/* * vfio based device assignment support * * Copyright Red Hat, Inc. 2012 * * Authors: * Alex Williamson <alex.williamson@redhat.com> * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Based on qemu-kvm device-assignment: * Adapted for KVM by Qumranet. * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) */ #include <dirent.h> #include <linux/vfio.h> #include <sys/ioctl.h> #include <sys/mman.h> #include <sys/stat.h> #include <sys/types.h> #include <unistd.h> #include "config.h" #include "exec/address-spaces.h" #include "exec/memory.h" #include "hw/pci/msi.h" #include "hw/pci/msix.h" #include "hw/pci/pci.h" #include "qemu-common.h" #include "qemu/error-report.h" #include "qemu/event_notifier.h" #include "qemu/queue.h" #include "qemu/range.h" #include "sysemu/kvm.h" #include "sysemu/sysemu.h" /* #define DEBUG_VFIO */ #ifdef DEBUG_VFIO #define DPRINTF(fmt, ...) \ do { fprintf(stderr, "vfio: " fmt, ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) \ do { } while (0) #endif /* Extra debugging, trap acceleration paths for more logging */ #define VFIO_ALLOW_MMAP 1 #define VFIO_ALLOW_KVM_INTX 1 struct VFIODevice; typedef struct VFIOQuirk { MemoryRegion mem; struct VFIODevice *vdev; QLIST_ENTRY(VFIOQuirk) next; uint32_t data; uint32_t data2; } VFIOQuirk; typedef struct VFIOBAR { off_t fd_offset; /* offset of BAR within device fd */ int fd; /* device fd, allows us to pass VFIOBAR as opaque data */ MemoryRegion mem; /* slow, read/write access */ MemoryRegion mmap_mem; /* direct mapped access */ void *mmap; size_t size; uint32_t flags; /* VFIO region flags (rd/wr/mmap) */ uint8_t nr; /* cache the BAR number for debug */ QLIST_HEAD(, VFIOQuirk) quirks; } VFIOBAR; typedef struct VFIOVGARegion { MemoryRegion mem; off_t offset; int nr; QLIST_HEAD(, VFIOQuirk) quirks; } VFIOVGARegion; typedef struct VFIOVGA { off_t fd_offset; int fd; VFIOVGARegion region[QEMU_PCI_VGA_NUM_REGIONS]; } VFIOVGA; typedef struct VFIOINTx { bool pending; /* interrupt pending */ bool kvm_accel; /* set when QEMU bypass through KVM enabled */ uint8_t pin; /* which pin to pull for qemu_set_irq */ EventNotifier interrupt; /* eventfd triggered on interrupt */ EventNotifier unmask; /* eventfd for unmask on QEMU bypass */ PCIINTxRoute route; /* routing info for QEMU bypass */ uint32_t mmap_timeout; /* delay to re-enable mmaps after interrupt */ QEMUTimer *mmap_timer; /* enable mmaps after periods w/o interrupts */ } VFIOINTx; typedef struct VFIOMSIVector { EventNotifier interrupt; /* eventfd triggered on interrupt */ struct VFIODevice *vdev; /* back pointer to device */ int virq; /* KVM irqchip route for QEMU bypass */ bool use; } VFIOMSIVector; enum { VFIO_INT_NONE = 0, VFIO_INT_INTx = 1, VFIO_INT_MSI = 2, VFIO_INT_MSIX = 3, }; struct VFIOGroup; typedef struct VFIOContainer { int fd; /* /dev/vfio/vfio, empowered by the attached groups */ struct { /* enable abstraction to support various iommu backends */ union { MemoryListener listener; /* Used by type1 iommu */ }; void (*release)(struct VFIOContainer *); } iommu_data; QLIST_HEAD(, VFIOGroup) group_list; QLIST_ENTRY(VFIOContainer) next; } VFIOContainer; /* Cache of MSI-X setup plus extra mmap and memory region for split BAR map */ typedef struct VFIOMSIXInfo { uint8_t table_bar; uint8_t pba_bar; uint16_t entries; uint32_t table_offset; uint32_t pba_offset; MemoryRegion mmap_mem; void *mmap; } VFIOMSIXInfo; typedef struct VFIODevice { PCIDevice pdev; int fd; VFIOINTx intx; unsigned int config_size; uint8_t *emulated_config_bits; /* QEMU emulated bits, little-endian */ off_t config_offset; /* Offset of config space region within device fd */ unsigned int rom_size; off_t rom_offset; /* Offset of ROM region within device fd */ int msi_cap_size; VFIOMSIVector *msi_vectors; VFIOMSIXInfo *msix; int nr_vectors; /* Number of MSI/MSIX vectors currently in use */ int interrupt; /* Current interrupt type */ VFIOBAR bars[PCI_NUM_REGIONS - 1]; /* No ROM */ VFIOVGA vga; /* 0xa0000, 0x3b0, 0x3c0 */ PCIHostDeviceAddress host; QLIST_ENTRY(VFIODevice) next; struct VFIOGroup *group; uint32_t features; #define VFIO_FEATURE_ENABLE_VGA_BIT 0 #define VFIO_FEATURE_ENABLE_VGA (1 << VFIO_FEATURE_ENABLE_VGA_BIT) int32_t bootindex; uint8_t pm_cap; bool reset_works; bool has_vga; } VFIODevice; typedef struct VFIOGroup { int fd; int groupid; VFIOContainer *container; QLIST_HEAD(, VFIODevice) device_list; QLIST_ENTRY(VFIOGroup) next; QLIST_ENTRY(VFIOGroup) container_next; } VFIOGroup; #define MSIX_CAP_LENGTH 12 static QLIST_HEAD(, VFIOContainer) container_list = QLIST_HEAD_INITIALIZER(container_list); static QLIST_HEAD(, VFIOGroup) group_list = QLIST_HEAD_INITIALIZER(group_list); static void vfio_disable_interrupts(VFIODevice *vdev); static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len); static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr, uint32_t val, int len); static void vfio_mmap_set_enabled(VFIODevice *vdev, bool enabled); /* * Common VFIO interrupt disable */ static void vfio_disable_irqindex(VFIODevice *vdev, int index) { struct vfio_irq_set irq_set = { .argsz = sizeof(irq_set), .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER, .index = index, .start = 0, .count = 0, }; ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); } /* * INTx */ static void vfio_unmask_intx(VFIODevice *vdev) { struct vfio_irq_set irq_set = { .argsz = sizeof(irq_set), .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK, .index = VFIO_PCI_INTX_IRQ_INDEX, .start = 0, .count = 1, }; ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); } #ifdef CONFIG_KVM /* Unused outside of CONFIG_KVM code */ static void vfio_mask_intx(VFIODevice *vdev) { struct vfio_irq_set irq_set = { .argsz = sizeof(irq_set), .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK, .index = VFIO_PCI_INTX_IRQ_INDEX, .start = 0, .count = 1, }; ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); } #endif /* * Disabling BAR mmaping can be slow, but toggling it around INTx can * also be a huge overhead. We try to get the best of both worlds by * waiting until an interrupt to disable mmaps (subsequent transitions * to the same state are effectively no overhead). If the interrupt has * been serviced and the time gap is long enough, we re-enable mmaps for * performance. This works well for things like graphics cards, which * may not use their interrupt at all and are penalized to an unusable * level by read/write BAR traps. Other devices, like NICs, have more * regular interrupts and see much better latency by staying in non-mmap * mode. We therefore set the default mmap_timeout such that a ping * is just enough to keep the mmap disabled. Users can experiment with * other options with the x-intx-mmap-timeout-ms parameter (a value of * zero disables the timer). */ static void vfio_intx_mmap_enable(void *opaque) { VFIODevice *vdev = opaque; if (vdev->intx.pending) { qemu_mod_timer(vdev->intx.mmap_timer, qemu_get_clock_ms(vm_clock) + vdev->intx.mmap_timeout); return; } vfio_mmap_set_enabled(vdev, true); } static void vfio_intx_interrupt(void *opaque) { VFIODevice *vdev = opaque; if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) { return; } DPRINTF("%s(%04x:%02x:%02x.%x) Pin %c\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, 'A' + vdev->intx.pin); vdev->intx.pending = true; qemu_set_irq(vdev->pdev.irq[vdev->intx.pin], 1); vfio_mmap_set_enabled(vdev, false); if (vdev->intx.mmap_timeout) { qemu_mod_timer(vdev->intx.mmap_timer, qemu_get_clock_ms(vm_clock) + vdev->intx.mmap_timeout); } } static void vfio_eoi(VFIODevice *vdev) { if (!vdev->intx.pending) { return; } DPRINTF("%s(%04x:%02x:%02x.%x) EOI\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); vdev->intx.pending = false; qemu_set_irq(vdev->pdev.irq[vdev->intx.pin], 0); vfio_unmask_intx(vdev); } static void vfio_enable_intx_kvm(VFIODevice *vdev) { #ifdef CONFIG_KVM struct kvm_irqfd irqfd = { .fd = event_notifier_get_fd(&vdev->intx.interrupt), .gsi = vdev->intx.route.irq, .flags = KVM_IRQFD_FLAG_RESAMPLE, }; struct vfio_irq_set *irq_set; int ret, argsz; int32_t *pfd; if (!VFIO_ALLOW_KVM_INTX || !kvm_irqfds_enabled() || vdev->intx.route.mode != PCI_INTX_ENABLED || !kvm_check_extension(kvm_state, KVM_CAP_IRQFD_RESAMPLE)) { return; } /* Get to a known interrupt state */ qemu_set_fd_handler(irqfd.fd, NULL, NULL, vdev); vfio_mask_intx(vdev); vdev->intx.pending = false; qemu_set_irq(vdev->pdev.irq[vdev->intx.pin], 0); /* Get an eventfd for resample/unmask */ if (event_notifier_init(&vdev->intx.unmask, 0)) { error_report("vfio: Error: event_notifier_init failed eoi"); goto fail; } /* KVM triggers it, VFIO listens for it */ irqfd.resamplefd = event_notifier_get_fd(&vdev->intx.unmask); if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) { error_report("vfio: Error: Failed to setup resample irqfd: %m"); goto fail_irqfd; } argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK; irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; irq_set->start = 0; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = irqfd.resamplefd; ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, irq_set); g_free(irq_set); if (ret) { error_report("vfio: Error: Failed to setup INTx unmask fd: %m"); goto fail_vfio; } /* Let'em rip */ vfio_unmask_intx(vdev); vdev->intx.kvm_accel = true; DPRINTF("%s(%04x:%02x:%02x.%x) KVM INTx accel enabled\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); return; fail_vfio: irqfd.flags = KVM_IRQFD_FLAG_DEASSIGN; kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd); fail_irqfd: event_notifier_cleanup(&vdev->intx.unmask); fail: qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev); vfio_unmask_intx(vdev); #endif } static void vfio_disable_intx_kvm(VFIODevice *vdev) { #ifdef CONFIG_KVM struct kvm_irqfd irqfd = { .fd = event_notifier_get_fd(&vdev->intx.interrupt), .gsi = vdev->intx.route.irq, .flags = KVM_IRQFD_FLAG_DEASSIGN, }; if (!vdev->intx.kvm_accel) { return; } /* * Get to a known state, hardware masked, QEMU ready to accept new * interrupts, QEMU IRQ de-asserted. */ vfio_mask_intx(vdev); vdev->intx.pending = false; qemu_set_irq(vdev->pdev.irq[vdev->intx.pin], 0); /* Tell KVM to stop listening for an INTx irqfd */ if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) { error_report("vfio: Error: Failed to disable INTx irqfd: %m"); } /* We only need to close the eventfd for VFIO to cleanup the kernel side */ event_notifier_cleanup(&vdev->intx.unmask); /* QEMU starts listening for interrupt events. */ qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev); vdev->intx.kvm_accel = false; /* If we've missed an event, let it re-fire through QEMU */ vfio_unmask_intx(vdev); DPRINTF("%s(%04x:%02x:%02x.