/* * USB UHCI controller emulation * * Copyright (c) 2005 Fabrice Bellard * * Copyright (c) 2008 Max Krasnyansky * Magor rewrite of the UHCI data structures parser and frame processor * Support for fully async operation and multiple outstanding transactions * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw/hw.h" #include "hw/usb.h" #include "hw/pci.h" #include "qemu-timer.h" #include "iov.h" #include "dma.h" #include "trace.h" //#define DEBUG //#define DEBUG_DUMP_DATA #define UHCI_CMD_FGR (1 << 4) #define UHCI_CMD_EGSM (1 << 3) #define UHCI_CMD_GRESET (1 << 2) #define UHCI_CMD_HCRESET (1 << 1) #define UHCI_CMD_RS (1 << 0) #define UHCI_STS_HCHALTED (1 << 5) #define UHCI_STS_HCPERR (1 << 4) #define UHCI_STS_HSERR (1 << 3) #define UHCI_STS_RD (1 << 2) #define UHCI_STS_USBERR (1 << 1) #define UHCI_STS_USBINT (1 << 0) #define TD_CTRL_SPD (1 << 29) #define TD_CTRL_ERROR_SHIFT 27 #define TD_CTRL_IOS (1 << 25) #define TD_CTRL_IOC (1 << 24) #define TD_CTRL_ACTIVE (1 << 23) #define TD_CTRL_STALL (1 << 22) #define TD_CTRL_BABBLE (1 << 20) #define TD_CTRL_NAK (1 << 19) #define TD_CTRL_TIMEOUT (1 << 18) #define UHCI_PORT_SUSPEND (1 << 12) #define UHCI_PORT_RESET (1 << 9) #define UHCI_PORT_LSDA (1 << 8) #define UHCI_PORT_RD (1 << 6) #define UHCI_PORT_ENC (1 << 3) #define UHCI_PORT_EN (1 << 2) #define UHCI_PORT_CSC (1 << 1) #define UHCI_PORT_CCS (1 << 0) #define UHCI_PORT_READ_ONLY (0x1bb) #define UHCI_PORT_WRITE_CLEAR (UHCI_PORT_CSC | UHCI_PORT_ENC) #define FRAME_TIMER_FREQ 1000 #define FRAME_MAX_LOOPS 256 #define NB_PORTS 2 enum { TD_RESULT_STOP_FRAME = 10, TD_RESULT_COMPLETE, TD_RESULT_NEXT_QH, TD_RESULT_ASYNC_START, TD_RESULT_ASYNC_CONT, }; typedef struct UHCIState UHCIState; typedef struct UHCIAsync UHCIAsync; typedef struct UHCIQueue UHCIQueue; /* * Pending async transaction. * 'packet' must be the first field because completion * handler does "(UHCIAsync *) pkt" cast. */ struct UHCIAsync { USBPacket packet; QEMUSGList sgl; UHCIQueue *queue; QTAILQ_ENTRY(UHCIAsync) next; uint32_t td; uint8_t isoc; uint8_t done; }; struct UHCIQueue { uint32_t token; UHCIState *uhci; QTAILQ_ENTRY(UHCIQueue) next; QTAILQ_HEAD(, UHCIAsync) asyncs; int8_t valid; }; typedef struct UHCIPort { USBPort port; uint16_t ctrl; } UHCIPort; struct UHCIState { PCIDevice dev; MemoryRegion io_bar; USBBus bus; /* Note unused when we're a companion controller */ uint16_t cmd; /* cmd register */ uint16_t status; uint16_t intr; /* interrupt enable register */ uint16_t frnum; /* frame number */ uint32_t fl_base_addr; /* frame list base address */ uint8_t sof_timing; uint8_t status2; /* bit 0 and 1 are used to generate UHCI_STS_USBINT */ int64_t expire_time; QEMUTimer *frame_timer; QEMUBH *bh; uint32_t frame_bytes; uint32_t frame_bandwidth; UHCIPort ports[NB_PORTS]; /* Interrupts that should be raised at the end of the current frame. */ uint32_t pending_int_mask; int irq_pin; /* Active packets */ QTAILQ_HEAD(, UHCIQueue) queues; uint8_t num_ports_vmstate; /* Properties */ char *masterbus; uint32_t firstport; }; typedef struct UHCI_TD { uint32_t link; uint32_t ctrl; /* see TD_CTRL_xxx */ uint32_t token; uint32_t buffer; } UHCI_TD; typedef struct UHCI_QH { uint32_t link; uint32_t el_link; } UHCI_QH; static inline int32_t uhci_queue_token(UHCI_TD *td) { /* covers ep, dev, pid -> identifies the endpoint */ return td->token & 0x7ffff; } static UHCIQueue *uhci_queue_get(UHCIState *s, UHCI_TD *td) { uint32_t token = uhci_queue_token(td); UHCIQueue *queue; QTAILQ_FOREACH(queue, &s->queues, next) { if (queue->token == token) { return queue; } } queue = g_new0(UHCIQueue, 1); queue->uhci = s; queue->token = token; QTAILQ_INIT(&queue->asyncs); QTAILQ_INSERT_HEAD(&s->queues, queue, next); trace_usb_uhci_queue_add(queue->token); return queue; } static void uhci_queue_free(UHCIQueue *queue) { UHCIState *s = queue->uhci; trace_usb_uhci_queue_del(queue->token); QTAILQ_REMOVE(&s->queues, queue, next); g_free(queue); } static UHCIAsync *uhci_async_alloc(UHCIQueue *queue, uint32_t addr) { UHCIAsync *async = g_new0(UHCIAsync, 1); async->queue = queue; async->td = addr; usb_packet_init(&async->packet); pci_dma_sglist_init(&async->sgl, &queue->uhci->dev, 