/* * vfio based device assignment support * * Copyright Red Hat, Inc. 2012 * * Authors: * Alex Williamson * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Based on qemu-kvm device-assignment: * Adapted for KVM by Qumranet. * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) */ #include "qemu/osdep.h" #include #include #include "hw/pci/msi.h" #include "hw/pci/msix.h" #include "hw/pci/pci_bridge.h" #include "qemu/error-report.h" #include "qemu/option.h" #include "qemu/range.h" #include "qemu/units.h" #include "sysemu/kvm.h" #include "sysemu/sysemu.h" #include "pci.h" #include "trace.h" #include "qapi/error.h" #define MSIX_CAP_LENGTH 12 static void vfio_disable_interrupts(VFIOPCIDevice *vdev); static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled); /* * Disabling BAR mmaping can be slow, but toggling it around INTx can * also be a huge overhead. We try to get the best of both worlds by * waiting until an interrupt to disable mmaps (subsequent transitions * to the same state are effectively no overhead). If the interrupt has * been serviced and the time gap is long enough, we re-enable mmaps for * performance. This works well for things like graphics cards, which * may not use their interrupt at all and are penalized to an unusable * level by read/write BAR traps. Other devices, like NICs, have more * regular interrupts and see much better latency by staying in non-mmap * mode. We therefore set the default mmap_timeout such that a ping * is just enough to keep the mmap disabled. Users can experiment with * other options with the x-intx-mmap-timeout-ms parameter (a value of * zero disables the timer). */ static void vfio_intx_mmap_enable(void *opaque) { VFIOPCIDevice *vdev = opaque; if (vdev->intx.pending) { timer_mod(vdev->intx.mmap_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); return; } vfio_mmap_set_enabled(vdev, true); } static void vfio_intx_interrupt(void *opaque) { VFIOPCIDevice *vdev = opaque; if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) { return; } trace_vfio_intx_interrupt(vdev->vbasedev.name, 'A' + vdev->intx.pin); vdev->intx.pending = true; pci_irq_assert(&vdev->pdev); vfio_mmap_set_enabled(vdev, false); if (vdev->intx.mmap_timeout) { timer_mod(vdev->intx.mmap_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout); } } static void vfio_intx_eoi(VFIODevice *vbasedev) { VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); if (!vdev->intx.pending) { return; } trace_vfio_intx_eoi(vbasedev->name); vdev->intx.pending = false; pci_irq_deassert(&vdev->pdev); vfio_unmask_single_irqindex(vbasedev, VFIO_PCI_INTX_IRQ_INDEX); } static void vfio_intx_enable_kvm(VFIOPCIDevice *vdev, Error **errp) { #ifdef CONFIG_KVM struct kvm_irqfd irqfd = { .fd = event_notifier_get_fd(&vdev->intx.interrupt), .gsi = vdev->intx.route.irq, .flags = KVM_IRQFD_FLAG_RESAMPLE, }; struct vfio_irq_set *irq_set; int ret, argsz; int32_t *pfd; if (vdev->no_kvm_intx || !kvm_irqfds_enabled() || vdev->intx.route.mode != PCI_INTX_ENABLED || !kvm_resamplefds_enabled()) { return; } /* Get to a known interrupt state */ qemu_set_fd_handler(irqfd.fd, NULL, NULL, vdev); vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); vdev->intx.pending = false; pci_irq_deassert(&vdev->pdev); /* Get an eventfd for resample/unmask */ if (event_notifier_init(&vdev->intx.unmask, 0)) { error_setg(errp, "event_notifier_init failed eoi"); goto fail; } /* KVM triggers it, VFIO listens for it */ irqfd.resamplefd = event_notifier_get_fd(&vdev->intx.unmask); if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) { error_setg_errno(errp, errno, "failed to setup resample irqfd"); goto fail_irqfd; } argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK; irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; irq_set->start = 0; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = irqfd.resamplefd; ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); g_free(irq_set); if (ret) { error_setg_errno(errp, -ret, "failed to setup INTx unmask fd"); goto fail_vfio; } /* Let'em rip */ vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); vdev->intx.kvm_accel = true; trace_vfio_intx_enable_kvm(vdev->vbasedev.name); return; fail_vfio: irqfd.flags = KVM_IRQFD_FLAG_DEASSIGN; kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd); fail_irqfd: event_notifier_cleanup(&vdev->intx.unmask); fail: qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev); vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); #endif } static void vfio_intx_disable_kvm(VFIOPCIDevice *vdev) { #ifdef CONFIG_KVM struct kvm_irqfd irqfd = { .fd = event_notifier_get_fd(&vdev->intx.interrupt), .gsi = vdev->intx.route.irq, .flags = KVM_IRQFD_FLAG_DEASSIGN, }; if (!vdev->intx.kvm_accel) { return; } /* * Get to a known state, hardware masked, QEMU ready to accept new * interrupts, QEMU IRQ de-asserted. */ vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); vdev->intx.pending = false; pci_irq_deassert(&vdev->pdev); /* Tell KVM to stop listening for an INTx irqfd */ if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) { error_report("vfio: Error: Failed to disable INTx irqfd: %m"); } /* We only need to close the eventfd for VFIO to cleanup the kernel side */ event_notifier_cleanup(&vdev->intx.unmask); /* QEMU starts listening for interrupt events. */ qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev); vdev->intx.kvm_accel = false; /* If we've missed an event, let it re-fire through QEMU */ vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); trace_vfio_intx_disable_kvm(vdev->vbasedev.name); #endif } static void vfio_intx_update(PCIDevice *pdev) { VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); PCIINTxRoute route; Error *err = NULL; if (vdev->interrupt != VFIO_INT_INTx) { return; } route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin); if (!pci_intx_route_changed(&vdev->intx.route, &route)) { return; /* Nothing changed */ } trace_vfio_intx_update(vdev->vbasedev.name, vdev->intx.route.irq, route.irq); vfio_intx_disable_kvm(vdev); vdev->intx.route = route; if (route.mode != PCI_INTX_ENABLED) { return; } vfio_intx_enable_kvm(vdev, &err); if (err) { error_reportf_err(err, WARN_PREFIX, vdev->vbasedev.name); } /* Re-enable the interrupt in cased we missed an EOI */ vfio_intx_eoi(&vdev->vbasedev); } static int vfio_intx_enable(VFIOPCIDevice *vdev, Error **errp) { uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1); int ret, argsz, retval = 0; struct vfio_irq_set *irq_set; int32_t *pfd; Error *err = NULL; if (!pin) { return 0; } vfio_disable_interrupts(vdev); vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */ pci_config_set_interrupt_pin(vdev->pdev.config, pin); #ifdef CONFIG_KVM /* * Only conditional to avoid generating error messages on platforms * where we won't actually use the result anyway. */ if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) { vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin); } #endif ret = event_notifier_init(&vdev->intx.interrupt, 0); if (ret) { error_setg_errno(errp, -ret, "event_notifier_init failed"); return ret; } argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_INTX_IRQ_INDEX; irq_set->start = 0; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = event_notifier_get_fd(&vdev->intx.interrupt); qemu_set_fd_handler(*pfd, vfio_intx_interrupt, NULL, vdev); ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); if (ret) { error_setg_errno(errp, -ret, "failed to setup INTx fd"); qemu_set_fd_handler(*pfd, NULL, NULL, vdev); event_notifier_cleanup(&vdev->intx.interrupt); retval = -errno; goto cleanup; } vfio_intx_enable_kvm(vdev, &err); if (err) { error_reportf_err(err, WARN_PREFIX, vdev->vbasedev.name); } vdev->interrupt = VFIO_INT_INTx; trace_vfio_intx_enable(vdev->vbasedev.name); cleanup: g_free(irq_set); return retval; } static void vfio_intx_disable(VFIOPCIDevice *vdev) { int fd; timer_del(vdev->intx.mmap_timer); vfio_intx_disable_kvm(vdev); vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX); vdev->intx.pending = false; pci_irq_deassert(&vdev->pdev); vfio_mmap_set_enabled(vdev, true); fd = event_notifier_get_fd(&vdev->intx.interrupt); qemu_set_fd_handler(fd, NULL, NULL, vdev); event_notifier_cleanup(&vdev->intx.interrupt); vdev->interrupt = VFIO_INT_NONE; trace_vfio_intx_disable(vdev->vbasedev.name); } /* * MSI/X */ static void vfio_msi_interrupt(void *opaque) { VFIOMSIVector *vector = opaque; VFIOPCIDevice *vdev = vector->vdev; MSIMessage (*get_msg)(PCIDevice *dev, unsigned vector); void (*notify)(PCIDevice *dev, unsigned vector); MSIMessage msg; int nr = vector - vdev->msi_vectors; if (!event_notifier_test_and_clear(&vector->interrupt)) { return; } if (vdev->interrupt == VFIO_INT_MSIX) { get_msg = msix_get_message; notify = msix_notify; /* A masked vector firing needs to use the PBA, enable it */ if (msix_is_masked(&vdev->pdev, nr)) { set_bit(nr, vdev->msix->pending); memory_region_set_enabled(&vdev->pdev.msix_pba_mmio, true); trace_vfio_msix_pba_enable(vdev->vbasedev.name); } } else if (vdev->interrupt == VFIO_INT_MSI) { get_msg = msi_get_message; notify = msi_notify; } else { abort(); } msg = get_msg(&vdev->pdev, nr); trace_vfio_msi_interrupt(vdev->vbasedev.name, nr, msg.address, msg.data); notify(&vdev->pdev, nr); } static int vfio_enable_vectors(VFIOPCIDevice *vdev, bool msix) { struct vfio_irq_set *irq_set; int ret = 0, i, argsz; int32_t *fds; argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds)); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX; irq_set->start = 0; irq_set->count = vdev->nr_vectors; fds = (int32_t *)&irq_set->data; for (i = 0; i < vdev->nr_vectors; i++) { int fd = -1; /* * MSI vs MSI-X - The guest has direct access to MSI mask and pending * bits, therefore we always use the KVM signaling path when setup. * MSI-X mask and pending bits are emulated, so we want to use the * KVM signaling path only when configured and unmasked. */ if (vdev->msi_vectors[i].use) { if (vdev->msi_vectors[i].virq < 0 || (msix && msix_is_masked(&vdev->pdev, i))) { fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt); } else { fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt); } } fds[i] = fd; } ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); g_free(irq_set); return ret; } static void vfio_add_kvm_msi_virq(VFIOPCIDevice *vdev, VFIOMSIVector *vector, int vector_n, bool msix) { int virq; if ((msix && vdev->no_kvm_msix) || (!msix && vdev->no_kvm_msi)) { return; } if (event_notifier_init(&vector->kvm_interrupt, 0)) { return; } virq = kvm_irqchip_add_msi_route(kvm_state, vector_n, &vdev->pdev); if (virq < 0) { event_notifier_cleanup(&vector->kvm_interrupt); return; } if (kvm_irqchip_add_irqfd_notifier_gsi(kvm_state, &vector->kvm_interrupt, NULL, virq) < 0) { kvm_irqchip_release_virq(kvm_state, virq); event_notifier_cleanup(&vector->kvm_interrupt); return; } vector->virq = virq; } static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector) { kvm_irqchip_remove_irqfd_notifier_gsi(kvm_state, &vector->kvm_interrupt, vector->virq); kvm_irqchip_release_virq(kvm_state, vector->virq); vector->virq = -1; event_notifier_cleanup(&vector->kvm_interrupt); } static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg, PCIDevice *pdev) { kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg, pdev); kvm_irqchip_commit_routes(kvm_state); } static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr, MSIMessage *msg, IOHandler *handler) { VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); VFIOMSIVector *vector; int ret; trace_vfio_msix_vector_do_use(vdev->vbasedev.name, nr); vector = &vdev->msi_vectors[nr]; if (!vector->use) { vector->vdev = vdev; vector->virq = -1; if (event_notifier_init(&vector->interrupt, 0)) { error_report("vfio: Error: event_notifier_init failed"); } vector->use = true; msix_vector_use(pdev, nr); } qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), handler, NULL, vector); /* * Attempt to enable route through KVM irqchip, * default to userspace handling if unavailable. */ if (vector->virq >= 0) { if (!msg) { vfio_remove_kvm_msi_virq(vector); } else { vfio_update_kvm_msi_virq(vector, *msg, pdev); } } else { if (msg) { vfio_add_kvm_msi_virq(vdev, vector, nr, true); } } /* * We don't want to have the host allocate all possible MSI vectors * for a device if they're not in use, so we shutdown and incrementally * increase them as needed. */ if (vdev->nr_vectors < nr + 1) { vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); vdev->nr_vectors = nr + 1; ret = vfio_enable_vectors(vdev, true); if (ret) { error_report("vfio: failed to enable vectors, %d", ret); } } else { int argsz; struct vfio_irq_set *irq_set; int32_t *pfd; argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; irq_set->start = nr; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; if (vector->virq >= 0) { *pfd = event_notifier_get_fd(&vector->kvm_interrupt); } else { *pfd = event_notifier_get_fd(&vector->interrupt); } ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); g_free(irq_set); if (ret) { error_report("vfio: failed to modify vector, %d", ret); } } /* Disable PBA emulation when nothing more is pending. */ clear_bit(nr, vdev->msix->pending); if (find_first_bit(vdev->msix->pending, vdev->nr_vectors) == vdev->nr_vectors) { memory_region_set_enabled(&vdev->pdev.msix_pba_mmio, false); trace_vfio_msix_pba_disable(vdev->vbasedev.name); } return 0; } static int vfio_msix_vector_use(PCIDevice *pdev, unsigned int nr, MSIMessage msg) { return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt); } static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr) { VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); VFIOMSIVector *vector = &vdev->msi_vectors[nr]; trace_vfio_msix_vector_release(vdev->vbasedev.name, nr); /* * There are still old guests that mask and unmask vectors on every * interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of * the KVM setup in place, simply switch VFIO to use the non-bypass * eventfd. We'll then fire the interrupt through QEMU and the MSI-X * core will mask the interrupt and set pending bits, allowing it to * be re-asserted on unmask. Nothing to do if already using QEMU mode. */ if (vector->virq >= 0) { int argsz; struct vfio_irq_set *irq_set; int32_t *pfd; argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX; irq_set->start = nr; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = event_notifier_get_fd(&vector->interrupt); ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); g_free(irq_set); } } static void vfio_msix_enable(VFIOPCIDevice *vdev) { vfio_disable_interrupts(vdev); vdev->msi_vectors = g_new0(VFIOMSIVector, vdev->msix->entries); vdev->interrupt = VFIO_INT_MSIX; /* * Some communication channels between VF & PF or PF & fw rely on the * physical state of the device and expect that enabling MSI-X from the * guest enables the same on the host. When our guest is Linux, the * guest driver call to pci_enable_msix() sets the enabling bit in the * MSI-X capability, but leaves the vector table masked. We therefore * can't rely on a vector_use callback (from request_irq() in the guest) * to switch the physical device into MSI-X mode because that may come a * long time after pci_enable_msix(). This code enables vector 0 with * triggering to userspace, then immediately release the vector, leaving * the physical device with no vectors enabled, but MSI-X enabled, just * like the guest view. */ vfio_msix_vector_do_use(&vdev->pdev, 0, NULL, NULL); vfio_msix_vector_release(&vdev->pdev, 0); if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use, vfio_msix_vector_release, NULL)) { error_report("vfio: msix_set_vector_notifiers failed"); } trace_vfio_msix_enable(vdev->vbasedev.name); } static void vfio_msi_enable(VFIOPCIDevice *vdev) { int ret, i; vfio_disable_interrupts(vdev); vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev); retry: vdev->msi_vectors = g_new0(VFIOMSIVector, vdev->nr_vectors); for (i = 0; i < vdev->nr_vectors; i++) { VFIOMSIVector *vector = &vdev->msi_vectors[i]; vector->vdev = vdev; vector->virq = -1; vector->use = true; if (event_notifier_init(&vector->interrupt, 0)) { error_report("vfio: Error: event_notifier_init failed"); } qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), vfio_msi_interrupt, NULL, vector); /* * Attempt to enable route through KVM irqchip, * default to userspace handling if unavailable. */ vfio_add_kvm_msi_virq(vdev, vector, i, false); } /* Set interrupt type prior to possible interrupts */ vdev->interrupt = VFIO_INT_MSI; ret = vfio_enable_vectors(vdev, false); if (ret) { if (ret < 0) { error_report("vfio: Error: Failed to setup MSI fds: %m"); } else if (ret != vdev->nr_vectors) { error_report("vfio: Error: Failed to enable %d " "MSI vectors, retry with %d", vdev->nr_vectors, ret); } for (i = 0; i < vdev->nr_vectors; i++) { VFIOMSIVector *vector = &vdev->msi_vectors[i]; if (vector->virq >= 0) { vfio_remove_kvm_msi_virq(vector); } qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), NULL, NULL, NULL); event_notifier_cleanup(&vector->interrupt); } g_free(vdev->msi_vectors); if (ret > 0 && ret != vdev->nr_vectors) { vdev->nr_vectors = ret; goto retry; } vdev->nr_vectors = 0; /* * Failing to setup MSI doesn't really fall within any specification. * Let's try leaving interrupts disabled and hope the guest figures * out to fall back to INTx for this device. */ error_report("vfio: Error: Failed to enable MSI"); vdev->interrupt = VFIO_INT_NONE; return; } trace_vfio_msi_enable(vdev->vbasedev.name, vdev->nr_vectors); } static void vfio_msi_disable_common(VFIOPCIDevice *vdev) { Error *err = NULL; int i; for (i = 0; i < vdev->nr_vectors; i++) { VFIOMSIVector *vector = &vdev->msi_vectors[i]; if (vdev->msi_vectors[i].use) { if (vector->virq >= 0) { vfio_remove_kvm_msi_virq(vector); } qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt), NULL, NULL, NULL); event_notifier_cleanup(&vector->interrupt); } } g_free(vdev->msi_vectors); vdev->msi_vectors = NULL; vdev->nr_vectors = 0; vdev->interrupt = VFIO_INT_NONE; vfio_intx_enable(vdev, &err); if (err) { error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name); } } static void vfio_msix_disable(VFIOPCIDevice *vdev) { int i; msix_unset_vector_notifiers(&vdev->pdev); /* * MSI-X will only release vectors if MSI-X is still enabled on the * device, check through the rest and release it ourselves if necessary. */ for (i = 0; i < vdev->nr_vectors; i++) { if (vdev->msi_vectors[i].use) { vfio_msix_vector_release(&vdev->pdev, i); msix_vector_unuse(&vdev->pdev, i); } } if (vdev->nr_vectors) { vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX); } vfio_msi_disable_common(vdev); memset(vdev->msix->pending, 0, BITS_TO_LONGS(vdev->msix->entries) * sizeof(unsigned long)); trace_vfio_msix_disable(vdev->vbasedev.name); } static void vfio_msi_disable(VFIOPCIDevice *vdev) { vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSI_IRQ_INDEX); vfio_msi_disable_common(vdev); trace_vfio_msi_disable(vdev->vbasedev.name); } static void vfio_update_msi(VFIOPCIDevice *vdev) { int i; for (i = 0; i < vdev->nr_vectors; i++) { VFIOMSIVector *vector = &vdev->msi_vectors[i]; MSIMessage msg; if (!vector->use || vector->virq < 0) { continue; } msg = msi_get_message(&vdev->pdev, i); vfio_update_kvm_msi_virq(vector, msg, &vdev->pdev); } } static void vfio_pci_load_rom(VFIOPCIDevice *vdev) { struct vfio_region_info *reg_info; uint64_t size; off_t off = 0; ssize_t bytes; if (vfio_get_region_info(&vdev->vbasedev, VFIO_PCI_ROM_REGION_INDEX, ®_info)) { error_report("vfio: Error getting ROM info: %m"); return; } trace_vfio_pci_load_rom(vdev->vbasedev.name, (unsigned long)reg_info->size, (unsigned long)reg_info->offset, (unsigned long)reg_info->flags); vdev->rom_size = size = reg_info->size; vdev->rom_offset = reg_info->offset; g_free(reg_info); if (!vdev->rom_size) { vdev->rom_read_failed = true; error_report("vfio-pci: Cannot read device rom at " "%s", vdev->vbasedev.name); error_printf("Device option ROM contents are probably invalid " "(check dmesg).