%x) KVM INTx accel disabled\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); #endif } static void vfio_update_irq(PCIDevice *pdev) { VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev); PCIINTxRoute route; if (vdev->interrupt != VFIO_INT_INTx) { return; } route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin); if (!pci_intx_route_changed(&vdev->intx.route, &route)) { return; /* Nothing changed */ } DPRINTF("%s(%04x:%02x:%02x.%x) IRQ moved %d -> %d\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, vdev->intx.route.irq, route.irq); vfio_disable_intx_kvm(vdev); vdev->intx.route = route; if (route.mode != PCI_INTX_ENABLED) { return; } vfio_enable_intx_kvm(vdev); /* Re-enable the interrupt in cased we missed an EOI */ vfio_eoi(vdev); } static int vfio_enable_intx(VFIODevice *vdev) { uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1); int ret, argsz; struct vfio_irq_set *irq_set; int32_t *pfd; if (!pin) { return 0; } vfio_disable_interrupts(vdev); vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */ #ifdef CONFIG_KVM /* * Only conditional to avoid generating error messages on platforms * where we won't actually use the result anyway. */ if (kvm_irqfds_enabled() && kvm_check_extension(kvm_state, KVM_CAP_IRQFD_RESAMPLE)) { vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin); } #endif ret = event_notifier_init(&vdev->intx.interrupt, 0); if (ret) { error_report("vfio: Error: event_notifier_init failed"); return ret; } argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; irq_set->start = 0; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = event_notifier_get_fd(&vdev->intx.interrupt); qemu_set_fd_handler(*pfd, vfio_intx_interrupt, NULL, vdev); ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, irq_set); g_free(irq_set); if (ret) { error_report("vfio: Error: Failed to setup INTx fd: %m"); qemu_set_fd_handler(*pfd, NULL, NULL, vdev); event_notifier_cleanup(&vdev->intx.interrupt); return -errno; } vfio_enable_intx_kvm(vdev); vdev->interrupt = VFIO_INT_INTx; DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); return 0; } static void vfio_disable_intx(VFIODevice *vdev) { int fd; qemu_del_timer(vdev->intx.mmap_timer); vfio_disable_intx_kvm(vdev); vfio_disable_irqindex(vdev, VFIO_PCI_INTX_IRQ_INDEX); vdev->intx.pending = false; qemu_set_irq(vdev->pdev.irq[vdev->intx.pin], 0); vfio_mmap_set_enabled(vdev, true); fd = event_notifier_get_fd(&vdev->intx.interrupt); qemu_set_fd_handler(fd, NULL, NULL, vdev); event_notifier_cleanup(&vdev->intx.interrupt); vdev->interrupt = VFIO_INT_NONE; DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } /* * MSI/X */ static void vfio_msi_interrupt(void *opaque) { VFIOMSIVector *vector = opaque; VFIODevice *vdev = vector->vdev; int nr = vector - vdev->msi_vectors; if (!event_notifier_test_and_clear(&vector->interrupt)) { return; } DPRINTF("%s(%04x:%02x:%02x.%x) vector %d\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, nr); if (vdev->interrupt == VFIO_INT_MSIX) { msix_notify(&vdev->pdev, nr); } else if (vdev->interrupt == VFIO_INT_MSI) { msi_notify(&vdev->pdev, nr); } else { error_report("vfio: MSI interrupt receieved, but not enabled?"); } } static int vfio_enable_vectors(VFIODevice *vdev, bool msix) { struct vfio_irq_set *irq_set; int ret = 0, i, argsz; int32_t *fds; argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds)); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX; irq_set->start = 0; irq_set->count = vdev->nr_vectors; fds = (int32_t *)&irq_set->data; for (i = 0; i < vdev->nr_vectors; i++) { if (!vdev->msi_vectors[i].use) { fds[i] = -1; continue; } fds[i] = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt); } ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, irq_set); g_free(irq_set); return ret; } static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr, MSIMessage *msg, IOHandler *handler) { VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev); VFIOMSIVector *vector; int ret; DPRINTF("%s(%04x:%02x:%02x.%x) vector %d used\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, nr); vector = &vdev->msi_vectors[nr]; vector->vdev = vdev; vector->use = true; msix_vector_use(pdev, nr); if (event_notifier_init(&vector->interrupt, 0)) { error_report("vfio: Error: event_notifier_init failed"); } /* * Attempt to enable route through KVM irqchip, * default to userspace handling if unavailable. */ vector->virq = msg ? kvm_irqchip_add_msi_route(kvm_state, *msg) : -1; if (vector->virq < 0 || kvm_irqchip_add_irqfd_notifier(kvm_state, &vector->interrupt, vector->virq) < 0) { if (vector->virq >= 0) { kvm_irqchip_release_virq(kvm_state, vector->virq); vector->virq = -1; } qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), handler, NULL, vector); } /* * We don't want to have the host allocate all possible MSI vectors * for a device if they're not in use, so we shutdown and incrementally * increase them as needed. */ if (vdev->nr_vectors < nr + 1) { vfio_disable_irqindex(vdev, VFIO_PCI_MSIX_IRQ_INDEX); vdev->nr_vectors = nr + 1; ret = vfio_enable_vectors(vdev, true); if (ret) { error_report("vfio: failed to enable vectors, %d", ret); } } else { int argsz; struct vfio_irq_set *irq_set; int32_t *pfd; argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; irq_set->start = nr; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = event_notifier_get_fd(&vector->interrupt); ret = ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, irq_set); g_free(irq_set); if (ret) { error_report("vfio: failed to modify vector, %d", ret); } } return 0; } static int vfio_msix_vector_use(PCIDevice *pdev, unsigned int nr, MSIMessage msg) { return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt); } static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr) { VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev); VFIOMSIVector *vector = &vdev->msi_vectors[nr]; int argsz; struct vfio_irq_set *irq_set; int32_t *pfd; DPRINTF("%s(%04x:%02x:%02x.%x) vector %d released\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, nr); /* * XXX What's the right thing to do here? This turns off the interrupt * completely, but do we really just want to switch the interrupt to * bouncing through userspace and let msix.c drop it? Not sure. */ msix_vector_unuse(pdev, nr); argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; irq_set->start = nr; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = -1; ioctl(vdev->fd, VFIO_DEVICE_SET_IRQS, irq_set); g_free(irq_set); if (vector->virq < 0) { qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), NULL, NULL, NULL); } else { kvm_irqchip_remove_irqfd_notifier(kvm_state, &vector->interrupt, vector->virq); kvm_irqchip_release_virq(kvm_state, vector->virq); vector->virq = -1; } event_notifier_cleanup(&vector->interrupt); vector->use = false; } static void vfio_enable_msix(VFIODevice *vdev) { vfio_disable_interrupts(vdev); vdev->msi_vectors = g_malloc0(vdev->msix->entries * sizeof(VFIOMSIVector)); vdev->interrupt = VFIO_INT_MSIX; /* * Some communication channels between VF & PF or PF & fw rely on the * physical state of the device and expect that enabling MSI-X from the * guest enables the same on the host. When our guest is Linux, the * guest driver call to pci_enable_msix() sets the enabling bit in the * MSI-X capability, but leaves the vector table masked. We therefore * can't rely on a vector_use callback (from request_irq() in the guest) * to switch the physical device into MSI-X mode because that may come a * long time after pci_enable_msix(). This code enables vector 0 with * triggering to userspace, then immediately release the vector, leaving * the physical device with no vectors enabled, but MSI-X enabled, just * like the guest view. */ vfio_msix_vector_do_use(&vdev->pdev, 0, NULL, NULL); vfio_msix_vector_release(&vdev->pdev, 0); if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use, vfio_msix_vector_release, NULL)) { error_report("vfio: msix_set_vector_notifiers failed"); } DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } static void vfio_enable_msi(VFIODevice *vdev) { int ret, i; vfio_disable_interrupts(vdev); vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev); retry: vdev->msi_vectors = g_malloc0(vdev->nr_vectors * sizeof(VFIOMSIVector)); for (i = 0; i < vdev->nr_vectors; i++) { MSIMessage msg; VFIOMSIVector *vector = &vdev->msi_vectors[i]; vector->vdev = vdev; vector->use = true; if (event_notifier_init(&vector->interrupt, 0)) { error_report("vfio: Error: event_notifier_init failed"); } msg = msi_get_message(&vdev->pdev, i); /* * Attempt to enable route through KVM irqchip, * default to userspace handling if unavailable. */ vector->virq = kvm_irqchip_add_msi_route(kvm_state, msg); if (vector->virq < 0 || kvm_irqchip_add_irqfd_notifier(kvm_state, &vector->interrupt, vector->virq) < 0) { qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), vfio_msi_interrupt, NULL, vector); } } ret = vfio_enable_vectors(vdev, false); if (ret) { if (ret < 0) { error_report("vfio: Error: Failed to setup MSI fds: %m"); } else if (ret != vdev->nr_vectors) { error_report("vfio: Error: Failed to enable %d " "MSI vectors, retry with %d", vdev->nr_vectors, ret); } for (i = 0; i < vdev->nr_vectors; i++) { VFIOMSIVector *vector = &vdev->msi_vectors[i]; if (vector->virq >= 0) { kvm_irqchip_remove_irqfd_notifier(kvm_state, &vector->interrupt, vector->virq); kvm_irqchip_release_virq(kvm_state, vector->virq); vector->virq = -1; } else { qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), NULL, NULL, NULL); } event_notifier_cleanup(&vector->interrupt); } g_free(vdev->msi_vectors); if (ret > 0 && ret != vdev->nr_vectors) { vdev->nr_vectors = ret; goto retry; } vdev->nr_vectors = 0; return; } vdev->interrupt = VFIO_INT_MSI; DPRINTF("%s(%04x:%02x:%02x.