_SHIFT; virtqueue_init(&vdev->vq[i], pa); } } virtio_update_irq(vdev); } VirtIODevice *virtio_init_pci(PCIBus *bus, const char *name, uint16_t vendor, uint16_t device, uint16_t subvendor, uint16_t subdevice, uint8_t class_code, uint8_t subclass_code, uint8_t pif, size_t config_size, size_t struct_size) { VirtIODevice *vdev; PCIDevice *pci_dev; uint8_t *config; uint32_t size; pci_dev = pci_register_device(bus, name, struct_size, -1, NULL, NULL); if (!pci_dev) return NULL; vdev = to_virtio_device(pci_dev); vdev->status = 0; vdev->isr = 0; vdev->queue_sel = 0; vdev->vq = qemu_mallocz(sizeof(VirtQueue) * VIRTIO_PCI_QUEUE_MAX); config = pci_dev->config; config[0x00] = vendor & 0xFF; config[0x01] = (vendor >> 8) & 0xFF; config[0x02] = device & 0xFF; config[0x03] = (device >> 8) & 0xFF; config[0x08] = VIRTIO_PCI_ABI_VERSION; config[0x09] = pif; config[0x0a] = subclass_code; config[0x0b] = class_code; config[0x0e] = 0x00; config[0x2c] = subvendor & 0xFF; config[0x2d] = (subvendor >> 8) & 0xFF; config[0x2e] = subdevice & 0xFF; config[0x2f] = (subdevice >> 8) & 0xFF; config[0x3d] = 1; vdev->name = name; vdev->config_len = config_size; if (vdev->config_len) vdev->config = qemu_mallocz(config_size); else vdev->config = NULL; size = 20 + config_size; if (size & (size-1)) size = 1 << qemu_fls(size); pci_register_io_region(pci_dev, 0, size, PCI_ADDRESS_SPACE_IO, virtio_map); qemu_register_reset(virtio_reset, vdev); return vdev; }