\nSkip option ROM probe with rombar=0, " "or load from file with romfile=\n"); return; } vdev->rom = g_malloc(size); memset(vdev->rom, 0xff, size); while (size) { bytes = pread(vdev->vbasedev.fd, vdev->rom + off, size, vdev->rom_offset + off); if (bytes == 0) { break; } else if (bytes > 0) { off += bytes; size -= bytes; } else { if (errno == EINTR || errno == EAGAIN) { continue; } error_report("vfio: Error reading device ROM: %m"); break; } } /* * Test the ROM signature against our device, if the vendor is correct * but the device ID doesn't match, store the correct device ID and * recompute the checksum. Intel IGD devices need this and are known * to have bogus checksums so we can't simply adjust the checksum. */ if (pci_get_word(vdev->rom) == 0xaa55 && pci_get_word(vdev->rom + 0x18) + 8 < vdev->rom_size && !memcmp(vdev->rom + pci_get_word(vdev->rom + 0x18), "PCIR", 4)) { uint16_t vid, did; vid = pci_get_word(vdev->rom + pci_get_word(vdev->rom + 0x18) + 4); did = pci_get_word(vdev->rom + pci_get_word(vdev->rom + 0x18) + 6); if (vid == vdev->vendor_id && did != vdev->device_id) { int i; uint8_t csum, *data = vdev->rom; pci_set_word(vdev->rom + pci_get_word(vdev->rom + 0x18) + 6, vdev->device_id); data[6] = 0; for (csum = 0, i = 0; i < vdev->rom_size; i++) { csum += data[i]; } data[6] = -csum; } } } static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size) { VFIOPCIDevice *vdev = opaque; union { uint8_t byte; uint16_t word; uint32_t dword; uint64_t qword; } val; uint64_t data = 0; /* Load the ROM lazily when the guest tries to read it */ if (unlikely(!vdev->rom && !vdev->rom_read_failed)) { vfio_pci_load_rom(vdev); } memcpy(&val, vdev->rom + addr, (addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0); switch (size) { case 1: data = val.byte; break; case 2: data = le16_to_cpu(val.word); break; case 4: data = le32_to_cpu(val.dword); break; default: hw_error("vfio: unsupported read size, %d bytes\n", size); break; } trace_vfio_rom_read(vdev->vbasedev.name, addr, size, data); return data; } static void vfio_rom_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { } static const MemoryRegionOps vfio_rom_ops = { .read = vfio_rom_read, .write = vfio_rom_write, .endianness = DEVICE_LITTLE_ENDIAN, }; static void vfio_pci_size_rom(VFIOPCIDevice *vdev) { uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK); off_t offset = vdev->config_offset + PCI_ROM_ADDRESS; DeviceState *dev = DEVICE(vdev); char *name; int fd = vdev->vbasedev.fd; if (vdev->pdev.romfile || !vdev->pdev.rom_bar) { /* Since pci handles romfile, just print a message and return */ if (vfio_blacklist_opt_rom(vdev) && vdev->pdev.romfile) { error_printf("Warning : Device at %s is known to cause system instability issues during option rom execution. Proceeding anyway since user specified romfile\n", vdev->vbasedev.name); } return; } /* * Use the same size ROM BAR as the physical device. The contents * will get filled in later when the guest tries to read it. */ if (pread(fd, &orig, 4, offset) != 4 || pwrite(fd, &size, 4, offset) != 4 || pread(fd, &size, 4, offset) != 4 || pwrite(fd, &orig, 4, offset) != 4) { error_report("%s(%s) failed: %m", __func__, vdev->vbasedev.name); return; } size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1; if (!size) { return; } if (vfio_blacklist_opt_rom(vdev)) { if (dev->opts && qemu_opt_get(dev->opts, "rombar")) { error_printf("Warning : Device at %s is known to cause system instability issues during option rom execution. Proceeding anyway since user specified non zero value for rombar\n", vdev->vbasedev.name); } else { error_printf("Warning : Rom loading for device at %s has been disabled due to system instability issues. Specify rombar=1 or romfile to force\n", vdev->vbasedev.name); return; } } trace_vfio_pci_size_rom(vdev->vbasedev.name, size); name = g_strdup_printf("vfio[%s].rom", vdev->vbasedev.name); memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev), &vfio_rom_ops, vdev, name, size); g_free(name); pci_register_bar(&vdev->pdev, PCI_ROM_SLOT, PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom); vdev->pdev.has_rom = true; vdev->rom_read_failed = false; } void vfio_vga_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOVGARegion *region = opaque; VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); union { uint8_t byte; uint16_t word; uint32_t dword; uint64_t qword; } buf; off_t offset = vga->fd_offset + region->offset + addr; switch (size) { case 1: buf.byte = data; break; case 2: buf.word = cpu_to_le16(data); break; case 4: buf.dword = cpu_to_le32(data); break; default: hw_error("vfio: unsupported write size, %d bytes", size); break; } if (pwrite(vga->fd, &buf, size, offset) != size) { error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m", __func__, region->offset + addr, data, size); } trace_vfio_vga_write(region->offset + addr, data, size); } uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size) { VFIOVGARegion *region = opaque; VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]); union { uint8_t byte; uint16_t word; uint32_t dword; uint64_t qword; } buf; uint64_t data = 0; off_t offset = vga->fd_offset + region->offset + addr; if (pread(vga->fd, &buf, size, offset) != size) { error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m", __func__, region->offset + addr, size); return (uint64_t)-1; } switch (size) { case 1: data = buf.byte; break; case 2: data = le16_to_cpu(buf.word); break; case 4: data = le32_to_cpu(buf.dword); break; default: hw_error("vfio: unsupported read size, %d bytes", size); break; } trace_vfio_vga_read(region->offset + addr, size, data); return data; } static const MemoryRegionOps vfio_vga_ops = { .read = vfio_vga_read, .write = vfio_vga_write, .endianness = DEVICE_LITTLE_ENDIAN, }; /* * Expand memory region of sub-page(size < PAGE_SIZE) MMIO BAR to page * size if the BAR is in an exclusive page in host so that we could map * this BAR to guest. But this sub-page BAR may not occupy an exclusive * page in guest. So we should set the priority of the expanded memory * region to zero in case of overlap with BARs which share the same page * with the sub-page BAR in guest. Besides, we should also recover the * size of this sub-page BAR when its base address is changed in guest * and not page aligned any more. */ static void vfio_sub_page_bar_update_mapping(PCIDevice *pdev, int bar) { VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); VFIORegion *region = &vdev->bars[bar].region; MemoryRegion *mmap_mr, *region_mr, *base_mr; PCIIORegion *r; pcibus_t bar_addr; uint64_t size = region->size; /* Make sure that the whole region is allowed to be mmapped */ if (region->nr_mmaps != 1 || !region->mmaps[0].mmap || region->mmaps[0].size != region->size) { return; } r = &pdev->io_regions[bar]; bar_addr = r->addr; base_mr = vdev->bars[bar].mr; region_mr = region->mem; mmap_mr = ®ion->mmaps[0].mem; /* If BAR is mapped and page aligned, update to fill PAGE_SIZE */ if (bar_addr != PCI_BAR_UNMAPPED && !(bar_addr & ~qemu_real_host_page_mask)) { size = qemu_real_host_page_size; } memory_region_transaction_begin(); if (vdev->bars[bar].size < size) { memory_region_set_size(base_mr, size); } memory_region_set_size(region_mr, size); memory_region_set_size(mmap_mr, size); if (size != vdev->bars[bar].size && memory_region_is_mapped(base_mr)) { memory_region_del_subregion(r->address_space, base_mr); memory_region_add_subregion_overlap(r->address_space, bar_addr, base_mr, 0); } memory_region_transaction_commit(); } /* * PCI config space */ uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len) { VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val; memcpy(&emu_bits, vdev->emulated_config_bits + addr, len); emu_bits = le32_to_cpu(emu_bits); if (emu_bits) { emu_val = pci_default_read_config(pdev, addr, len); } if (~emu_bits & (0xffffffffU >> (32 - len * 8))) { ssize_t ret; ret = pread(vdev->vbasedev.fd, &phys_val, len, vdev->config_offset + addr); if (ret != len) { error_report("%s(%s, 0x%x, 0x%x) failed: %m", __func__, vdev->vbasedev.name, addr, len); return -errno; } phys_val = le32_to_cpu(phys_val); } val = (emu_val & emu_bits) | (phys_val & ~emu_bits); trace_vfio_pci_read_config(vdev->vbasedev.name, addr, len, val); return val; } void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr, uint32_t val, int len) { VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); uint32_t val_le = cpu_to_le32(val); trace_vfio_pci_write_config(vdev->vbasedev.name, addr, val, len); /* Write everything to VFIO, let it filter out what we can't write */ if (pwrite(vdev->vbasedev.fd, &val_le, len, vdev->config_offset + addr) != len) { error_report("%s(%s, 0x%x, 0x%x, 0x%x) failed: %m", __func__, vdev->vbasedev.name, addr, val, len); } /* MSI/MSI-X Enabling/Disabling */ if (pdev->cap_present & QEMU_PCI_CAP_MSI && ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) { int is_enabled, was_enabled = msi_enabled(pdev); pci_default_write_config(pdev, addr, val, len); is_enabled = msi_enabled(pdev); if (!was_enabled) { if (is_enabled) { vfio_msi_enable(vdev); } } else { if (!is_enabled) { vfio_msi_disable(vdev); } else { vfio_update_msi(vdev); } } } else if (pdev->cap_present & QEMU_PCI_CAP_MSIX && ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) { int is_enabled, was_enabled = msix_enabled(pdev); pci_default_write_config(pdev, addr, val, len); is_enabled = msix_enabled(pdev); if (!was_enabled && is_enabled) { vfio_msix_enable(vdev); } else if (was_enabled && !is_enabled) { vfio_msix_disable(vdev); } } else if (ranges_overlap(addr, len, PCI_BASE_ADDRESS_0, 24) || range_covers_byte(addr, len, PCI_COMMAND)) { pcibus_t old_addr[PCI_NUM_REGIONS - 1]; int bar; for (bar = 0; bar < PCI_ROM_SLOT; bar++) { old_addr[bar] = pdev->io_regions[bar].addr; } pci_default_write_config(pdev, addr, val, len); for (bar = 0; bar < PCI_ROM_SLOT; bar++) { if (old_addr[bar] != pdev->io_regions[bar].addr && vdev->bars[bar].region.size > 0 && vdev->bars[bar].region.size < qemu_real_host_page_size) { vfio_sub_page_bar_update_mapping(pdev, bar); } } } else { /* Write everything to QEMU to keep emulated bits correct */ pci_default_write_config(pdev, addr, val, len); } } /* * Interrupt setup */ static void vfio_disable_interrupts(VFIOPCIDevice *vdev) { /* * More complicated than it looks. Disabling MSI/X transitions the * device to INTx mode (if supported). Therefore we need to first * disable MSI/X and then cleanup by disabling INTx. */ if (vdev->interrupt == VFIO_INT_MSIX) { vfio_msix_disable(vdev); } else if (vdev->interrupt == VFIO_INT_MSI) { vfio_msi_disable(vdev); } if (vdev->interrupt == VFIO_INT_INTx) { vfio_intx_disable(vdev); } } static int vfio_msi_setup(VFIOPCIDevice *vdev, int pos, Error **errp) { uint16_t ctrl; bool msi_64bit, msi_maskbit; int ret, entries; Error *err = NULL; if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl), vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { error_setg_errno(errp, errno, "failed reading MSI PCI_CAP_FLAGS"); return -errno; } ctrl = le16_to_cpu(ctrl); msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT); msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT); entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1); trace_vfio_msi_setup(vdev->vbasedev.name, pos); ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit, &err); if (ret < 0) { if (ret == -ENOTSUP) { return 0; } error_prepend(&err, "msi_init failed: "); error_propagate(errp, err); return ret; } vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0); return 0; } static void vfio_pci_fixup_msix_region(VFIOPCIDevice *vdev) { off_t start, end; VFIORegion *region = &vdev->bars[vdev->msix->table_bar].region; /* * If the host driver allows mapping of a MSIX data, we are going to * do map the entire BAR and emulate MSIX table on top of that. */ if (vfio_has_region_cap(&vdev->vbasedev, region->nr, VFIO_REGION_INFO_CAP_MSIX_MAPPABLE)) { return; } /* * We