%x) Enabled %d MSI vectors\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, vdev->nr_vectors); } static void vfio_disable_msi_common(VFIODevice *vdev) { g_free(vdev->msi_vectors); vdev->msi_vectors = NULL; vdev->nr_vectors = 0; vdev->interrupt = VFIO_INT_NONE; vfio_enable_intx(vdev); } static void vfio_disable_msix(VFIODevice *vdev) { msix_unset_vector_notifiers(&vdev->pdev); if (vdev->nr_vectors) { vfio_disable_irqindex(vdev, VFIO_PCI_MSIX_IRQ_INDEX); } vfio_disable_msi_common(vdev); DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } static void vfio_disable_msi(VFIODevice *vdev) { int i; vfio_disable_irqindex(vdev, VFIO_PCI_MSI_IRQ_INDEX); for (i = 0; i < vdev->nr_vectors; i++) { VFIOMSIVector *vector = &vdev->msi_vectors[i]; if (!vector->use) { continue; } if (vector->virq >= 0) { kvm_irqchip_remove_irqfd_notifier(kvm_state, &vector->interrupt, vector->virq); kvm_irqchip_release_virq(kvm_state, vector->virq); vector->virq = -1; } else { qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), NULL, NULL, NULL); } event_notifier_cleanup(&vector->interrupt); } vfio_disable_msi_common(vdev); DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } /* * IO Port/MMIO - Beware of the endians, VFIO is always little endian */ static void vfio_bar_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOBAR *bar = opaque; union { uint8_t byte; uint16_t word; uint32_t dword; uint64_t qword; } buf; switch (size) { case 1: buf.byte = data; break; case 2: buf.word = cpu_to_le16(data); break; case 4: buf.dword = cpu_to_le32(data); break; default: hw_error("vfio: unsupported write size, %d bytes\n", size); break; } if (pwrite(bar->fd, &buf, size, bar->fd_offset + addr) != size) { error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m", __func__, addr, data, size); } #ifdef DEBUG_VFIO { VFIODevice *vdev = container_of(bar, VFIODevice, bars[bar->nr]); DPRINTF("%s(%04x:%02x:%02x.%x:BAR%d+0x%"HWADDR_PRIx", 0x%"PRIx64 ", %d)\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, bar->nr, addr, data, size); } #endif /* * A read or write to a BAR always signals an INTx EOI. This will * do nothing if not pending (including not in INTx mode). We assume * that a BAR access is in response to an interrupt and that BAR * accesses will service the interrupt. Unfortunately, we don't know * which access will service the interrupt, so we're potentially * getting quite a few host interrupts per guest interrupt. */ vfio_eoi(container_of(bar, VFIODevice, bars[bar->nr])); } static uint64_t vfio_bar_read(void *opaque, hwaddr addr, unsigned size) { VFIOBAR *bar = opaque; union { uint8_t byte; uint16_t word; uint32_t dword; uint64_t qword; } buf; uint64_t data = 0; if (pread(bar->fd, &buf, size, bar->fd_offset + addr) != size) { error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m", __func__, addr, size); return (uint64_t)-1; } switch (size) { case 1: data = buf.byte; break; case 2: data = le16_to_cpu(buf.word); break; case 4: data = le32_to_cpu(buf.dword); break; default: hw_error("vfio: unsupported read size, %d bytes\n", size); break; } #ifdef DEBUG_VFIO { VFIODevice *vdev = container_of(bar, VFIODevice, bars[bar->nr]); DPRINTF("%s(%04x:%02x:%02x.%x:BAR%d+0x%"HWADDR_PRIx ", %d) = 0x%"PRIx64"\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, bar->nr, addr, size, data); } #endif /* Same as write above */ vfio_eoi(container_of(bar, VFIODevice, bars[bar->nr])); return data; } static const MemoryRegionOps vfio_bar_ops = { .read = vfio_bar_read, .write = vfio_bar_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void vfio_vga_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOVGARegion *region = opaque; VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); union { uint8_t byte; uint16_t word; uint32_t dword; uint64_t qword; } buf; off_t offset = vga->fd_offset + region->offset + addr; switch (size) { case 1: buf.byte = data; break; case 2: buf.word = cpu_to_le16(data); break; case 4: buf.dword = cpu_to_le32(data); break; default: hw_error("vfio: unsupported write size, %d bytes\n", size); break; } if (pwrite(vga->fd, &buf, size, offset) != size) { error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m", __func__, region->offset + addr, data, size); } DPRINTF("%s(0x%"HWADDR_PRIx", 0x%"PRIx64", %d)\n", __func__, region->offset + addr, data, size); } static uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size) { VFIOVGARegion *region = opaque; VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); union { uint8_t byte; uint16_t word; uint32_t dword; uint64_t qword; } buf; uint64_t data = 0; off_t offset = vga->fd_offset + region->offset + addr; if (pread(vga->fd, &buf, size, offset) != size) { error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m", __func__, region->offset + addr, size); return (uint64_t)-1; } switch (size) { case 1: data = buf.byte; break; case 2: data = le16_to_cpu(buf.word); break; case 4: data = le32_to_cpu(buf.dword); break; default: hw_error("vfio: unsupported read size, %d bytes\n", size); break; } DPRINTF("%s(0x%"HWADDR_PRIx", %d) = 0x%"PRIx64"\n", __func__, region->offset + addr, size, data); return data; } static const MemoryRegionOps vfio_vga_ops = { .read = vfio_vga_read, .write = vfio_vga_write, .endianness = DEVICE_LITTLE_ENDIAN, }; /* * Device specific quirks */ #define PCI_VENDOR_ID_ATI 0x1002 /* * Device 1002:68f9 (Advanced Micro Devices [AMD] nee ATI Cedar PRO [Radeon * HD 5450/6350]) reports the upper byte of the physical address of the * I/O port BAR4 through VGA register 0x3c3. The BAR is 256 bytes, so the * lower byte is known to be zero. Probing for this quirk reads 0xff from * port 0x3c3 on some devices so we store the physical address and replace * reads with the virtual address any time it matches. XXX Research when * to enable quirk. */ static uint64_t vfio_ati_3c3_quirk_read(void *opaque, hwaddr addr, unsigned size) { VFIOQuirk *quirk = opaque; VFIODevice *vdev = quirk->vdev; PCIDevice *pdev = &vdev->pdev; uint64_t data = vfio_vga_read(&vdev->vga.region[QEMU_PCI_VGA_IO_HI], addr + 0x3, size); if (data == quirk->data) { data = pci_get_byte(pdev->config + PCI_BASE_ADDRESS_4 + 1); DPRINTF("%s(0x3c3, 1) = 0x%"PRIx64"\n", __func__, data); } return data; } static const MemoryRegionOps vfio_ati_3c3_quirk = { .read = vfio_ati_3c3_quirk_read, .endianness = DEVICE_LITTLE_ENDIAN, }; static void vfio_vga_probe_ati_3c3_quirk(VFIODevice *vdev) { PCIDevice *pdev = &vdev->pdev; off_t physoffset = vdev->config_offset + PCI_BASE_ADDRESS_4; uint32_t physbar; VFIOQuirk *quirk; if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI || vdev->bars[4].size < 256) { return; } /* Get I/O port BAR physical address */ if (pread(vdev->fd, &physbar, 4, physoffset) != 4) { error_report("vfio: probe failed for ATI/AMD 0x3c3 quirk on device " "%04x:%02x:%02x.%x", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); return; } quirk = g_malloc0(sizeof(*quirk)); quirk->vdev = vdev; quirk->data = (physbar >> 8) & 0xff; memory_region_init_io(&quirk->mem, &vfio_ati_3c3_quirk, quirk, "vfio-ati-3c3-quirk", 1); memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, 3, &quirk->mem); QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks, quirk, next); DPRINTF("Enabled ATI/AMD quirk 0x3c3 for device %04x:%02x:%02x.%x\n", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } /* * Device 1002:68f9 (Advanced Micro Devices [AMD] nee ATI Cedar PRO [Radeon * HD 5450/6350]) reports the physical address of MMIO BAR0 through a * write/read operation on I/O port BAR4. When uint32_t 0x4010 is written * to offset 0x0, the subsequent read from offset 0x4 returns the contents * of BAR0. Test for this quirk on all ATI/AMD devices. XXX - Note that * 0x10 is the offset of BAR0 in config sapce, is this a window to all of * config space? */ static uint64_t vfio_ati_4010_quirk_read(void *opaque, hwaddr addr, unsigned size) { VFIOQuirk *quirk = opaque; VFIODevice *vdev = quirk->vdev; PCIDevice *pdev = &vdev->pdev; uint64_t data = vfio_bar_read(&vdev->bars[4], addr, size); if (addr == 4 && size == 4 && quirk->data) { data = pci_get_long(pdev->config + PCI_BASE_ADDRESS_0); DPRINTF("%s(BAR4+0x4) = 0x%"PRIx64"\n", __func__, data); } quirk->data = 0; return data; } static void vfio_ati_4010_quirk_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOQuirk *quirk = opaque; VFIODevice *vdev = quirk->vdev; vfio_bar_write(&vdev->bars[4], addr, data, size); quirk->data = (addr == 0 && size == 4 && data == 0x4010) ? 1 : 0; } static const MemoryRegionOps vfio_ati_4010_quirk = { .read = vfio_ati_4010_quirk_read, .write = vfio_ati_4010_quirk_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void vfio_probe_ati_4010_quirk(VFIODevice *vdev, int nr) { PCIDevice *pdev = &vdev->pdev; off_t physoffset = vdev->config_offset + PCI_BASE_ADDRESS_0; uint32_t physbar0; uint64_t data; VFIOQuirk *quirk; if (!vdev->has_vga || nr != 4 || !vdev->bars[0].size || pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { return; } /* Get I/O port BAR physical address */ if (pread(vdev->fd, &physbar0, 4, physoffset) != 4) { error_report("vfio: probe failed for ATI/AMD 0x4010 quirk on device " "%04x:%02x:%02x.%x", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); return; } /* Write 0x4010 to I/O port BAR offset 0 */ vfio_bar_write(&vdev->bars[4], 0, 0x4010, 4); /* Read back result */ data = vfio_bar_read(&vdev->bars[4], 4, 4); /* If the register matches the physical address of BAR0, we need a quirk */ if (data != physbar0) { return; } quirk = g_malloc0(sizeof(*quirk)); quirk->vdev = vdev; memory_region_init_io(&quirk->mem, &vfio_ati_4010_quirk, quirk, "vfio-ati-4010-quirk", 8); memory_region_add_subregion_overlap(&vdev->bars[nr].mem, 0, &quirk->mem, 1); QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); DPRINTF("Enabled ATI/AMD quirk 0x4010 for device %04x:%02x:%02x.