expect to find a single mmap covering the whole BAR, anything else * means it's either unsupported or already setup. */ if (region->nr_mmaps != 1 || region->mmaps[0].offset || region->size != region->mmaps[0].size) { return; } /* MSI-X table start and end aligned to host page size */ start = vdev->msix->table_offset & qemu_real_host_page_mask; end = REAL_HOST_PAGE_ALIGN((uint64_t)vdev->msix->table_offset + (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE)); /* * Does the MSI-X table cover the beginning of the BAR? The whole BAR? * NB - Host page size is necessarily a power of two and so is the PCI * BAR (not counting EA yet), therefore if we have host page aligned * @start and @end, then any remainder of the BAR before or after those * must be at least host page sized and therefore mmap'able. */ if (!start) { if (end >= region->size) { region->nr_mmaps = 0; g_free(region->mmaps); region->mmaps = NULL; trace_vfio_msix_fixup(vdev->vbasedev.name, vdev->msix->table_bar, 0, 0); } else { region->mmaps[0].offset = end; region->mmaps[0].size = region->size - end; trace_vfio_msix_fixup(vdev->vbasedev.name, vdev->msix->table_bar, region->mmaps[0].offset, region->mmaps[0].offset + region->mmaps[0].size); } /* Maybe it's aligned at the end of the BAR */ } else if (end >= region->size) { region->mmaps[0].size = start; trace_vfio_msix_fixup(vdev->vbasedev.name, vdev->msix->table_bar, region->mmaps[0].offset, region->mmaps[0].offset + region->mmaps[0].size); /* Otherwise it must split the BAR */ } else { region->nr_mmaps = 2; region->mmaps = g_renew(VFIOMmap, region->mmaps, 2); memcpy(®ion->mmaps[1], ®ion->mmaps[0], sizeof(VFIOMmap)); region->mmaps[0].size = start; trace_vfio_msix_fixup(vdev->vbasedev.name, vdev->msix->table_bar, region->mmaps[0].offset, region->mmaps[0].offset + region->mmaps[0].size); region->mmaps[1].offset = end; region->mmaps[1].size = region->size - end; trace_vfio_msix_fixup(vdev->vbasedev.name, vdev->msix->table_bar, region->mmaps[1].offset, region->mmaps[1].offset + region->mmaps[1].size); } } static void vfio_pci_relocate_msix(VFIOPCIDevice *vdev, Error **errp) { int target_bar = -1; size_t msix_sz; if (!vdev->msix || vdev->msix_relo == OFF_AUTOPCIBAR_OFF) { return; } /* The actual minimum size of MSI-X structures */ msix_sz = (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE) + (QEMU_ALIGN_UP(vdev->msix->entries, 64) / 8); /* Round up to host pages, we don't want to share a page */ msix_sz = REAL_HOST_PAGE_ALIGN(msix_sz); /* PCI BARs must be a power of 2 */ msix_sz = pow2ceil(msix_sz); if (vdev->msix_relo == OFF_AUTOPCIBAR_AUTO) { /* * TODO: Lookup table for known devices. * * Logically we might use an algorithm here to select the BAR adding * the least additional MMIO space, but we cannot programatically * predict the driver dependency on BAR ordering or sizing, therefore * 'auto' becomes a lookup for combinations reported to work. */ if (target_bar < 0) { error_setg(errp, "No automatic MSI-X relocation available for " "device %04x:%04x", vdev->vendor_id, vdev->device_id); return; } } else { target_bar = (int)(vdev->msix_relo - OFF_AUTOPCIBAR_BAR0); } /* I/O port BARs cannot host MSI-X structures */ if (vdev->bars[target_bar].ioport) { error_setg(errp, "Invalid MSI-X relocation BAR %d, " "I/O port BAR", target_bar); return; } /* Cannot use a BAR in the "shadow" of a 64-bit BAR */ if (!vdev->bars[target_bar].size && target_bar > 0 && vdev->bars[target_bar - 1].mem64) { error_setg(errp, "Invalid MSI-X relocation BAR %d, " "consumed by 64-bit BAR %d", target_bar, target_bar - 1); return; } /* 2GB max size for 32-bit BARs, cannot double if already > 1G */ if (vdev->bars[target_bar].size > 1 * GiB && !vdev->bars[target_bar].mem64) { error_setg(errp, "Invalid MSI-X relocation BAR %d, " "no space to extend 32-bit BAR", target_bar); return; } /* * If adding a new BAR, test if we can make it 64bit. We make it * prefetchable since QEMU MSI-X emulation has no read side effects * and doing so makes mapping more flexible. */ if (!vdev->bars[target_bar].size) { if (target_bar < (PCI_ROM_SLOT - 1) && !vdev->bars[target_bar + 1].size) { vdev->bars[target_bar].mem64 = true; vdev->bars[target_bar].type = PCI_BASE_ADDRESS_MEM_TYPE_64; } vdev->bars[target_bar].type |= PCI_BASE_ADDRESS_MEM_PREFETCH; vdev->bars[target_bar].size = msix_sz; vdev->msix->table_offset = 0; } else { vdev->bars[target_bar].size = MAX(vdev->bars[target_bar].size * 2, msix_sz * 2); /* * Due to above size calc, MSI-X always starts halfway into the BAR, * which will always be a separate host page. */ vdev->msix->table_offset = vdev->bars[target_bar].size / 2; } vdev->msix->table_bar = target_bar; vdev->msix->pba_bar = target_bar; /* Requires 8-byte alignment, but PCI_MSIX_ENTRY_SIZE guarantees that */ vdev->msix->pba_offset = vdev->msix->table_offset + (vdev->msix->entries * PCI_MSIX_ENTRY_SIZE); trace_vfio_msix_relo(vdev->vbasedev.name, vdev->msix->table_bar, vdev->msix->table_offset); } /* * We don't have any control over how pci_add_capability() inserts * capabilities into the chain. In order to setup MSI-X we need a * MemoryRegion for the BAR. In order to setup the BAR and not * attempt to mmap the MSI-X table area, which VFIO won't allow, we * need to first look for where the MSI-X table lives. So we * unfortunately split MSI-X setup across two functions. */ static void vfio_msix_early_setup(VFIOPCIDevice *vdev, Error **errp) { uint8_t pos; uint16_t ctrl; uint32_t table, pba; int fd = vdev->vbasedev.fd; VFIOMSIXInfo *msix; pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX); if (!pos) { return; } if (pread(fd, &ctrl, sizeof(ctrl), vdev->config_offset + pos + PCI_MSIX_FLAGS) != sizeof(ctrl)) { error_setg_errno(errp, errno, "failed to read PCI MSIX FLAGS"); return; } if (pread(fd, &table, sizeof(table), vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) { error_setg_errno(errp, errno, "failed to read PCI MSIX TABLE"); return; } if (pread(fd, &pba, sizeof(pba), vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) { error_setg_errno(errp, errno, "failed to read PCI MSIX PBA"); return; } ctrl = le16_to_cpu(ctrl); table = le32_to_cpu(table); pba = le32_to_cpu(pba); msix = g_malloc0(sizeof(*msix)); msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK; msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK; msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK; msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK; msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1; /* * Test the size of the pba_offset variable and catch if it extends outside * of the specified BAR. If it is the case, we need to apply a hardware * specific quirk if the device is known or we have a broken configuration. */ if (msix->pba_offset >= vdev->bars[msix->pba_bar].region.size) { /* * Chelsio T5 Virtual Function devices are encoded as 0x58xx for T5 * adapters. The T5 hardware returns an incorrect value of 0x8000 for * the VF PBA offset while the BAR itself is only 8k. The correct value * is 0x1000, so we hard code that here. */ if (vdev->vendor_id == PCI_VENDOR_ID_CHELSIO && (vdev->device_id & 0xff00) == 0x5800) { msix->pba_offset = 0x1000; } else { error_setg(errp, "hardware reports invalid configuration, " "MSIX PBA outside of specified BAR"); g_free(msix); return; } } trace_vfio_msix_early_setup(vdev->vbasedev.name, pos, msix->table_bar, msix->table_offset, msix->entries); vdev->msix = msix; vfio_pci_fixup_msix_region(vdev); vfio_pci_relocate_msix(vdev, errp); } static int vfio_msix_setup(VFIOPCIDevice *vdev, int pos, Error **errp) { int ret; Error *err = NULL; vdev->msix->pending = g_malloc0(BITS_TO_LONGS(vdev->msix->entries) * sizeof(unsigned long)); ret = msix_init(&vdev->pdev, vdev->msix->entries, vdev->bars[vdev->msix->table_bar].mr, vdev->msix->table_bar, vdev->msix->table_offset, vdev->bars[vdev->msix->pba_bar].mr, vdev->msix->pba_bar, vdev->msix->pba_offset, pos, &err); if (ret < 0) { if (ret == -ENOTSUP) { error_report_err(err); return 0; } error_propagate(errp, err); return ret; } /* * The PCI spec suggests that devices provide additional alignment for * MSI-X structures and avoid overlapping non-MSI-X related registers. * For an assigned device, this hopefully means that emulation of MSI-X * structures does not affect the performance of the device. If devices * fail to provide that alignment, a significant performance penalty may * result, for instance Mellanox MT27500 VFs: * http://www.spinics.net/lists/kvm/msg125881.html * * The PBA is simply not that important for such a serious regression and * most drivers do not appear to look at it. The solution for this is to * disable the PBA MemoryRegion unless it's being used. We disable it * here and only enable it if a masked vector fires through QEMU. As the * vector-use notifier is called, which occurs on unmask, we test whether * PBA emulation is needed and again disable if not. */ memory_region_set_enabled(&vdev->pdev.msix_pba_mmio, false); /* * The emulated machine may provide a paravirt interface for MSIX setup * so it is not strictly necessary to emulate MSIX here. This becomes * helpful when frequently accessed MMIO registers are located in * subpages adjacent to the MSIX table but the MSIX data containing page * cannot be mapped because of a host page size bigger than the MSIX table * alignment. */ if (object_property_get_bool(OBJECT(qdev_get_machine()), "vfio-no-msix-emulation", NULL)) { memory_region_set_enabled(&vdev->pdev.msix_table_mmio, false); } return 0; } static void vfio_teardown_msi(VFIOPCIDevice *vdev) { msi_uninit(&vdev->pdev); if (vdev->msix) { msix_uninit(&vdev->pdev, vdev->bars[vdev->msix->table_bar].mr, vdev->bars[vdev->msix->pba_bar].mr); g_free(vdev->msix->pending); } } /* * Resource setup */ static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled) { int i; for (i = 0; i < PCI_ROM_SLOT; i++) { vfio_region_mmaps_set_enabled(&vdev->bars[i].region, enabled); } } static void vfio_bar_prepare(VFIOPCIDevice *vdev, int nr) { VFIOBAR *bar = &vdev->bars[nr]; uint32_t pci_bar; int ret; /* Skip both unimplemented BARs and the upper half of 64bit BARS. */ if (!bar->region.size) { return; } /* Determine what type of BAR this is for registration */ ret = pread(vdev->vbasedev.fd, &pci_bar, sizeof(pci_bar), vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr)); if (ret != sizeof(pci_bar)) { error_report("vfio: Failed to read BAR %d (%m)", nr); return; } pci_bar = le32_to_cpu(pci_bar); bar->ioport = (pci_bar & PCI_BASE_ADDRESS_SPACE_IO); bar->mem64 = bar->ioport ? 0 : (pci_bar & PCI_BASE_ADDRESS_MEM_TYPE_64); bar->type = pci_bar & (bar->ioport ? ~PCI_BASE_ADDRESS_IO_MASK : ~PCI_BASE_ADDRESS_MEM_MASK); bar->size = bar->region.size; } static void vfio_bars_prepare(VFIOPCIDevice *vdev) { int i; for (i = 0; i < PCI_ROM_SLOT; i++) { vfio_bar_prepare(vdev, i); } } static void vfio_bar_register(VFIOPCIDevice *vdev, int nr) { VFIOBAR *bar = &vdev->bars[nr]; char *name; if (!bar->size) { return; } bar->mr = g_new0(MemoryRegion, 1); name = g_strdup_printf("%s base BAR %d", vdev->vbasedev.name, nr); memory_region_init_io(bar->mr, OBJECT(vdev), NULL, NULL, name, bar->size); g_free(name); if (bar->region.size) { memory_region_add_subregion(bar->mr, 0, bar->region.mem); if (vfio_region_mmap(&bar->region)) { error_report("Failed to mmap %s BAR %d. Performance may be slow", vdev->vbasedev.name, nr); } } pci_register_bar(&vdev->pdev, nr, bar->type, bar->mr); } static void vfio_bars_register(VFIOPCIDevice *vdev) { int i; for (i = 0; i < PCI_ROM_SLOT; i++) { vfio_bar_register(vdev, i); } } static void vfio_bars_exit(VFIOPCIDevice *vdev) { int i; for (i = 0; i < PCI_ROM_SLOT; i++) { VFIOBAR *bar = &vdev->bars[i]; vfio_bar_quirk_exit(vdev, i); vfio_region_exit(&bar->region); if (bar->region.size) { memory_region_del_subregion(bar->mr, bar->region.mem); } } if (vdev->vga) { pci_unregister_vga(&vdev->pdev); vfio_vga_quirk_exit(vdev); } } static void vfio_bars_finalize(VFIOPCIDevice *vdev) { int i; for (i = 0; i < PCI_ROM_SLOT; i++) { VFIOBAR *bar = &vdev->bars[i]; vfio_bar_quirk_finalize(vdev, i); vfio_region_finalize(&bar->region); if (bar->size) { object_unparent(OBJECT(bar->mr)); g_free(bar->mr); } } if (vdev->vga) { vfio_vga_quirk_finalize(vdev); for (i = 0; i < ARRAY_SIZE(vdev->vga->region); i++) { object_unparent(OBJECT(&vdev->vga->region[i].mem)); } g_free(vdev->vga); } } /* * General setup */ static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos) { uint8_t tmp; uint16_t next = PCI_CONFIG_SPACE_SIZE; for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp; tmp = pdev->config[tmp + PCI_CAP_LIST_NEXT]) { if (tmp > pos && tmp < next) { next = tmp; } } return next - pos; } static uint16_t vfio_ext_cap_max_size(const uint8_t *config, uint16_t pos) { uint16_t tmp, next = PCIE_CONFIG_SPACE_SIZE; for (tmp = PCI_CONFIG_SPACE_SIZE; tmp; tmp = PCI_EXT_CAP_NEXT(pci_get_long(config + tmp))) { if (tmp > pos && tmp < next) { next = tmp; } } return next - pos; } static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask) { pci_set_word(buf, (pci_get_word(buf) & ~mask) | val); } static void vfio_add_emulated_word(VFIOPCIDevice *vdev, int pos, uint16_t val, uint16_t mask) { vfio_set_word_bits(vdev->pdev.config + pos, val, mask); vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask); vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask); } static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask) { pci_set_long(buf, (pci_get_long(buf) & ~mask) | val); } static void vfio_add_emulated_long(VFIOPCIDevice *vdev, int pos, uint32_t val, uint32_t mask) { vfio_set_long_bits(vdev->pdev.config + pos, val, mask); vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask); vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask); } static int vfio_setup_pcie_cap(VFIOPCIDevice *vdev, int pos, uint8_t size, Error **errp) { uint16_t flags; uint8_t type; flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS); type = (flags & PCI_EXP_FLAGS_TYPE) >> 4; if (type != PCI_EXP_TYPE_ENDPOINT && type != PCI_EXP_TYPE_LEG_END && type != PCI_EXP_TYPE_RC_END) { error_setg(errp, "assignment of PCIe type 0x%x " "devices is not currently supported", type); return -EINVAL; } if (!pci_bus_is_express(pci_get_bus(&vdev->pdev))) { PCIBus *bus = pci_get_bus(&vdev->pdev); PCIDevice *bridge; /* * Traditionally PCI device assignment exposes the PCIe capability * as-is on non-express buses. The reason being that some drivers * simply assume that it's there, for example tg3. However when * we're running on a native PCIe machine type, like Q35, we need * to hide the PCIe capability. The reason for this is twofold; * first Windows guests get a Code 10 error when the PCIe capability * is exposed in this configuration. Therefore express devices won't * work at all unless they're attached to express buses in the VM. * Second, a native PCIe machine introduces the possibility of fine * granularity IOMMUs supporting both translation and isolation. * Guest code to discover the IOMMU visibility of a device, such as * IOMMU grouping code on Linux, is very aware of device types and * valid transitions between bus types. An express device on a non- * express bus is not a valid combination on bare metal systems. * * Drivers that require a PCIe capability to make the device * functional are simply going to need to have their devices placed * on a PCIe bus in the VM. */ while (!pci_bus_is_root(bus)) { bridge = pci_bridge_get_device(bus); bus = pci_get_bus(bridge); } if (pci_bus_is_express(bus)) { return 0; } } else if (pci_bus_is_root(pci_get_bus(&vdev->pdev))) { /* * On a Root Complex bus Endpoints become Root Complex Integrated * Endpoints, which changes the type and clears the LNK & LNK2 fields. */ if (type == PCI_EXP_TYPE_ENDPOINT) { vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, PCI_EXP_TYPE_RC_END << 4, PCI_EXP_FLAGS_TYPE); /* Link Capabilities, Status, and Control goes away */ if (size > PCI_EXP_LNKCTL) { vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0); vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0); #ifndef PCI_EXP_LNKCAP2 #define PCI_EXP_LNKCAP2 44 #endif #ifndef PCI_EXP_LNKSTA2 #define PCI_EXP_LNKSTA2 50 #endif /* Link 2 Capabilities, Status, and Control goes away */ if (size > PCI_EXP_LNKCAP2) { vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0); vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0); vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0); } } } else if (type == PCI_EXP_TYPE_LEG_END) { /* * Legacy endpoints don't belong on the root complex. Windows * seems to be happier with devices if we skip the capability. */ return 0; } } else { /* * Convert Root Complex Integrated Endpoints to regular endpoints. * These devices don't support LNK/LNK2 capabilities, so make them up. */ if (type == PCI_EXP_TYPE_RC_END) { vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, PCI_EXP_TYPE_ENDPOINT << 4, PCI_EXP_FLAGS_TYPE); vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, PCI_EXP_LNK_MLW_1 | PCI_EXP_LNK_LS_25, ~0); vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0); } /* Mark the Link Status bits as emulated to allow virtual negotiation */ vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, pci_get_word(vdev->pdev.config + pos + PCI_EXP_LNKSTA), PCI_EXP_LNKCAP_MLW | PCI_EXP_LNKCAP_SLS); } /* * Intel 82599 SR-IOV VFs report an invalid PCIe capability version 0 * (Niantic errate #35) causing Windows to error with a Code 10 for the * device on Q35. Fixup any such devices to report version 1. If we * were to remove the capability entirely the guest would lose extended * config space. */ if ((flags & PCI_EXP_FLAGS_VERS) == 0) { vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS, 1, PCI_EXP_FLAGS_VERS); } pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size, errp); if (pos < 0) { return pos; } vdev->pdev.exp.exp_cap = pos; return pos; } static void vfio_check_pcie_flr(VFIOPCIDevice *vdev, uint8_t pos) { uint32_t cap = pci_get_long(vdev->pdev.config + pos + PCI_EXP_DEVCAP); if (cap & PCI_EXP_DEVCAP_FLR) { trace_vfio_check_pcie_flr(vdev->vbasedev.name); vdev->has_flr = true; } } static void vfio_check_pm_reset(VFIOPCIDevice *vdev, uint8_t pos) { uint16_t csr = pci_get_word(vdev->pdev.config + pos + PCI_PM_CTRL); if (!(csr & PCI_PM_CTRL_NO_SOFT_RESET)) { trace_vfio_check_pm_reset(vdev->vbasedev.name); vdev->has_pm_reset = true; } } static void vfio_check_af_flr(VFIOPCIDevice *vdev, uint8_t pos) { uint8_t cap = pci_get_byte(vdev->pdev.config + pos + PCI_AF_CAP); if ((cap & PCI_AF_CAP_TP) && (cap & PCI_AF_CAP_FLR)) { trace_vfio_check_af_flr(vdev->vbasedev.name); vdev->has_flr = true; } } static int vfio_add_std_cap(VFIOPCIDevice *vdev, uint8_t pos, Error **errp) { PCIDevice *pdev = &vdev->pdev; uint8_t cap_id, next, size; int ret; cap_id = pdev->config[pos]; next = pdev->config[pos + PCI_CAP_LIST_NEXT]; /* * If it becomes important to configure capabilities to their actual * size, use this as the default when it's something we don't recognize. * Since QEMU doesn't actually handle many of the config accesses, * exact size doesn't seem worthwhile. */ size = vfio_std_cap_max_size(pdev, pos); /* * pci_add_capability always inserts the new capability at the head * of the chain. Therefore to end up with a chain that matches the * physical device, we insert from the end by making this recursive. * This is also why we pre-calculate size above as cached config space * will be changed as we unwind the stack. */ if (next) { ret = vfio_add_std_cap(vdev, next, errp); if (ret) { return ret; } } else { /* Begin the rebuild, use QEMU emulated list bits */ pdev->config[PCI_CAPABILITY_LIST] = 0; vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff; vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST; ret = vfio_add_virt_caps(vdev, errp); if (ret) { return ret; } } /* Scale down size, esp in case virt caps were added above */ size = MIN(size, vfio_std_cap_max_size(pdev, pos)); /* Use emulated next pointer to allow dropping caps */ pci_set_byte(vdev->emulated_config_bits + pos + PCI_CAP_LIST_NEXT, 0xff); switch (cap_id) { case PCI_CAP_ID_MSI: ret = vfio_msi_setup(vdev, pos, errp); break; case PCI_CAP_ID_EXP: vfio_check_pcie_flr(vdev, pos); ret = vfio_setup_pcie_cap(vdev, pos, size, errp); break; case PCI_CAP_ID_MSIX: ret = vfio_msix_setup(vdev, pos, errp); break; case PCI_CAP_ID_PM: vfio_check_pm_reset(vdev, pos); vdev->pm_cap = pos; ret = pci_add_capability(pdev, cap_id, pos, size, errp); break; case PCI_CAP_ID_AF: vfio_check_af_flr(vdev, pos); ret = pci_add_capability(pdev, cap_id, pos, size, errp); break; default: ret = pci_add_capability(pdev, cap_id, pos, size, errp); break; } if (ret < 0) { error_prepend(errp, "failed to add PCI capability 0x%x[0x%x]@0x%x: ", cap_id, size, pos); return ret; } return 0; } static void vfio_add_ext_cap(VFIOPCIDevice *vdev) { PCIDevice *pdev = &vdev->pdev; uint32_t header; uint16_t cap_id, next, size; uint8_t cap_ver; uint8_t *config; /* Only add extended caps if we have them and the guest can see them */ if (!pci_is_express(pdev) || !pci_bus_is_express(pci_get_bus(pdev)) || !pci_get_long(pdev->config + PCI_CONFIG_SPACE_SIZE)) { return; } /* * pcie_add_capability always inserts the new capability at the tail * of the chain. Therefore to end up with