%x\n", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } /* * Device 1002:5b63 (Advanced Micro Devices [AMD] nee ATI RV370 [Radeon X550]) * retrieves the upper half of the MMIO BAR0 physical address by writing * 0xf10 to I/O port BAR1 offset 0 and reading the result from offset 6. * XXX - 0x10 is the offset of BAR0 in PCI config space, this could provide * full access to config space. Config space is little endian, so the data * register probably starts at 0x4. */ static uint64_t vfio_ati_f10_quirk_read(void *opaque, hwaddr addr, unsigned size) { VFIOQuirk *quirk = opaque; VFIODevice *vdev = quirk->vdev; PCIDevice *pdev = &vdev->pdev; uint64_t data = vfio_bar_read(&vdev->bars[1], addr, size); if (addr == 6 && size == 2 && quirk->data) { data = pci_get_word(pdev->config + PCI_BASE_ADDRESS_0 + 2); DPRINTF("%s(BAR1+0x6) = 0x%"PRIx64"\n", __func__, data); } quirk->data = 0; return data; } static void vfio_ati_f10_quirk_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOQuirk *quirk = opaque; VFIODevice *vdev = quirk->vdev; vfio_bar_write(&vdev->bars[1], addr, data, size); quirk->data = (addr == 0 && size == 4 && data == 0xf10) ? 1 : 0; } static const MemoryRegionOps vfio_ati_f10_quirk = { .read = vfio_ati_f10_quirk_read, .write = vfio_ati_f10_quirk_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void vfio_probe_ati_f10_quirk(VFIODevice *vdev, int nr) { PCIDevice *pdev = &vdev->pdev; off_t physoffset = vdev->config_offset + PCI_BASE_ADDRESS_0; uint32_t physbar0; uint64_t data; VFIOQuirk *quirk; if (!vdev->has_vga || nr != 1 || !vdev->bars[0].size || pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) { return; } /* Get I/O port BAR physical address */ if (pread(vdev->fd, &physbar0, 4, physoffset) != 4) { error_report("vfio: probe failed for ATI/AMD 0xf10 quirk on device " "%04x:%02x:%02x.%x", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); return; } vfio_bar_write(&vdev->bars[1], 0, 0xf10, 4); data = vfio_bar_read(&vdev->bars[1], 0x6, 2); /* If the register matches the physical address of BAR0, we need a quirk */ if (data != (le32_to_cpu(physbar0) >> 16)) { return; } quirk = g_malloc0(sizeof(*quirk)); quirk->vdev = vdev; memory_region_init_io(&quirk->mem, &vfio_ati_f10_quirk, quirk, "vfio-ati-f10-quirk", 8); memory_region_add_subregion_overlap(&vdev->bars[nr].mem, 0, &quirk->mem, 1); QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); DPRINTF("Enabled ATI/AMD quirk 0xf10 for device %04x:%02x:%02x.%x\n", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } #define PCI_VENDOR_ID_NVIDIA 0x10de /* * Nvidia has several different methods to get to config space, the * nouveu project has several of these documented here: * https://github.com/pathscale/envytools/tree/master/hwdocs * * The first quirk is actually not documented in envytools and is found * on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an * NV46 chipset. The backdoor uses the legacy VGA I/O ports to access * the mirror of PCI config space found at BAR0 offset 0x1800. The access * sequence first writes 0x338 to I/O port 0x3d4. The target offset is * then written to 0x3d0. Finally 0x538 is written for a read and 0x738 * is written for a write to 0x3d4. The BAR0 offset is then accessible * through 0x3d0. This quirk doesn't seem to be necessary on newer cards * that use the I/O port BAR5 window but it doesn't hurt to leave it. */ enum { NV_3D0_NONE, NV_3D0_SELECT, NV_3D0_WINDOW, NV_3D0_READ, NV_3D0_WRITE, }; static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque, hwaddr addr, unsigned size) { VFIOQuirk *quirk = opaque; VFIODevice *vdev = quirk->vdev; PCIDevice *pdev = &vdev->pdev; uint64_t data = vfio_vga_read(&vdev->vga.region[QEMU_PCI_VGA_IO_HI], addr + 0x10, size); if (quirk->data == NV_3D0_READ && addr == 0) { data = vfio_pci_read_config(pdev, quirk->data2, size); DPRINTF("%s(0x3d0, %d) = 0x%"PRIx64"\n", __func__, size, data); } quirk->data = NV_3D0_NONE; return data; } static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOQuirk *quirk = opaque; VFIODevice *vdev = quirk->vdev; PCIDevice *pdev = &vdev->pdev; switch (quirk->data) { case NV_3D0_NONE: if (addr == 4 && data == 0x338) { quirk->data = NV_3D0_SELECT; } break; case NV_3D0_SELECT: quirk->data = NV_3D0_NONE; if (addr == 0 && (data & ~0xff) == 0x1800) { quirk->data = NV_3D0_WINDOW; quirk->data2 = data & 0xff; } break; case NV_3D0_WINDOW: quirk->data = NV_3D0_NONE; if (addr == 4) { if (data == 0x538) { quirk->data = NV_3D0_READ; } else if (data == 0x738) { quirk->data = NV_3D0_WRITE; } } break; case NV_3D0_WRITE: quirk->data = NV_3D0_NONE; if (addr == 0) { vfio_pci_write_config(pdev, quirk->data2, data, size); DPRINTF("%s(0x3d0, 0x%"PRIx64", %d)\n", __func__, data, size); return; } break; default: quirk->data = NV_3D0_NONE; } vfio_vga_write(&vdev->vga.region[QEMU_PCI_VGA_IO_HI], addr + 0x10, data, size); } static const MemoryRegionOps vfio_nvidia_3d0_quirk = { .read = vfio_nvidia_3d0_quirk_read, .write = vfio_nvidia_3d0_quirk_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void vfio_vga_probe_nvidia_3d0_quirk(VFIODevice *vdev) { PCIDevice *pdev = &vdev->pdev; VFIOQuirk *quirk; if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA || !vdev->bars[1].size) { return; } quirk = g_malloc0(sizeof(*quirk)); quirk->vdev = vdev; memory_region_init_io(&quirk->mem, &vfio_nvidia_3d0_quirk, quirk, "vfio-nvidia-3d0-quirk", 6); memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, 0x10, &quirk->mem); QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks, quirk, next); DPRINTF("Enabled NVIDIA VGA 0x3d0 quirk for device %04x:%02x:%02x.%x\n", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } /* * The second quirk is documented in envytools. The I/O port BAR5 is just * a set of address/data ports to the MMIO BARs. The BAR we care about is * again BAR0. This backdoor is apparently a bit newer than the one above * so we need to not only trap 256 bytes @0x1800, but all of PCI config * space, including extended space is available at the 4k @0x88000. */ enum { NV_BAR5_ADDRESS = 0x1, NV_BAR5_ENABLE = 0x2, NV_BAR5_MASTER = 0x4, NV_BAR5_VALID = 0x7, }; static uint64_t vfio_nvidia_bar5_window_quirk_read(void *opaque, hwaddr addr, unsigned size) { VFIOQuirk *quirk = opaque; VFIODevice *vdev = quirk->vdev; uint64_t data = vfio_bar_read(&vdev->bars[5], addr, size); if (addr == 0xc && quirk->data == NV_BAR5_VALID) { data = vfio_pci_read_config(&vdev->pdev, quirk->data2, size); DPRINTF("%s(%04x:%02x:%02x.%x:BAR5+0x%"HWADDR_PRIx", %d) = 0x%" PRIx64"\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, addr, size, data); } return data; } static void vfio_nvidia_bar5_window_quirk_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOQuirk *quirk = opaque; VFIODevice *vdev = quirk->vdev; /* * Use quirk->data to track enables and quirk->data2 for the offset */ switch (addr) { case 0x0: if (data & 0x1) { quirk->data |= NV_BAR5_MASTER; } else { quirk->data &= ~NV_BAR5_MASTER; } break; case 0x4: if (data & 0x1) { quirk->data |= NV_BAR5_ENABLE; } else { quirk->data &= ~NV_BAR5_ENABLE; } break; case 0x8: if (quirk->data & NV_BAR5_MASTER) { if ((data & ~0xfff) == 0x88000) { quirk->data |= NV_BAR5_ADDRESS; quirk->data2 = data & 0xfff; } else if ((data & ~0xff) == 0x1800) { quirk->data |= NV_BAR5_ADDRESS; quirk->data2 = data & 0xff; } else { quirk->data &= ~NV_BAR5_ADDRESS; } } break; case 0xc: if (quirk->data == NV_BAR5_VALID) { vfio_pci_write_config(&vdev->pdev, quirk->data2, data, size); DPRINTF("%s(%04x:%02x:%02x.%x:BAR5+0x%"HWADDR_PRIx", 0x%" PRIx64", %d)\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, addr, data, size); return; } } vfio_bar_write(&vdev->bars[5], addr, data, size); } static const MemoryRegionOps vfio_nvidia_bar5_window_quirk = { .read = vfio_nvidia_bar5_window_quirk_read, .write = vfio_nvidia_bar5_window_quirk_write, .valid.min_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; static void vfio_probe_nvidia_bar5_window_quirk(VFIODevice *vdev, int nr) { PCIDevice *pdev = &vdev->pdev; VFIOQuirk *quirk; if (!vdev->has_vga || nr != 5 || pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) { return; } quirk = g_malloc0(sizeof(*quirk)); quirk->vdev = vdev; memory_region_init_io(&quirk->mem, &vfio_nvidia_bar5_window_quirk, quirk, "vfio-nvidia-bar5-window-quirk", 16); memory_region_add_subregion_overlap(&vdev->bars[nr].mem, 0, &quirk->mem, 1); QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); DPRINTF("Enabled NVIDIA BAR5 window quirk for device %04x:%02x:%02x.%x\n", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } /* * Finally, BAR0 itself. We want to redirect any accesses to either * 0x1800 or 0x88000 through the PCI config space access functions. * * NB - quirk at a page granularity or else they don't seem to work when * BARs are mmap'd * * Here's offset 0x88000... */ static uint64_t vfio_nvidia_bar0_88000_quirk_read(void *opaque, hwaddr addr, unsigned size) { VFIOQuirk *quirk = opaque; VFIODevice *vdev = quirk->vdev; hwaddr base = 0x88000 & TARGET_PAGE_MASK; hwaddr offset = 0x88000 & ~TARGET_PAGE_MASK; uint64_t data = vfio_bar_read(&vdev->bars[0], addr + base, size); if (ranges_overlap(addr, size, offset, PCI_CONFIG_SPACE_SIZE)) { data = vfio_pci_read_config(&vdev->pdev, addr - offset, size); DPRINTF("%s(%04x:%02x:%02x.%x:BAR0+0x%"HWADDR_PRIx", %d) = 0x%" PRIx64"\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, addr + base, size, data); } return data; } static void vfio_nvidia_bar0_88000_quirk_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOQuirk *quirk = opaque; VFIODevice *vdev = quirk->vdev; hwaddr base = 0x88000 & TARGET_PAGE_MASK; hwaddr offset = 0x88000 & ~TARGET_PAGE_MASK; if (ranges_overlap(addr, size, offset, PCI_CONFIG_SPACE_SIZE)) { vfio_pci_write_config(&vdev->pdev, addr - offset, data, size); DPRINTF("%s(%04x:%02x:%02x.