a chain that matches the * physical device, we cache the config space to avoid overwriting * the original config space when we parse the extended capabilities. */ config = g_memdup(pdev->config, vdev->config_size); /* * Extended capabilities are chained with each pointing to the next, so we * can drop anything other than the head of the chain simply by modifying * the previous next pointer. Seed the head of the chain here such that * we can simply skip any capabilities we want to drop below, regardless * of their position in the chain. If this stub capability still exists * after we add the capabilities we want to expose, update the capability * ID to zero. Note that we cannot seed with the capability header being * zero as this conflicts with definition of an absent capability chain * and prevents capabilities beyond the head of the list from being added. * By replacing the dummy capability ID with zero after walking the device * chain, we also transparently mark extended capabilities as absent if * no capabilities were added. Note that the PCIe spec defines an absence * of extended capabilities to be determined by a value of zero for the * capability ID, version, AND next pointer. A non-zero next pointer * should be sufficient to indicate additional capabilities are present, * which will occur if we call pcie_add_capability() below. The entire * first dword is emulated to support this. * * NB. The kernel side does similar masking, so be prepared that our * view of the device may also contain a capability ID zero in the head * of the chain. Skip it for the same reason that we cannot seed the * chain with a zero capability. */ pci_set_long(pdev->config + PCI_CONFIG_SPACE_SIZE, PCI_EXT_CAP(0xFFFF, 0, 0)); pci_set_long(pdev->wmask + PCI_CONFIG_SPACE_SIZE, 0); pci_set_long(vdev->emulated_config_bits + PCI_CONFIG_SPACE_SIZE, ~0); for (next = PCI_CONFIG_SPACE_SIZE; next; next = PCI_EXT_CAP_NEXT(pci_get_long(config + next))) { header = pci_get_long(config + next); cap_id = PCI_EXT_CAP_ID(header); cap_ver = PCI_EXT_CAP_VER(header); /* * If it becomes important to configure extended capabilities to their * actual size, use this as the default when it's something we don't * recognize. Since QEMU doesn't actually handle many of the config * accesses, exact size doesn't seem worthwhile. */ size = vfio_ext_cap_max_size(config, next); /* Use emulated next pointer to allow dropping extended caps */ pci_long_test_and_set_mask(vdev->emulated_config_bits + next, PCI_EXT_CAP_NEXT_MASK); switch (cap_id) { case 0: /* kernel masked capability */ case PCI_EXT_CAP_ID_SRIOV: /* Read-only VF BARs confuse OVMF */ case PCI_EXT_CAP_ID_ARI: /* XXX Needs next function virtualization */ trace_vfio_add_ext_cap_dropped(vdev->vbasedev.name, cap_id, next); break; default: pcie_add_capability(pdev, cap_id, cap_ver, next, size); } } /* Cleanup chain head ID if necessary */ if (pci_get_word(pdev->config + PCI_CONFIG_SPACE_SIZE) == 0xFFFF) { pci_set_word(pdev->config + PCI_CONFIG_SPACE_SIZE, 0); } g_free(config); return; } static int vfio_add_capabilities(VFIOPCIDevice *vdev, Error **errp) { PCIDevice *pdev = &vdev->pdev; int ret; if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) || !pdev->config[PCI_CAPABILITY_LIST]) { return 0; /* Nothing to add */ } ret = vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST], errp); if (ret) { return ret; } vfio_add_ext_cap(vdev); return 0; } static void vfio_pci_pre_reset(VFIOPCIDevice *vdev) { PCIDevice *pdev = &vdev->pdev; uint16_t cmd; vfio_disable_interrupts(vdev); /* Make sure the device is in D0 */ if (vdev->pm_cap) { uint16_t pmcsr; uint8_t state; pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); state = pmcsr & PCI_PM_CTRL_STATE_MASK; if (state) { pmcsr &= ~PCI_PM_CTRL_STATE_MASK; vfio_pci_write_config(pdev, vdev->pm_cap + PCI_PM_CTRL, pmcsr, 2); /* vfio handles the necessary delay here */ pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2); state = pmcsr & PCI_PM_CTRL_STATE_MASK; if (state) { error_report("vfio: Unable to power on device, stuck in D%d", state); } } } /* * Stop any ongoing DMA by disconecting I/O, MMIO, and bus master. * Also put INTx Disable in known state. */ cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2); cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_INTX_DISABLE); vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2); } static void vfio_pci_post_reset(VFIOPCIDevice *vdev) { Error *err = NULL; int nr; vfio_intx_enable(vdev, &err); if (err) { error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name); } for (nr = 0; nr < PCI_NUM_REGIONS - 1; ++nr) { off_t addr = vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr); uint32_t val = 0; uint32_t len = sizeof(val); if (pwrite(vdev->vbasedev.fd, &val, len, addr) != len) { error_report("%s(%s) reset bar %d failed: %m", __func__, vdev->vbasedev.name, nr); } } vfio_quirk_reset(vdev); } static bool vfio_pci_host_match(PCIHostDeviceAddress *addr, const char *name) { char tmp[13]; sprintf(tmp, "%04x:%02x:%02x.%1x", addr->domain, addr->bus, addr->slot, addr->function); return (strcmp(tmp, name) == 0); } static int vfio_pci_hot_reset(VFIOPCIDevice *vdev, bool single) { VFIOGroup *group; struct vfio_pci_hot_reset_info *info; struct vfio_pci_dependent_device *devices; struct vfio_pci_hot_reset *reset; int32_t *fds; int ret, i, count; bool multi = false; trace_vfio_pci_hot_reset(vdev->vbasedev.name, single ? "one" : "multi"); if (!single) { vfio_pci_pre_reset(vdev); } vdev->vbasedev.needs_reset = false; info = g_malloc0(sizeof(*info)); info->argsz = sizeof(*info); ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); if (ret && errno != ENOSPC) { ret = -errno; if (!vdev->has_pm_reset) { error_report("vfio: Cannot reset device %s, " "no available reset mechanism.", vdev->vbasedev.name); } goto out_single; } count = info->count; info = g_realloc(info, sizeof(*info) + (count * sizeof(*devices))); info->argsz = sizeof(*info) + (count * sizeof(*devices)); devices = &info->devices[0]; ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info); if (ret) { ret = -errno; error_report("vfio: hot reset info failed: %m"); goto out_single; } trace_vfio_pci_hot_reset_has_dep_devices(vdev->vbasedev.name); /* Verify that we have all the groups required */ for (i = 0; i < info->count; i++) { PCIHostDeviceAddress host; VFIOPCIDevice *tmp; VFIODevice *vbasedev_iter; host.domain = devices[i].segment; host.bus = devices[i].bus; host.slot = PCI_SLOT(devices[i].devfn); host.function = PCI_FUNC(devices[i].devfn); trace_vfio_pci_hot_reset_dep_devices(host.domain, host.bus, host.slot, host.function, devices[i].group_id); if (vfio_pci_host_match(&host, vdev->vbasedev.name)) { continue; } QLIST_FOREACH(group, &vfio_group_list, next) { if (group->groupid == devices[i].group_id) { break; } } if (!group) { if (!vdev->has_pm_reset) { error_report("vfio: Cannot reset device %s, " "depends on group %d which is not owned.", vdev->vbasedev.name, devices[i].group_id); } ret = -EPERM; goto out; } /* Prep dependent devices for reset and clear our marker. */ QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { if (!vbasedev_iter->dev->realized || vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) { continue; } tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev); if (vfio_pci_host_match(&host, tmp->vbasedev.name)) { if (single) { ret = -EINVAL; goto out_single; } vfio_pci_pre_reset(tmp); tmp->vbasedev.needs_reset = false; multi = true; break; } } } if (!single && !multi) { ret = -EINVAL; goto out_single; } /* Determine how many group fds need to be passed */ count = 0; QLIST_FOREACH(group, &vfio_group_list, next) { for (i = 0; i < info->count; i++) { if (group->groupid == devices[i].group_id) { count++; break; } } } reset = g_malloc0(sizeof(*reset) + (count * sizeof(*fds))); reset->argsz = sizeof(*reset) + (count * sizeof(*fds)); fds = &reset->group_fds[0]; /* Fill in group fds */ QLIST_FOREACH(group, &vfio_group_list, next) { for (i = 0; i < info->count; i++) { if (group->groupid == devices[i].group_id) { fds[reset->count++] = group->fd; break; } } } /* Bus reset! */ ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_PCI_HOT_RESET, reset); g_free(reset); trace_vfio_pci_hot_reset_result(vdev->vbasedev.name, ret ? "%m" : "Success"); out: /* Re-enable INTx on affected devices */ for (i = 0; i < info->count; i++) { PCIHostDeviceAddress host; VFIOPCIDevice *tmp; VFIODevice *vbasedev_iter; host.domain = devices[i].segment; host.bus = devices[i].bus; host.slot = PCI_SLOT(devices[i].devfn); host.function = PCI_FUNC(devices[i].devfn); if (vfio_pci_host_match(&host, vdev->vbasedev.name)) { continue; } QLIST_FOREACH(group, &vfio_group_list, next) { if (group->groupid == devices[i].group_id) { break; } } if (!group) { break; } QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { if (!vbasedev_iter->dev->realized || vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) { continue; } tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev); if (vfio_pci_host_match(&host, tmp->vbasedev.name)) { vfio_pci_post_reset(tmp); break; } } } out_single: if (!single) { vfio_pci_post_reset(vdev); } g_free(info); return ret; } /* * We want to differentiate hot reset of mulitple in-use devices vs hot reset * of a single in-use device. VFIO_DEVICE_RESET will already handle the case * of doing hot resets when there is only a single device per bus. The in-use * here refers to how many VFIODevices are affected. A hot reset that affects * multiple devices, but only a single in-use device, means that we can call * it from our bus ->reset() callback since the extent is effectively a single * device. This allows us to make use of it in the hotplug path. When there * are multiple in-use devices, we can only trigger the hot reset during a * system reset and thus from our reset handler. We separate _one vs _multi * here so that we don't overlap and do a double reset on the system reset * path where both our reset handler and ->reset() callback are used. Calling * _one() will only do a hot reset for the one in-use devices case, calling * _multi() will do nothing if a _one() would have been sufficient. */ static int vfio_pci_hot_reset_one(VFIOPCIDevice *vdev) { return vfio_pci_hot_reset(vdev, true); } static int vfio_pci_hot_reset_multi(VFIODevice *vbasedev) { VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); return vfio_pci_hot_reset(vdev, false); } static void vfio_pci_compute_needs_reset(VFIODevice *vbasedev) { VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev); if (!vbasedev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) { vbasedev->needs_reset = true; } } static VFIODeviceOps vfio_pci_ops = { .vfio_compute_needs_reset = vfio_pci_compute_needs_reset, .vfio_hot_reset_multi = vfio_pci_hot_reset_multi, .vfio_eoi = vfio_intx_eoi, }; int vfio_populate_vga(VFIOPCIDevice *vdev, Error **errp) { VFIODevice *vbasedev = &vdev->vbasedev; struct vfio_region_info *reg_info; int ret; ret = vfio_get_region_info(vbasedev, VFIO_PCI_VGA_REGION_INDEX, ®_info); if (ret) { error_setg_errno(errp, -ret, "failed getting region info for VGA region index %d", VFIO_PCI_VGA_REGION_INDEX); return ret; } if (!