%x:BAR0+0x%"HWADDR_PRIx", 0x%" PRIx64", %d)\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, addr + base, data, size); } else { vfio_bar_write(&vdev->bars[0], addr + base, data, size); } } static const MemoryRegionOps vfio_nvidia_bar0_88000_quirk = { .read = vfio_nvidia_bar0_88000_quirk_read, .write = vfio_nvidia_bar0_88000_quirk_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void vfio_probe_nvidia_bar0_88000_quirk(VFIODevice *vdev, int nr) { PCIDevice *pdev = &vdev->pdev; VFIOQuirk *quirk; if (!vdev->has_vga || nr != 0 || pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) { return; } quirk = g_malloc0(sizeof(*quirk)); quirk->vdev = vdev; memory_region_init_io(&quirk->mem, &vfio_nvidia_bar0_88000_quirk, quirk, "vfio-nvidia-bar0-88000-quirk", TARGET_PAGE_ALIGN(PCIE_CONFIG_SPACE_SIZE)); memory_region_add_subregion_overlap(&vdev->bars[nr].mem, 0x88000 & TARGET_PAGE_MASK, &quirk->mem, 1); QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); DPRINTF("Enabled NVIDIA BAR0 0x88000 quirk for device %04x:%02x:%02x.%x\n", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } /* * And here's the same for BAR0 offset 0x1800... */ static uint64_t vfio_nvidia_bar0_1800_quirk_read(void *opaque, hwaddr addr, unsigned size) { VFIOQuirk *quirk = opaque; VFIODevice *vdev = quirk->vdev; hwaddr base = 0x1800 & TARGET_PAGE_MASK; hwaddr offset = 0x1800 & ~TARGET_PAGE_MASK; uint64_t data = vfio_bar_read(&vdev->bars[0], addr + base, size); if (ranges_overlap(addr, size, offset, PCI_CONFIG_SPACE_SIZE)) { data = vfio_pci_read_config(&vdev->pdev, addr - offset, size); DPRINTF("%s(%04x:%02x:%02x.%x:BAR0+0x%"HWADDR_PRIx", %d) = 0x%" PRIx64"\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, addr + base, size, data); } return data; } static void vfio_nvidia_bar0_1800_quirk_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOQuirk *quirk = opaque; VFIODevice *vdev = quirk->vdev; hwaddr base = 0x1800 & TARGET_PAGE_MASK; hwaddr offset = 0x1800 & ~TARGET_PAGE_MASK; if (ranges_overlap(addr, size, offset, PCI_CONFIG_SPACE_SIZE)) { vfio_pci_write_config(&vdev->pdev, addr - offset, data, size); DPRINTF("%s(%04x:%02x:%02x.%x:BAR0+0x%"HWADDR_PRIx", 0x%" PRIx64", %d)\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, addr + base, data, size); } else { vfio_bar_write(&vdev->bars[0], addr + base, data, size); } } static const MemoryRegionOps vfio_nvidia_bar0_1800_quirk = { .read = vfio_nvidia_bar0_1800_quirk_read, .write = vfio_nvidia_bar0_1800_quirk_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void vfio_probe_nvidia_bar0_1800_quirk(VFIODevice *vdev, int nr) { PCIDevice *pdev = &vdev->pdev; VFIOQuirk *quirk; if (!vdev->has_vga || nr != 0 || pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) { return; } /* Log the chipset ID */ DPRINTF("Nvidia NV%02x\n", (unsigned int)(vfio_bar_read(&vdev->bars[0], 0, 4) >> 20) & 0xff); quirk = g_malloc0(sizeof(*quirk)); quirk->vdev = vdev; memory_region_init_io(&quirk->mem, &vfio_nvidia_bar0_1800_quirk, quirk, "vfio-nvidia-bar0-1800-quirk", TARGET_PAGE_ALIGN(PCI_CONFIG_SPACE_SIZE)); memory_region_add_subregion_overlap(&vdev->bars[nr].mem, 0x1800 & TARGET_PAGE_MASK, &quirk->mem, 1); QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); DPRINTF("Enabled NVIDIA BAR0 0x1800 quirk for device %04x:%02x:%02x.%x\n", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } /* * TODO - Some Nvidia devices provide config access to their companion HDA * device and even to their parent bridge via these config space mirrors. * Add quirks for those regions. */ /* * Common quirk probe entry points. */ static void vfio_vga_quirk_setup(VFIODevice *vdev) { vfio_vga_probe_ati_3c3_quirk(vdev); vfio_vga_probe_nvidia_3d0_quirk(vdev); } static void vfio_vga_quirk_teardown(VFIODevice *vdev) { int i; for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) { while (!QLIST_EMPTY(&vdev->vga.region[i].quirks)) { VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga.region[i].quirks); memory_region_del_subregion(&vdev->vga.region[i].mem, &quirk->mem); QLIST_REMOVE(quirk, next); g_free(quirk); } } } static void vfio_bar_quirk_setup(VFIODevice *vdev, int nr) { vfio_probe_ati_4010_quirk(vdev, nr); vfio_probe_ati_f10_quirk(vdev, nr); vfio_probe_nvidia_bar5_window_quirk(vdev, nr); vfio_probe_nvidia_bar0_88000_quirk(vdev, nr); vfio_probe_nvidia_bar0_1800_quirk(vdev, nr); } static void vfio_bar_quirk_teardown(VFIODevice *vdev, int nr) { VFIOBAR *bar = &vdev->bars[nr]; while (!QLIST_EMPTY(&bar->quirks)) { VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks); memory_region_del_subregion(&bar->mem, &quirk->mem); QLIST_REMOVE(quirk, next); g_free(quirk); } } /* * PCI config space */ static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len) { VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev); uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val; memcpy(&emu_bits, vdev->emulated_config_bits + addr, len); emu_bits = le32_to_cpu(emu_bits); if (emu_bits) { emu_val = pci_default_read_config(pdev, addr, len); } if (~emu_bits & (0xffffffffU >> (32 - len * 8))) { ssize_t ret; ret = pread(vdev->fd, &phys_val, len, vdev->config_offset + addr); if (ret != len) { error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x) failed: %m", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, addr, len); return -errno; } phys_val = le32_to_cpu(phys_val); } val = (emu_val & emu_bits) | (phys_val & ~emu_bits); DPRINTF("%s(%04x:%02x:%02x.%x, @0x%x, len=0x%x) %x\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, addr, len, val); return val; } static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr, uint32_t val, int len) { VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev); uint32_t val_le = cpu_to_le32(val); DPRINTF("%s(%04x:%02x:%02x.%x, @0x%x, 0x%x, len=0x%x)\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, addr, val, len); /* Write everything to VFIO, let it filter out what we can't write */ if (pwrite(vdev->fd, &val_le, len, vdev->config_offset + addr) != len) { error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x, 0x%x) failed: %m", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, addr, val, len); } /* MSI/MSI-X Enabling/Disabling */ if (pdev->cap_present & QEMU_PCI_CAP_MSI && ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) { int is_enabled, was_enabled = msi_enabled(pdev); pci_default_write_config(pdev, addr, val, len); is_enabled = msi_enabled(pdev); if (!was_enabled && is_enabled) { vfio_enable_msi(vdev); } else if (was_enabled && !is_enabled) { vfio_disable_msi(vdev); } } else if (pdev->cap_present & QEMU_PCI_CAP_MSIX && ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) { int is_enabled, was_enabled = msix_enabled(pdev); pci_default_write_config(pdev, addr, val, len); is_enabled = msix_enabled(pdev); if (!was_enabled && is_enabled) { vfio_enable_msix(vdev); } else if (was_enabled && !is_enabled) { vfio_disable_msix(vdev); } } else { /* Write everything to QEMU to keep emulated bits correct */ pci_default_write_config(pdev, addr, val, len); } } /* * DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86 */ static int vfio_dma_unmap(VFIOContainer *container, hwaddr iova, ram_addr_t size) { struct vfio_iommu_type1_dma_unmap unmap = { .argsz = sizeof(unmap), .flags = 0, .iova = iova, .size = size, }; if (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) { DPRINTF("VFIO_UNMAP_DMA: %d\n", -errno); return -errno; } return 0; } static int vfio_dma_map(VFIOContainer *container, hwaddr iova, ram_addr_t size, void *vaddr, bool readonly) { struct vfio_iommu_type1_dma_map map = { .argsz = sizeof(map), .flags = VFIO_DMA_MAP_FLAG_READ, .vaddr = (__u64)(uintptr_t)vaddr, .iova = iova, .size = size, }; if (!readonly) { map.flags |= VFIO_DMA_MAP_FLAG_WRITE; } /* * Try the mapping, if it fails with EBUSY, unmap the region and try * again. This shouldn't be necessary, but we sometimes see it in * the the VGA ROM space. */ if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 || (errno == EBUSY && vfio_dma_unmap(container, iova, size) == 0 && ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) { return 0; } DPRINTF("VFIO_MAP_DMA: %d\n", -errno); return -errno; } static bool vfio_listener_skipped_section(MemoryRegionSection *section) { return !memory_region_is_ram(section->mr); } static void vfio_listener_region_add(MemoryListener *listener, MemoryRegionSection *section) { VFIOContainer *container = container_of(listener, VFIOContainer, iommu_data.listener); hwaddr iova, end; void *vaddr; int ret; if (vfio_listener_skipped_section(section)) { DPRINTF("SKIPPING region_add %"HWADDR_PRIx" - %"PRIx64"\n", section->offset_within_address_space, section->offset_within_address_space + section->size - 1); return; } if (unlikely((section->offset_within_address_space & ~TARGET_PAGE_MASK) != (section->offset_within_region & ~TARGET_PAGE_MASK))) { error_report("%s received unaligned region", __func__); return; } iova = TARGET_PAGE_ALIGN(section->offset_within_address_space); end = (section->offset_within_address_space + section->size) & TARGET_PAGE_MASK; if (iova >= end) { return; } vaddr = memory_region_get_ram_ptr(section->mr) + section->offset_within_region + (iova - section->offset_within_address_space); DPRINTF("region_add %"HWADDR_PRIx" - %"HWADDR_PRIx" [%p]\n", iova, end - 1, vaddr); ret = vfio_dma_map(container, iova, end - iova, vaddr, section->readonly); if (ret) { error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", " "0x%"HWADDR_PRIx", %p) = %d (%m)", container, iova, end - iova, vaddr, ret); } } static void vfio_listener_region_del(MemoryListener *listener, MemoryRegionSection *section) { VFIOContainer *container = container_of(listener, VFIOContainer, iommu_data.listener); hwaddr iova, end; int ret; if (vfio_listener_skipped_section(section)) { DPRINTF("SKIPPING region_del %"HWADDR_PRIx" - %"PRIx64"\n", section->offset_within_address_space, section->offset_within_address_space + section->size - 1); return; } if (unlikely((section->offset_within_address_space & ~TARGET_PAGE_MASK) != (section->offset_within_region & ~TARGET_PAGE_MASK))) { error_report("%s received unaligned region", __func__); return; } iova = TARGET_PAGE_ALIGN(section->offset_within_address_space); end = (section->offset_within_address_space + section->size) & TARGET_PAGE_MASK; if (iova >= end) { return; } DPRINTF("region_del %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", iova, end - 1); ret = vfio_dma_unmap(container, iova, end - iova); if (ret) { error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " "0x%"HWADDR_PRIx") = %d (%m)", container, iova, end - iova, ret); } } static MemoryListener vfio_memory_listener = { .region_add = vfio_listener_region_add, .region_del = vfio_listener_region_del, }; static void vfio_listener_release(VFIOContainer *container) { memory_listener_unregister(&container->iommu_data.listener); } /* * Interrupt setup */ static void vfio_disable_interrupts(VFIODevice *vdev) { switch (vdev->interrupt) { case VFIO_INT_INTx: vfio_disable_intx(vdev); break; case VFIO_INT_MSI: vfio_disable_msi(vdev); break; case VFIO_INT_MSIX: vfio_disable_msix(vdev); break; } } static int vfio_setup_msi(VFIODevice *vdev, int pos) { uint16_t ctrl; bool msi_64bit, msi_maskbit; int ret, entries; if (pread(vdev->fd, &ctrl, sizeof(ctrl), vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { return -errno; } ctrl = le16_to_cpu(ctrl); msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT); msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT); entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1); DPRINTF("%04x:%02x:%02x.