(reg_info->flags & VFIO_REGION_INFO_FLAG_READ) || !(reg_info->flags & VFIO_REGION_INFO_FLAG_WRITE) || reg_info->size < 0xbffff + 1) { error_setg(errp, "unexpected VGA info, flags 0x%lx, size 0x%lx", (unsigned long)reg_info->flags, (unsigned long)reg_info->size); g_free(reg_info); return -EINVAL; } vdev->vga = g_new0(VFIOVGA, 1); vdev->vga->fd_offset = reg_info->offset; vdev->vga->fd = vdev->vbasedev.fd; g_free(reg_info); vdev->vga->region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE; vdev->vga->region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM; QLIST_INIT(&vdev->vga->region[QEMU_PCI_VGA_MEM].quirks); memory_region_init_io(&vdev->vga->region[QEMU_PCI_VGA_MEM].mem, OBJECT(vdev), &vfio_vga_ops, &vdev->vga->region[QEMU_PCI_VGA_MEM], "vfio-vga-mmio@0xa0000", QEMU_PCI_VGA_MEM_SIZE); vdev->vga->region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE; vdev->vga->region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO; QLIST_INIT(&vdev->vga->region[QEMU_PCI_VGA_IO_LO].quirks); memory_region_init_io(&vdev->vga->region[QEMU_PCI_VGA_IO_LO].mem, OBJECT(vdev), &vfio_vga_ops, &vdev->vga->region[QEMU_PCI_VGA_IO_LO], "vfio-vga-io@0x3b0", QEMU_PCI_VGA_IO_LO_SIZE); vdev->vga->region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE; vdev->vga->region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI; QLIST_INIT(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].quirks); memory_region_init_io(&vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem, OBJECT(vdev), &vfio_vga_ops, &vdev->vga->region[QEMU_PCI_VGA_IO_HI], "vfio-vga-io@0x3c0", QEMU_PCI_VGA_IO_HI_SIZE); pci_register_vga(&vdev->pdev, &vdev->vga->region[QEMU_PCI_VGA_MEM].mem, &vdev->vga->region[QEMU_PCI_VGA_IO_LO].mem, &vdev->vga->region[QEMU_PCI_VGA_IO_HI].mem); return 0; } static void vfio_populate_device(VFIOPCIDevice *vdev, Error **errp) { VFIODevice *vbasedev = &vdev->vbasedev; struct vfio_region_info *reg_info; struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) }; int i, ret = -1; /* Sanity check device */ if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PCI)) { error_setg(errp, "this isn't a PCI device"); return; } if (vbasedev->num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) { error_setg(errp, "unexpected number of io regions %u", vbasedev->num_regions); return; } if (vbasedev->num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) { error_setg(errp, "unexpected number of irqs %u", vbasedev->num_irqs); return; } for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) { char *name = g_strdup_printf("%s BAR %d", vbasedev->name, i); ret = vfio_region_setup(OBJECT(vdev), vbasedev, &vdev->bars[i].region, i, name); g_free(name); if (ret) { error_setg_errno(errp, -ret, "failed to get region %d info", i); return; } QLIST_INIT(&vdev->bars[i].quirks); } ret = vfio_get_region_info(vbasedev, VFIO_PCI_CONFIG_REGION_INDEX, ®_info); if (ret) { error_setg_errno(errp, -ret, "failed to get config info"); return; } trace_vfio_populate_device_config(vdev->vbasedev.name, (unsigned long)reg_info->size, (unsigned long)reg_info->offset, (unsigned long)reg_info->flags); vdev->config_size = reg_info->size; if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) { vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS; } vdev->config_offset = reg_info->offset; g_free(reg_info); if (vdev->features & VFIO_FEATURE_ENABLE_VGA) { ret = vfio_populate_vga(vdev, errp); if (ret) { error_append_hint(errp, "device does not support " "requested feature x-vga\n"); return; } } irq_info.index = VFIO_PCI_ERR_IRQ_INDEX; ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info); if (ret) { /* This can fail for an old kernel or legacy PCI dev */ trace_vfio_populate_device_get_irq_info_failure(); } else if (irq_info.count == 1) { vdev->pci_aer = true; } else { error_report(WARN_PREFIX "Could not enable error recovery for the device", vbasedev->name); } } static void vfio_put_device(VFIOPCIDevice *vdev) { g_free(vdev->vbasedev.name); g_free(vdev->msix); vfio_put_base_device(&vdev->vbasedev); } static void vfio_err_notifier_handler(void *opaque) { VFIOPCIDevice *vdev = opaque; if (!event_notifier_test_and_clear(&vdev->err_notifier)) { return; } /* * TBD. Retrieve the error details and decide what action * needs to be taken. One of the actions could be to pass * the error to the guest and have the guest driver recover * from the error. This requires that PCIe capabilities be * exposed to the guest. For now, we just terminate the * guest to contain the error. */ error_report("%s(%s) Unrecoverable error detected. Please collect any data possible and then kill the guest", __func__, vdev->vbasedev.name); vm_stop(RUN_STATE_INTERNAL_ERROR); } /* * Registers error notifier for devices supporting error recovery. * If we encounter a failure in this function, we report an error * and continue after disabling error recovery support for the * device. */ static void vfio_register_err_notifier(VFIOPCIDevice *vdev) { int ret; int argsz; struct vfio_irq_set *irq_set; int32_t *pfd; if (!vdev->pci_aer) { return; } if (event_notifier_init(&vdev->err_notifier, 0)) { error_report("vfio: Unable to init event notifier for error detection"); vdev->pci_aer = false; return; } argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_ERR_IRQ_INDEX; irq_set->start = 0; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = event_notifier_get_fd(&vdev->err_notifier); qemu_set_fd_handler(*pfd, vfio_err_notifier_handler, NULL, vdev); ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); if (ret) { error_report("vfio: Failed to set up error notification"); qemu_set_fd_handler(*pfd, NULL, NULL, vdev); event_notifier_cleanup(&vdev->err_notifier); vdev->pci_aer = false; } g_free(irq_set); } static void vfio_unregister_err_notifier(VFIOPCIDevice *vdev) { int argsz; struct vfio_irq_set *irq_set; int32_t *pfd; int ret; if (!vdev->pci_aer) { return; } argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_ERR_IRQ_INDEX; irq_set->start = 0; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = -1; ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set); if (ret) { error_report("vfio: Failed to de-assign error fd: %m"); } g_free(irq_set); qemu_set_fd_handler(event_notifier_get_fd(&vdev->err_notifier), NULL, NULL, vdev); event_notifier_cleanup(&vdev->err_notifier); } static void vfio_req_notifier_handler(void *opaque) { VFIOPCIDevice *vdev = opaque; Error *err = NULL; if (!event_notifier_test_and_clear(&vdev->req_notifier)) { return; } qdev_unplug(&vdev->pdev.qdev, &err); if (err) { error_reportf_err(err, WARN_PREFIX, vdev->vbasedev.name); } } static void vfio_register_req_notifier(VFIOPCIDevice *vdev) { struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info), .index = VFIO_PCI_REQ_IRQ_INDEX }; int argsz; struct vfio_irq_set *irq_set; int32_t *pfd; if (!(vdev->features & VFIO_FEATURE_ENABLE_REQ)) { return; } if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info) < 0 || irq_info.count < 1) { return; } if (event_notifier_init(&vdev->req_notifier, 0)) { error_report("vfio: Unable to init event notifier for device request"); return; } argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_REQ_IRQ_INDEX; irq_set->start = 0; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = event_notifier_get_fd(&vdev->req_notifier); qemu_set_fd_handler(*pfd, vfio_req_notifier_handler, NULL, vdev); if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) { error_report("vfio: Failed to set up device request notification"); qemu_set_fd_handler(*pfd, NULL, NULL, vdev); event_notifier_cleanup(&vdev->req_notifier); } else { vdev->req_enabled = true; } g_free(irq_set); } static void vfio_unregister_req_notifier(VFIOPCIDevice *vdev) { int argsz; struct vfio_irq_set *irq_set; int32_t *pfd; if (!vdev->req_enabled) { return; } argsz = sizeof(*irq_set) + sizeof(*pfd); irq_set = g_malloc0(argsz); irq_set->argsz = argsz; irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER; irq_set->index = VFIO_PCI_REQ_IRQ_INDEX; irq_set->start = 0; irq_set->count = 1; pfd = (int32_t *)&irq_set->data; *pfd = -1; if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set)) { error_report("vfio: Failed to de-assign device request fd: %m"); } g_free(irq_set); qemu_set_fd_handler(event_notifier_get_fd(&vdev->req_notifier), NULL, NULL, vdev); event_notifier_cleanup(&vdev->req_notifier); vdev->req_enabled = false; } static void vfio_realize(PCIDevice *pdev, Error **errp) { VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); VFIODevice *vbasedev_iter; VFIOGroup *group; char *tmp, group_path[PATH_MAX], *group_name; Error *err = NULL; ssize_t len; struct stat st; int groupid; int i, ret; if (!vdev->vbasedev.sysfsdev) { if (!(~vdev->host.domain || ~vdev->host.bus || ~vdev->host.slot || ~vdev->host.function)) { error_setg(errp, "No provided host device"); error_append_hint(errp, "Use -device vfio-pci,host=DDDD:BB:DD.F " "or -device vfio-pci,sysfsdev=PATH_TO_DEVICE\n"); return; } vdev->vbasedev.sysfsdev = g_strdup_printf("/sys/bus/pci/devices/%04x:%02x:%02x.%01x", vdev->host.domain, vdev->host.bus, vdev->host.slot, vdev->host.function); } if (stat(vdev->vbasedev.sysfsdev, &st) < 0) { error_setg_errno(errp, errno, "no such host device"); error_prepend(errp, ERR_PREFIX, vdev->vbasedev.sysfsdev); return; } vdev->vbasedev.name = g_path_get_basename(vdev->vbasedev.sysfsdev); vdev->vbasedev.ops = &vfio_pci_ops; vdev->vbasedev.type = VFIO_DEVICE_TYPE_PCI; vdev->vbasedev.dev = &vdev->pdev.qdev; tmp = g_strdup_printf("%s/iommu_group", vdev->vbasedev.sysfsdev); len = readlink(tmp, group_path, sizeof(group_path)); g_free(tmp); if (len <= 0 || len >= sizeof(group_path)) { error_setg_errno(errp, len < 0 ? errno : ENAMETOOLONG, "no iommu_group found"); goto error; } group_path[len] = 0; group_name = basename(group_path); if (sscanf(group_name, "%d", &groupid) != 1) { error_setg_errno(errp, errno, "failed to read %s", group_path); goto error; } trace_vfio_realize(vdev->vbasedev.name, groupid); group = vfio_get_group(groupid, pci_device_iommu_address_space(pdev), errp); if (!group) { goto error; } QLIST_FOREACH(vbasedev_iter, &group->device_list, next) { if (strcmp(vbasedev_iter->name, vdev->vbasedev.name) == 0) { error_setg(errp, "device is already attached"); vfio_put_group(group); goto error; } } ret = vfio_get_device(group, vdev->vbasedev.name, &vdev->vbasedev, errp); if (ret) { vfio_put_group(group); goto error; } vfio_populate_device(vdev, &err); if (err) { error_propagate(errp, err); goto error; } /* Get a copy of config space */ ret = pread(vdev->vbasedev.fd, vdev->pdev.config, MIN(pci_config_size(&vdev->pdev), vdev->config_size), vdev->config_offset); if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) { ret = ret < 0 ? -errno : -EFAULT; error_setg_errno(errp, -ret, "failed to read device config space"); goto error; } /* vfio emulates a lot for us, but some bits need extra love */ vdev->emulated_config_bits = g_malloc0(vdev->config_size); /* QEMU can choose to expose the ROM or not */ memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4); /* QEMU can also add or extend BARs */ memset(vdev->emulated_config_bits + PCI_BASE_ADDRESS_0, 0xff, 6 * 4); /* * The PCI spec reserves vendor ID 0xffff as an invalid value. The * device ID is managed by the vendor and need only be a 16-bit value. * Allow any 16-bit value for subsystem so they can be hidden or changed. */ if (vdev->vendor_id != PCI_ANY_ID) { if (vdev->vendor_id >= 0xffff) { error_setg(errp, "invalid PCI vendor ID provided"); goto error; } vfio_add_emulated_word(vdev, PCI_VENDOR_ID, vdev->vendor_id, ~0); trace_vfio_pci_emulated_vendor_id(vdev->vbasedev.name, vdev->vendor_id); } else { vdev->vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID); } if (vdev->device_id != PCI_ANY_ID) { if (vdev->device_id > 0xffff) { error_setg(errp, "invalid PCI device ID provided"); goto error; } vfio_add_emulated_word(vdev, PCI_DEVICE_ID, vdev->device_id, ~0); trace_vfio_pci_emulated_device_id(vdev->vbasedev.name, vdev->device_id); } else { vdev->device_id = pci_get_word(pdev->config + PCI_DEVICE_ID); } if (vdev->sub_vendor_id != PCI_ANY_ID) { if (vdev->sub_vendor_id > 0xffff) { error_setg(errp, "invalid PCI subsystem vendor ID provided"); goto error; } vfio_add_emulated_word(vdev, PCI_SUBSYSTEM_VENDOR_ID, vdev->sub_vendor_id, ~0); trace_vfio_pci_emulated_sub_vendor_id(vdev->vbasedev.name, vdev->sub_vendor_id); } if (vdev->sub_device_id != PCI_ANY_ID) { if (vdev->sub_device_id > 0xffff) { error_setg(errp, "invalid PCI subsystem device ID provided"); goto error; } vfio_add_emulated_word(vdev, PCI_SUBSYSTEM_ID, vdev->sub_device_id, ~0); trace_vfio_pci_emulated_sub_device_id(vdev->vbasedev.name, vdev->sub_device_id); } /* QEMU can change multi-function devices to single function, or reverse */ vdev->emulated_config_bits[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_MULTI_FUNCTION; /* Restore or clear multifunction, this is always controlled by QEMU */ if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION; } else { vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION; } /* * Clear host resource mapping info. If we choose not to register a * BAR, such as might be the case with the option ROM, we can get * confusing, unwritable, residual addresses from the host here. */ memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24); memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4); vfio_pci_size_rom(vdev); vfio_bars_prepare(vdev); vfio_msix_early_setup(vdev, &err); if (err) { error_propagate(errp, err); goto error; } vfio_bars_register(vdev); ret = vfio_add_capabilities(vdev, errp); if (ret) { goto out_teardown; } if (vdev->vga) { vfio_vga_quirk_setup(vdev); } for (i = 0; i < PCI_ROM_SLOT; i++) { vfio_bar_quirk_setup(vdev, i); } if (!vdev->igd_opregion && vdev->features & VFIO_FEATURE_ENABLE_IGD_OPREGION) { struct vfio_region_info *opregion; if (vdev->pdev.qdev.hotplugged) { error_setg(errp, "cannot support IGD OpRegion feature on hotplugged " "device"); goto out_teardown; } ret = vfio_get_dev_region_info(&vdev->vbasedev, VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion); if (ret) { error_setg_errno(errp, -ret, "does not support requested IGD OpRegion feature"); goto out_teardown; } ret = vfio_pci_igd_opregion_init(vdev, opregion, errp); g_free(opregion); if (ret) { goto out_teardown; } } /* QEMU emulates all of MSI & MSIX */ if (pdev->cap_present & QEMU_PCI_CAP_MSIX) { memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff, MSIX_CAP_LENGTH); } if (pdev->cap_present & QEMU_PCI_CAP_MSI) { memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff, vdev->msi_cap_size); } if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) { vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, vfio_intx_mmap_enable, vdev); pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_intx_update); ret = vfio_intx_enable(vdev, errp); if (ret) { goto out_teardown; } } if (vdev->display != ON_OFF_AUTO_OFF) { ret = vfio_display_probe(vdev, errp); if (ret) { goto out_teardown; } } vfio_register_err_notifier(vdev); vfio_register_req_notifier(vdev); vfio_setup_resetfn_quirk(vdev); return; out_teardown: pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); vfio_teardown_msi(vdev); vfio_bars_exit(vdev); error: error_prepend(errp, ERR_PREFIX, vdev->vbasedev.name); } static void vfio_instance_finalize(Object *obj) { PCIDevice *pci_dev = PCI_DEVICE(obj); VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pci_dev); VFIOGroup *group = vdev->vbasedev.group; vfio_display_finalize(vdev); vfio_bars_finalize(vdev); g_free(vdev->emulated_config_bits); g_free(vdev->rom); /* * XXX Leaking igd_opregion is not an oversight, we can't remove the * fw_cfg entry therefore leaking this allocation seems like the safest * option. * * g_free(vdev->igd_opregion); */ vfio_put_device(vdev); vfio_put_group(group); } static void vfio_exitfn(PCIDevice *pdev) { VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); vfio_unregister_req_notifier(vdev); vfio_unregister_err_notifier(vdev); pci_device_set_intx_routing_notifier(&vdev->pdev, NULL); vfio_disable_interrupts(vdev); if (vdev->intx.mmap_timer) { timer_free(vdev->intx.mmap_timer); } vfio_teardown_msi(vdev); vfio_bars_exit(vdev); } static void vfio_pci_reset(DeviceState *dev) { PCIDevice *pdev = DO_UPCAST(PCIDevice, qdev, dev); VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev); trace_vfio_pci_reset(vdev->vbasedev.name); vfio_pci_pre_reset(vdev); if (vdev->display != ON_OFF_AUTO_OFF) { vfio_display_reset(vdev); } if (vdev->resetfn && !vdev->resetfn(vdev)) { goto post_reset; } if (vdev->vbasedev.reset_works && (vdev->has_flr || !vdev->has_pm_reset) && !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { trace_vfio_pci_reset_flr(vdev->vbasedev.name); goto post_reset; } /* See if we can do our own bus reset */ if (!vfio_pci_hot_reset_one(vdev)) { goto post_reset; } /* If nothing else works and the device supports PM reset, use it */ if (vdev->vbasedev.reset_works && vdev->has_pm_reset && !ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) { trace_vfio_pci_reset_pm(vdev->vbasedev.name); goto post_reset; } post_reset: vfio_pci_post_reset(vdev); } static void vfio_instance_init(Object *obj) { PCIDevice *pci_dev = PCI_DEVICE(obj); VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, PCI_DEVICE(obj)); device_add_bootindex_property(obj, &vdev->bootindex, "bootindex", NULL, &pci_dev->qdev, NULL); vdev->host.domain = ~0U; vdev->host.bus = ~0U; vdev->host.slot = ~0U; vdev->host.function = ~0U; vdev->nv_gpudirect_clique = 0xFF; /* QEMU_PCI_CAP_EXPRESS initialization does not depend on QEMU command * line, therefore, no need to wait to realize like other devices */ pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS; } static Property vfio_pci_dev_properties[] = { DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIOPCIDevice, host), DEFINE_PROP_STRING("sysfsdev", VFIOPCIDevice, vbasedev.sysfsdev), DEFINE_PROP_ON_OFF_AUTO("display", VFIOPCIDevice, display, ON_OFF_AUTO_OFF), DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIOPCIDevice, intx.mmap_timeout, 1100), DEFINE_PROP_BIT("x-vga", VFIOPCIDevice, features, VFIO_FEATURE_ENABLE_VGA_BIT, false), DEFINE_PROP_BIT("x-req", VFIOPCIDevice, features, VFIO_FEATURE_ENABLE_REQ_BIT, true), DEFINE_PROP_BIT("x-igd-opregion", VFIOPCIDevice, features, VFIO_FEATURE_ENABLE_IGD_OPREGION_BIT, false), DEFINE_PROP_BOOL("x-no-mmap", VFIOPCIDevice, vbasedev.no_mmap, false), DEFINE_PROP_BOOL("x-no-kvm-intx", VFIOPCIDevice, no_kvm_intx, false), DEFINE_PROP_BOOL("x-no-kvm-msi", VFIOPCIDevice, no_kvm_msi, false), DEFINE_PROP_BOOL("x-no-kvm-msix", VFIOPCIDevice, no_kvm_msix, false), DEFINE_PROP_BOOL("x-no-geforce-quirks", VFIOPCIDevice, no_geforce_quirks, false), DEFINE_PROP_BOOL("x-no-kvm-ioeventfd", VFIOPCIDevice, no_kvm_ioeventfd, false), DEFINE_PROP_BOOL("x-no-vfio-ioeventfd", VFIOPCIDevice, no_vfio_ioeventfd, false), DEFINE_PROP_UINT32("x-pci-vendor-id", VFIOPCIDevice, vendor_id, PCI_ANY_ID), DEFINE_PROP_UINT32("x-pci-device-id", VFIOPCIDevice, device_id, PCI_ANY_ID), DEFINE_PROP_UINT32("x-pci-sub-vendor-id", VFIOPCIDevice, sub_vendor_id, PCI_ANY_ID), DEFINE_PROP_UINT32("x-pci-sub-device-id", VFIOPCIDevice, sub_device_id, PCI_ANY_ID), DEFINE_PROP_UINT32("x-igd-gms", VFIOPCIDevice, igd_gms, 0), DEFINE_PROP_UNSIGNED_NODEFAULT("x-nv-gpudirect-clique", VFIOPCIDevice, nv_gpudirect_clique, qdev_prop_nv_gpudirect_clique, uint8_t), DEFINE_PROP_OFF_AUTO_PCIBAR("x-msix-relocation", VFIOPCIDevice, msix_relo, OFF_AUTOPCIBAR_OFF), /* * TODO - support passed fds... is this necessary? * DEFINE_PROP_STRING("vfiofd", VFIOPCIDevice, vfiofd_name), * DEFINE_PROP_STRING("vfiogroupfd, VFIOPCIDevice, vfiogroupfd_name), */ DEFINE_PROP_END_OF_LIST(), }; static const VMStateDescription vfio_pci_vmstate = { .name = "vfio-pci", .unmigratable = 1, }; static void vfio_pci_dev_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass); dc->reset = vfio_pci_reset; dc->props = vfio_pci_dev_properties; dc->vmsd = &vfio_pci_vmstate; dc->desc = "VFIO-based PCI device assignment"; set_bit(DEVICE_CATEGORY_MISC, dc->categories); pdc->realize = vfio_realize; pdc->exit = vfio_exitfn; pdc->config_read = vfio_pci_read_config; pdc->config_write = vfio_pci_write_config; } static const TypeInfo vfio_pci_dev_info = { .name = "vfio-pci", .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(VFIOPCIDevice), .class_init = vfio_pci_dev_class_init, .instance_init = vfio_instance_init, .instance_finalize = vfio_instance_finalize, .interfaces = (InterfaceInfo[]) { { INTERFACE_PCIE_DEVICE }, { INTERFACE_CONVENTIONAL_PCI_DEVICE }, { } }, }; static void register_vfio_pci_dev_type(void) { type_register_static(&vfio_pci_dev_info); } type_init(register_vfio_pci_dev_type)