%x PCI MSI CAP @0x%x\n", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, pos); ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit); if (ret < 0) { if (ret == -ENOTSUP) { return 0; } error_report("vfio: msi_init failed"); return ret; } vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0); return 0; } /* * We don't have any control over how pci_add_capability() inserts * capabilities into the chain. In order to setup MSI-X we need a * MemoryRegion for the BAR. In order to setup the BAR and not * attempt to mmap the MSI-X table area, which VFIO won't allow, we * need to first look for where the MSI-X table lives. So we * unfortunately split MSI-X setup across two functions. */ static int vfio_early_setup_msix(VFIODevice *vdev) { uint8_t pos; uint16_t ctrl; uint32_t table, pba; pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX); if (!pos) { return 0; } if (pread(vdev->fd, &ctrl, sizeof(ctrl), vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { return -errno; } if (pread(vdev->fd, &table, sizeof(table), vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) { return -errno; } if (pread(vdev->fd, &pba, sizeof(pba), vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) { return -errno; } ctrl = le16_to_cpu(ctrl); table = le32_to_cpu(table); pba = le32_to_cpu(pba); vdev->msix = g_malloc0(sizeof(*(vdev->msix))); vdev->msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK; vdev->msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK; vdev->msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK; vdev->msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK; vdev->msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; DPRINTF("%04x:%02x:%02x.%x " "PCI MSI-X CAP @0x%x, BAR %d, offset 0x%x, entries %d\n", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, pos, vdev->msix->table_bar, vdev->msix->table_offset, vdev->msix->entries); return 0; } static int vfio_setup_msix(VFIODevice *vdev, int pos) { int ret; ret = msix_init(&vdev->pdev, vdev->msix->entries, &vdev->bars[vdev->msix->table_bar].mem, vdev->msix->table_bar, vdev->msix->table_offset, &vdev->bars[vdev->msix->pba_bar].mem, vdev->msix->pba_bar, vdev->msix->pba_offset, pos); if (ret < 0) { if (ret == -ENOTSUP) { return 0; } error_report("vfio: msix_init failed"); return ret; } return 0; } static void vfio_teardown_msi(VFIODevice *vdev) { msi_uninit(&vdev->pdev); if (vdev->msix) { msix_uninit(&vdev->pdev, &vdev->bars[vdev->msix->table_bar].mem, &vdev->bars[vdev->msix->pba_bar].mem); } } /* * Resource setup */ static void vfio_mmap_set_enabled(VFIODevice *vdev, bool enabled) { int i; for (i = 0; i < PCI_ROM_SLOT; i++) { VFIOBAR *bar = &vdev->bars[i]; if (!bar->size) { continue; } memory_region_set_enabled(&bar->mmap_mem, enabled); if (vdev->msix && vdev->msix->table_bar == i) { memory_region_set_enabled(&vdev->msix->mmap_mem, enabled); } } } static void vfio_unmap_bar(VFIODevice *vdev, int nr) { VFIOBAR *bar = &vdev->bars[nr]; if (!bar->size) { return; } vfio_bar_quirk_teardown(vdev, nr); memory_region_del_subregion(&bar->mem, &bar->mmap_mem); munmap(bar->mmap, memory_region_size(&bar->mmap_mem)); if (vdev->msix && vdev->msix->table_bar == nr) { memory_region_del_subregion(&bar->mem, &vdev->msix->mmap_mem); munmap(vdev->msix->mmap, memory_region_size(&vdev->msix->mmap_mem)); } memory_region_destroy(&bar->mem); } static int vfio_mmap_bar(VFIOBAR *bar, MemoryRegion *mem, MemoryRegion *submem, void **map, size_t size, off_t offset, const char *name) { int ret = 0; if (VFIO_ALLOW_MMAP && size && bar->flags & VFIO_REGION_INFO_FLAG_MMAP) { int prot = 0; if (bar->flags & VFIO_REGION_INFO_FLAG_READ) { prot |= PROT_READ; } if (bar->flags & VFIO_REGION_INFO_FLAG_WRITE) { prot |= PROT_WRITE; } *map = mmap(NULL, size, prot, MAP_SHARED, bar->fd, bar->fd_offset + offset); if (*map == MAP_FAILED) { *map = NULL; ret = -errno; goto empty_region; } memory_region_init_ram_ptr(submem, name, size, *map); } else { empty_region: /* Create a zero sized sub-region to make cleanup easy. */ memory_region_init(submem, name, 0); } memory_region_add_subregion(mem, offset, submem); return ret; } static void vfio_map_bar(VFIODevice *vdev, int nr) { VFIOBAR *bar = &vdev->bars[nr]; unsigned size = bar->size; char name[64]; uint32_t pci_bar; uint8_t type; int ret; /* Skip both unimplemented BARs and the upper half of 64bit BARS. */ if (!size) { return; } snprintf(name, sizeof(name), "VFIO %04x:%02x:%02x.%x BAR %d", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, nr); /* Determine what type of BAR this is for registration */ ret = pread(vdev->fd, &pci_bar, sizeof(pci_bar), vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr)); if (ret != sizeof(pci_bar)) { error_report("vfio: Failed to read BAR %d (%m)", nr); return; } pci_bar = le32_to_cpu(pci_bar); type = pci_bar & (pci_bar & PCI_BASE_ADDRESS_SPACE_IO ? ~PCI_BASE_ADDRESS_IO_MASK : ~PCI_BASE_ADDRESS_MEM_MASK); /* A "slow" read/write mapping underlies all BARs */ memory_region_init_io(&bar->mem, &vfio_bar_ops, bar, name, size); pci_register_bar(&vdev->pdev, nr, type, &bar->mem); /* * We can't mmap areas overlapping the MSIX vector table, so we * potentially insert a direct-mapped subregion before and after it. */ if (vdev->msix && vdev->msix->table_bar == nr) { size = vdev->msix->table_offset & TARGET_PAGE_MASK; } strncat(name, " mmap", sizeof(name) - strlen(name) - 1); if (vfio_mmap_bar(bar, &bar->mem, &bar->mmap_mem, &bar->mmap, size, 0, name)) { error_report("%s unsupported. Performance may be slow", name); } if (vdev->msix && vdev->msix->table_bar == nr) { unsigned start; start = TARGET_PAGE_ALIGN(vdev->msix->table_offset + (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE)); size = start < bar->size ? bar->size - start : 0; strncat(name, " msix-hi", sizeof(name) - strlen(name) - 1); /* VFIOMSIXInfo contains another MemoryRegion for this mapping */ if (vfio_mmap_bar(bar, &bar->mem, &vdev->msix->mmap_mem, &vdev->msix->mmap, size, start, name)) { error_report("%s unsupported. Performance may be slow", name); } } vfio_bar_quirk_setup(vdev, nr); } static void vfio_map_bars(VFIODevice *vdev) { int i; for (i = 0; i < PCI_ROM_SLOT; i++) { vfio_map_bar(vdev, i); } if (vdev->has_vga) { memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_MEM].mem, &vfio_vga_ops, &vdev->vga.region[QEMU_PCI_VGA_MEM], "vfio-vga-mmio@0xa0000", QEMU_PCI_VGA_MEM_SIZE); memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem, &vfio_vga_ops, &vdev->vga.region[QEMU_PCI_VGA_IO_LO], "vfio-vga-io@0x3b0", QEMU_PCI_VGA_IO_LO_SIZE); memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem, &vfio_vga_ops, &vdev->vga.region[QEMU_PCI_VGA_IO_HI], "vfio-vga-io@0x3c0", QEMU_PCI_VGA_IO_HI_SIZE); pci_register_vga(&vdev->pdev, &vdev->vga.region[QEMU_PCI_VGA_MEM].mem, &vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem, &vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem); vfio_vga_quirk_setup(vdev); } } static void vfio_unmap_bars(VFIODevice *vdev) { int i; for (i = 0; i < PCI_ROM_SLOT; i++) { vfio_unmap_bar(vdev, i); } if (vdev->has_vga) { vfio_vga_quirk_teardown(vdev); pci_unregister_vga(&vdev->pdev); memory_region_destroy(&vdev->vga.region[QEMU_PCI_VGA_MEM].mem); memory_region_destroy(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem); memory_region_destroy(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem); } } /* * General setup */ static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos) { uint8_t tmp, next = 0xff; for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp; tmp = pdev->config[tmp + 1]) { if (tmp > pos && tmp < next) { next = tmp; } } return next - pos; } static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask) { pci_set_word(buf, (pci_get_word(buf) & ~mask) | val); } static void vfio_add_emulated_word(VFIODevice *vdev, int pos, uint16_t val, uint16_t mask) { vfio_set_word_bits(vdev->pdev.config + pos, val, mask); vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask); vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask); } static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask) { pci_set_long(buf, (pci_get_long(buf) & ~mask) | val); } static void vfio_add_emulated_long(VFIODevice *vdev, int pos, uint32_t val, uint32_t mask) { vfio_set_long_bits(vdev->pdev.config + pos, val, mask); vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask); vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask); } static int vfio_setup_pcie_cap(VFIODevice *vdev, int pos, uint8_t size) { uint16_t flags; uint8_t type; flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS); type = (flags & PCI_EXP_FLAGS_TYPE) >> 4; if (type != PCI_EXP_TYPE_ENDPOINT && type != PCI_EXP_TYPE_LEG_END && type != PCI_EXP_TYPE_RC_END) { error_report("vfio: Assignment of PCIe type 0x%x " "devices is not currently supported", type); return -EINVAL; } if (!pci_bus_is_express(vdev->pdev.bus)) { /* * Use express capability as-is on PCI bus. It doesn't make much * sense to even expose, but some drivers (ex. tg3) depend on it * and guests don't seem to be particular about it. We'll need * to revist this or force express devices to express buses if we * ever expose an IOMMU to the guest. */ } else if (pci_bus_is_root(vdev->pdev.bus)) { /* * On a Root Complex bus Endpoints become Root Complex Integrated * Endpoints, which changes the type and clears the LNK & LNK2 fields. */ if (type == PCI_EXP_TYPE_ENDPOINT) { vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, PCI_EXP_TYPE_RC_END << 4, PCI_EXP_FLAGS_TYPE); /* Link Capabilities, Status, and Control goes away */ if (size > PCI_EXP_LNKCTL) { vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0); vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0); #ifndef PCI_EXP_LNKCAP2 #define PCI_EXP_LNKCAP2 44 #endif #ifndef PCI_EXP_LNKSTA2 #define PCI_EXP_LNKSTA2 50 #endif /* Link 2 Capabilities, Status, and Control goes away */ if (size > PCI_EXP_LNKCAP2) { vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0); vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0); vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0); } } } else if (type == PCI_EXP_TYPE_LEG_END) { /* * Legacy endpoints don't belong on the root complex. Windows * seems to be happier with devices if we skip the capability. */ return 0; } } else { /* * Convert Root Complex Integrated Endpoints to regular endpoints. * These devices don't support LNK/LNK2 capabilities, so make them up. */ if (type == PCI_EXP_TYPE_RC_END) { vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, PCI_EXP_TYPE_ENDPOINT << 4, PCI_EXP_FLAGS_TYPE); vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, PCI_EXP_LNK_MLW_1 | PCI_EXP_LNK_LS_25, ~0); vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); } /* Mark the Link Status bits as emulated to allow virtual negotiation */ vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, pci_get_word(vdev->pdev.config + pos + PCI_EXP_LNKSTA), PCI_EXP_LNKCAP_MLW | PCI_EXP_LNKCAP_SLS); } pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size); if (pos >= 0) { vdev->pdev.exp.exp_cap = pos; } return pos; } static int vfio_add_std_cap(VFIODevice *vdev, uint8_t pos) { PCIDevice *pdev = &vdev->pdev; uint8_t cap_id, next, size; int ret; cap_id = pdev->config[pos]; next = pdev->config[pos + 1]; /* * If it becomes important to configure capabilities to their actual * size, use this as the default when it's something we don't recognize. * Since QEMU doesn't actually handle many of the config accesses, * exact size doesn't seem worthwhile. */ size = vfio_std_cap_max_size(pdev, pos); /* * pci_add_capability always inserts the new capability at the head * of the chain. Therefore to end up with a chain that matches the * physical device, we insert from the end by making this recursive. * This is also why we pre-caclulate size above as cached config space * will be changed as we unwind the stack. */ if (next) { ret = vfio_add_std_cap(vdev, next); if (ret) { return ret; } } else { /* Begin the rebuild, use QEMU emulated list bits */ pdev->config[PCI_CAPABILITY_LIST] = 0; vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff; vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST; } /* Use emulated next pointer to allow dropping caps */ pci_set_byte(vdev->emulated_config_bits + pos + 1, 0xff); switch (cap_id) { case PCI_CAP_ID_MSI: ret = vfio_setup_msi(vdev, pos); break; case PCI_CAP_ID_EXP: ret = vfio_setup_pcie_cap(vdev, pos, size); break; case PCI_CAP_ID_MSIX: ret = vfio_setup_msix(vdev, pos); break; case PCI_CAP_ID_PM: vdev->pm_cap = pos; default: ret = pci_add_capability(pdev, cap_id, pos, size); break; } if (ret < 0) { error_report("vfio: %04x:%02x:%02x.%x Error adding PCI capability " "0x%x[0x%x]@0x%x: %d", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, cap_id, size, pos, ret); return ret; } return 0; } static int vfio_add_capabilities(VFIODevice *vdev) { PCIDevice *pdev = &vdev->pdev; if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) || !pdev->config[PCI_CAPABILITY_LIST]) { return 0; /* Nothing to add */ } return vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST]); } static int vfio_load_rom(VFIODevice *vdev) { uint64_t size = vdev->rom_size; char name[32]; off_t off = 0, voff = vdev->rom_offset; ssize_t bytes; void *ptr; /* If loading ROM from file, pci handles it */ if (vdev->pdev.romfile || !vdev->pdev.rom_bar || !size) { return 0; } DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); snprintf(name, sizeof(name), "vfio[%04x:%02x:%02x.%x].rom", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); memory_region_init_ram(&vdev->pdev.rom, name, size); ptr = memory_region_get_ram_ptr(&vdev->pdev.rom); memset(ptr, 0xff, size); while (size) { bytes = pread(vdev->fd, ptr + off, size, voff + off); if (bytes == 0) { break; /* expect that we could get back less than the ROM BAR */ } else if (bytes > 0) { off += bytes; size -= bytes; } else { if (errno == EINTR || errno == EAGAIN) { continue; } error_report("vfio: Error reading device ROM: %m"); memory_region_destroy(&vdev->pdev.rom); return -errno; } } pci_register_bar(&vdev->pdev, PCI_ROM_SLOT, 0, &vdev->pdev.rom); vdev->pdev.has_rom = true; return 0; } static int vfio_connect_container(VFIOGroup *group) { VFIOContainer *container; int ret, fd; if (group->container) { return 0; } QLIST_FOREACH(container, &container_list, next) { if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) { group->container = container; QLIST_INSERT_HEAD(&container->group_list, group, container_next); return 0; } } fd = qemu_open("/dev/vfio/vfio", O_RDWR); if (fd < 0) { error_report("vfio: failed to open /dev/vfio/vfio: %m"); return -errno; } ret = ioctl(fd, VFIO_GET_API_VERSION); if (ret != VFIO_API_VERSION) { error_report("vfio: supported vfio version: %d, " "reported version: %d", VFIO_API_VERSION, ret); close(fd); return -EINVAL; } container = g_malloc0(sizeof(*container)); container->fd = fd; if (ioctl(fd, VFIO_CHECK_EXTENSION, VFIO_TYPE1_IOMMU)) { ret = ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &fd); if (ret) { error_report("vfio: failed to set group container: %m"); g_free(container); close(fd); return -errno; } ret = ioctl(fd, VFIO_SET_IOMMU, VFIO_TYPE1_IOMMU); if (ret) { error_report("vfio: failed to set iommu for container: %m"); g_free(container); close(fd); return -errno; } container->iommu_data.listener = vfio_memory_listener; container->iommu_data.release = vfio_listener_release; memory_listener_register(&container->iommu_data.listener, &address_space_memory); } else { error_report("vfio: No available IOMMU models"); g_free(container); close(fd); return -EINVAL; } QLIST_INIT(&container->group_list); QLIST_INSERT_HEAD(&container_list, container, next); group->container = container; QLIST_INSERT_HEAD(&container->group_list, group, container_next); return 0; } static void vfio_disconnect_container(VFIOGroup *group) { VFIOContainer *container = group->container; if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) { error_report("vfio: error disconnecting group %d from container", group->groupid); } QLIST_REMOVE(group, container_next); group->container = NULL; if (QLIST_EMPTY(&container->group_list)) { if (container->iommu_data.release) { container->iommu_data.release(container); } QLIST_REMOVE(container, next); DPRINTF("vfio_disconnect_container: close container->fd\n"); close(container->fd); g_free(container); } } static VFIOGroup *vfio_get_group(int groupid) { VFIOGroup *group; char path[32]; struct vfio_group_status status = { .argsz = sizeof(status) }; QLIST_FOREACH(group, &group_list, next) { if (group->groupid == groupid) { return group; } } group = g_malloc0(sizeof(*group)); snprintf(path, sizeof(path), "/dev/vfio/%d", groupid); group->fd = qemu_open(path, O_RDWR); if (group->fd < 0) { error_report("vfio: error opening %s: %m", path); g_free(group); return NULL; } if (ioctl(group->fd, VFIO_GROUP_GET_STATUS, &status)) { error_report("vfio: error getting group status: %m"); close(group->fd); g_free(group); return NULL; } if (!(status.flags & VFIO_GROUP_FLAGS_VIABLE)) { error_report("vfio: error, group %d is not viable, please ensure " "all devices within the iommu_group are bound to their " "vfio bus driver.", groupid); close(group->fd); g_free(group); return NULL; } group->groupid = groupid; QLIST_INIT(&group->device_list); if (vfio_connect_container(group)) { error_report("vfio: failed to setup container for group %d", groupid); close(group->fd); g_free(group); return NULL; } QLIST_INSERT_HEAD(&group_list, group, next); return group; } static void vfio_put_group(VFIOGroup *group) { if (!QLIST_EMPTY(&group->device_list)) { return; } vfio_disconnect_container(group); QLIST_REMOVE(group, next); DPRINTF("vfio_put_group: close group->fd\n"); close(group->fd); g_free(group); } static int vfio_get_device(VFIOGroup *group, const char *name, VFIODevice *vdev) { struct vfio_device_info dev_info = { .argsz = sizeof(dev_info) }; struct vfio_region_info reg_info = { .argsz = sizeof(reg_info) }; int ret, i; ret = ioctl(group->fd, VFIO_GROUP_GET_DEVICE_FD, name); if (ret < 0) { error_report("vfio: error getting device %s from group %d: %m", name, group->groupid); error_printf("Verify all devices in group %d are bound to vfio-pci " "or pci-stub and not already in use\n", group->groupid); return ret; } vdev->fd = ret; vdev->group = group; QLIST_INSERT_HEAD(&group->device_list, vdev, next); /* Sanity check device */ ret = ioctl(vdev->fd, VFIO_DEVICE_GET_INFO, &dev_info); if (ret) { error_report("vfio: error getting device info: %m"); goto error; } DPRINTF("Device %s flags: %u, regions: %u, irgs: %u\n", name, dev_info.flags, dev_info.num_regions, dev_info.num_irqs); if (!(dev_info.flags & VFIO_DEVICE_FLAGS_PCI)) { error_report("vfio: Um, this isn't a PCI device"); goto error; } vdev->reset_works = !!(dev_info.flags & VFIO_DEVICE_FLAGS_RESET); if (!vdev->reset_works) { error_report("Warning, device %s does not support reset", name); } if (dev_info.num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) { error_report("vfio: unexpected number of io regions %u", dev_info.num_regions); goto error; } if (dev_info.num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) { error_report("vfio: unexpected number of irqs %u", dev_info.num_irqs); goto error; } for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) { reg_info.index = i; ret = ioctl(vdev->fd, VFIO_DEVICE_GET_REGION_INFO, ®_info); if (ret) { error_report("vfio: Error getting region %d info: %m", i); goto error; } DPRINTF("Device %s region %d:\n", name, i); DPRINTF(" size: 0x%lx, offset: 0x%lx, flags: 0x%lx\n", (unsigned long)reg_info.size, (unsigned long)reg_info.offset, (unsigned long)reg_info.flags); vdev->bars[i].flags = reg_info.flags; vdev->bars[i].size = reg_info.size; vdev->bars[i].fd_offset = reg_info.offset; vdev->bars[i].fd = vdev->fd; vdev->bars[i].nr = i; QLIST_INIT(&vdev->bars[i].quirks); } reg_info.index = VFIO_PCI_ROM_REGION_INDEX; ret = ioctl(vdev->fd, VFIO_DEVICE_GET_REGION_INFO, ®_info); if (ret) { error_report("vfio: Error getting ROM info: %m"); goto error; } DPRINTF("Device %s ROM:\n", name); DPRINTF(" size: 0x%lx, offset: 0x%lx, flags: 0x%lx\n", (unsigned long)reg_info.size, (unsigned long)reg_info.offset, (unsigned long)reg_info.flags); vdev->rom_size = reg_info.size; vdev->rom_offset = reg_info.offset; reg_info.index = VFIO_PCI_CONFIG_REGION_INDEX; ret = ioctl(vdev->fd, VFIO_DEVICE_GET_REGION_INFO, ®_info); if (ret) { error_report("vfio: Error getting config info: %m"); goto error; } DPRINTF("Device %s config:\n", name); DPRINTF(" size: 0x%lx, offset: 0x%lx, flags: 0x%lx\n", (unsigned long)reg_info.size, (unsigned long)reg_info.offset, (unsigned long)reg_info.flags); vdev->config_size = reg_info.size; if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) { vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS; } vdev->config_offset = reg_info.offset; if ((vdev->features & VFIO_FEATURE_ENABLE_VGA) && dev_info.num_regions > VFIO_PCI_VGA_REGION_INDEX) { struct vfio_region_info vga_info = { .argsz = sizeof(vga_info), .index = VFIO_PCI_VGA_REGION_INDEX, }; ret = ioctl(vdev->fd, VFIO_DEVICE_GET_REGION_INFO, &vga_info); if (ret) { error_report( "vfio: Device does not support requested feature x-vga"); goto error; } if (!(vga_info.flags & VFIO_REGION_INFO_FLAG_READ) || !(vga_info.flags & VFIO_REGION_INFO_FLAG_WRITE) || vga_info.size < 0xbffff + 1) { error_report("vfio: Unexpected VGA info, flags 0x%lx, size 0x%lx", (unsigned long)vga_info.flags, (unsigned long)vga_info.size); goto error; } vdev->vga.fd_offset = vga_info.offset; vdev->vga.fd = vdev->fd; vdev->vga.region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE; vdev->vga.region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM; QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_MEM].quirks); vdev->vga.region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE; vdev->vga.region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO; QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].quirks); vdev->vga.region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE; vdev->vga.region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI; QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks); vdev->has_vga = true; } error: if (ret) { QLIST_REMOVE(vdev, next); vdev->group = NULL; close(vdev->fd); } return ret; } static void vfio_put_device(VFIODevice *vdev) { QLIST_REMOVE(vdev, next); vdev->group = NULL; DPRINTF("vfio_put_device: close vdev->fd\n"); close(vdev->fd); if (vdev->msix) { g_free(vdev->msix); vdev->msix = NULL; } } static int vfio_initfn(PCIDevice *pdev) { VFIODevice *pvdev, *vdev = DO_UPCAST(VFIODevice, pdev, pdev); VFIOGroup *group; char path[PATH_MAX], iommu_group_path[PATH_MAX], *group_name; ssize_t len; struct stat st; int groupid; int ret; /* Check that the host device exists */ snprintf(path, sizeof(path), "/sys/bus/pci/devices/%04x:%02x:%02x.%01x/", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); if (stat(path, &st) < 0) { error_report("vfio: error: no such host device: %s", path); return -errno; } strncat(path, "iommu_group", sizeof(path) - strlen(path) - 1); len = readlink(path, iommu_group_path, PATH_MAX); if (len <= 0) { error_report("vfio: error no iommu_group for device"); return -errno; } iommu_group_path[len] = 0; group_name = basename(iommu_group_path); if (sscanf(group_name, "%d", &groupid) != 1) { error_report("vfio: error reading %s: %m", path); return -errno; } DPRINTF("%s(%04x:%02x:%02x.%x) group %d\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function, groupid); group = vfio_get_group(groupid); if (!group) { error_report("vfio: failed to get group %d", groupid); return -ENOENT; } snprintf(path, sizeof(path), "%04x:%02x:%02x.%01x", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); QLIST_FOREACH(pvdev, &group->device_list, next) { if (pvdev->host.domain == vdev->host.domain && pvdev->host.bus == vdev->host.bus && pvdev->host.slot == vdev->host.slot && pvdev->host.function == vdev->host.function) { error_report("vfio: error: device %s is already attached", path); vfio_put_group(group); return -EBUSY; } } ret = vfio_get_device(group, path, vdev); if (ret) { error_report("vfio: failed to get device %s", path); vfio_put_group(group); return ret; } /* Get a copy of config space */ ret = pread(vdev->fd, vdev->pdev.config, MIN(pci_config_size(&vdev->pdev), vdev->config_size), vdev->config_offset); if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) { ret = ret < 0 ? -errno : -EFAULT; error_report("vfio: Failed to read device config space"); goto out_put; } /* vfio emulates a lot for us, but some bits need extra love */ vdev->emulated_config_bits = g_malloc0(vdev->config_size); /* QEMU can choose to expose the ROM or not */ memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4); /* QEMU can change multi-function devices to single function, or reverse */ vdev->emulated_config_bits[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_MULTI_FUNCTION; /* * Clear host resource mapping info. If we choose not to register a * BAR, such as might be the case with the option ROM, we can get * confusing, unwritable, residual addresses from the host here. */ memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24); memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4); vfio_load_rom(vdev); ret = vfio_early_setup_msix(vdev); if (ret) { goto out_put; } vfio_map_bars(vdev); ret = vfio_add_capabilities(vdev); if (ret) { goto out_teardown; } /* QEMU emulates all of MSI & MSIX */ if (pdev->cap_present & QEMU_PCI_CAP_MSIX) { memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff, MSIX_CAP_LENGTH); } if (pdev->cap_present & QEMU_PCI_CAP_MSI) { memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff, vdev->msi_cap_size); } if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) { vdev->intx.mmap_timer = qemu_new_timer_ms(vm_clock, vfio_intx_mmap_enable, vdev); pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_update_irq); ret = vfio_enable_intx(vdev); if (ret) { goto out_teardown; } } add_boot_device_path(vdev->bootindex, &pdev->qdev, NULL); return 0; out_teardown: pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); vfio_teardown_msi(vdev); vfio_unmap_bars(vdev); out_put: g_free(vdev->emulated_config_bits); vfio_put_device(vdev); vfio_put_group(group); return ret; } static void vfio_exitfn(PCIDevice *pdev) { VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev); VFIOGroup *group = vdev->group; pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); vfio_disable_interrupts(vdev); if (vdev->intx.mmap_timer) { qemu_free_timer(vdev->intx.mmap_timer); } vfio_teardown_msi(vdev); vfio_unmap_bars(vdev); g_free(vdev->emulated_config_bits); vfio_put_device(vdev); vfio_put_group(group); } static void vfio_pci_reset(DeviceState *dev) { PCIDevice *pdev = DO_UPCAST(PCIDevice, qdev, dev); VFIODevice *vdev = DO_UPCAST(VFIODevice, pdev, pdev); uint16_t cmd; DPRINTF("%s(%04x:%02x:%02x.%x)\n", __func__, vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); vfio_disable_interrupts(vdev); /* Make sure the device is in D0 */ if (vdev->pm_cap) { uint16_t pmcsr; uint8_t state; pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); state = pmcsr & PCI_PM_CTRL_STATE_MASK; if (state) { pmcsr &= ~PCI_PM_CTRL_STATE_MASK; vfio_pci_write_config(pdev, vdev->pm_cap + PCI_PM_CTRL, pmcsr, 2); /* vfio handles the necessary delay here */ pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); state = pmcsr & PCI_PM_CTRL_STATE_MASK; if (state) { error_report("vfio: Unable to power on device, stuck in D%d\n", state); } } } /* * Stop any ongoing DMA by disconecting I/O, MMIO, and bus master. * Also put INTx Disable in known state. */ cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2); cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INTX_DISABLE); vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2); if (vdev->reset_works) { if (ioctl(vdev->fd, VFIO_DEVICE_RESET)) { error_report("vfio: Error unable to reset physical device " "(%04x:%02x:%02x.%x): %m", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } } vfio_enable_intx(vdev); } static Property vfio_pci_dev_properties[] = { DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIODevice, host), DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIODevice, intx.mmap_timeout, 1100), DEFINE_PROP_BIT("x-vga", VFIODevice, features, VFIO_FEATURE_ENABLE_VGA_BIT, false), DEFINE_PROP_INT32("bootindex", VFIODevice, bootindex, -1), /* * TODO - support passed fds... is this necessary? * DEFINE_PROP_STRING("vfiofd", VFIODevice, vfiofd_name), * DEFINE_PROP_STRING("vfiogroupfd, VFIODevice, vfiogroupfd_name), */ DEFINE_PROP_END_OF_LIST(), }; static const VMStateDescription vfio_pci_vmstate = { .name = "vfio-pci", .unmigratable = 1, }; static void vfio_pci_dev_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass); dc->reset = vfio_pci_reset; dc->props = vfio_pci_dev_properties; dc->vmsd = &vfio_pci_vmstate; dc->desc = "VFIO-based PCI device assignment"; pdc->init = vfio_initfn; pdc->exit = vfio_exitfn; pdc->config_read = vfio_pci_read_config; pdc->config_write = vfio_pci_write_config; pdc->is_express = 1; /* We might be */ } static const TypeInfo vfio_pci_dev_info = { .name = "vfio-pci", .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(VFIODevice), .class_init = vfio_pci_dev_class_init, }; static void register_vfio_pci_dev_type(void) { type_register_static(&vfio_pci_dev_info); } type_init(register_vfio_pci_dev_type)