1); trace_usb_uhci_packet_add(async->queue->token, async->td); return async; } static void uhci_async_free(UHCIAsync *async) { trace_usb_uhci_packet_del(async->queue->token, async->td); usb_packet_cleanup(&async->packet); qemu_sglist_destroy(&async->sgl); g_free(async); } static void uhci_async_link(UHCIAsync *async) { UHCIQueue *queue = async->queue; QTAILQ_INSERT_TAIL(&queue->asyncs, async, next); trace_usb_uhci_packet_link_async(async->queue->token, async->td); } static void uhci_async_unlink(UHCIAsync *async) { UHCIQueue *queue = async->queue; QTAILQ_REMOVE(&queue->asyncs, async, next); trace_usb_uhci_packet_unlink_async(async->queue->token, async->td); } static void uhci_async_cancel(UHCIAsync *async) { trace_usb_uhci_packet_cancel(async->queue->token, async->td, async->done); if (!async->done) usb_cancel_packet(&async->packet); uhci_async_free(async); } /* * Mark all outstanding async packets as invalid. * This is used for canceling them when TDs are removed by the HCD. */ static void uhci_async_validate_begin(UHCIState *s) { UHCIQueue *queue; QTAILQ_FOREACH(queue, &s->queues, next) { queue->valid--; } } /* * Cancel async packets that are no longer valid */ static void uhci_async_validate_end(UHCIState *s) { UHCIQueue *queue, *n; UHCIAsync *async; QTAILQ_FOREACH_SAFE(queue, &s->queues, next, n) { if (queue->valid > 0) { continue; } while (!QTAILQ_EMPTY(&queue->asyncs)) { async = QTAILQ_FIRST(&queue->asyncs); uhci_async_unlink(async); uhci_async_cancel(async); } uhci_queue_free(queue); } } static void uhci_async_cancel_device(UHCIState *s, USBDevice *dev) { UHCIQueue *queue; UHCIAsync *curr, *n; QTAILQ_FOREACH(queue, &s->queues, next) { QTAILQ_FOREACH_SAFE(curr, &queue->asyncs, next, n) { if (!usb_packet_is_inflight(&curr->packet) || curr->packet.ep->dev != dev) { continue; } uhci_async_unlink(curr); uhci_async_cancel(curr); } } } static void uhci_async_cancel_all(UHCIState *s) { UHCIQueue *queue, *nq; UHCIAsync *curr, *n; QTAILQ_FOREACH_SAFE(queue, &s->queues, next, nq) { QTAILQ_FOREACH_SAFE(curr, &queue->asyncs, next, n) { uhci_async_unlink(curr); uhci_async_cancel(curr); } uhci_queue_free(queue); } } static UHCIAsync *uhci_async_find_td(UHCIState *s, uint32_t addr, UHCI_TD *td) { uint32_t token = uhci_queue_token(td); UHCIQueue *queue; UHCIAsync *async; QTAILQ_FOREACH(queue, &s->queues, next) { if (queue->token == token) { break; } } if (queue == NULL) { return NULL; } QTAILQ_FOREACH(async, &queue->asyncs, next) { if (async->td == addr) { return async; } } return NULL; } static void uhci_update_irq(UHCIState *s) { int level; if (((s->status2 & 1) && (s->intr & (1 << 2))) || ((s->status2 & 2) && (s->intr & (1 << 3))) || ((s->status & UHCI_STS_USBERR) && (s->intr & (1 << 0))) || ((s->status & UHCI_STS_RD) && (s->intr & (1 << 1))) || (s->status & UHCI_STS_HSERR) || (s->status & UHCI_STS_HCPERR)) { level = 1; } else { level = 0; } qemu_set_irq(s->dev.irq[s->irq_pin], level); } static void uhci_reset(void *opaque) { UHCIState *s = opaque; uint8_t *pci_conf; int i; UHCIPort *port; trace_usb_uhci_reset(); pci_conf = s->dev.config; pci_conf[0x6a] = 0x01; /* usb clock */ pci_conf[0x6b] = 0x00; s->cmd = 0; s->status = 0; s->status2 = 0; s->intr = 0; s->fl_base_addr = 0; s->sof_timing = 64; for(i = 0; i < NB_PORTS; i++) { port = &s->ports[i]; port->ctrl = 0x0080; if (port->port.dev && port->port.dev->attached) { usb_port_reset(&port->port); } } uhci_async_cancel_all(s); qemu_bh_cancel(s->bh); uhci_update_irq(s); } static const VMStateDescription vmstate_uhci_port = { .name = "uhci port", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField []) { VMSTATE_UINT16(ctrl, UHCIPort), VMSTATE_END_OF_LIST() } }; static int uhci_post_load(void *opaque, int version_id) { UHCIState *s = opaque; if (version_id < 2) { s->expire_time = qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() / FRAME_TIMER_FREQ); } return 0; } static const VMStateDescription vmstate_uhci = { .name = "uhci", .version_id = 2, .minimum_version_id = 1, .minimum_version_id_old = 1, .post_load = uhci_post_load, .fields = (VMStateField []) { VMSTATE_PCI_DEVICE(dev, UHCIState), VMSTATE_UINT8_EQUAL(num_ports_vmstate, UHCIState), VMSTATE_STRUCT_ARRAY(ports, UHCIState, NB_PORTS, 1, vmstate_uhci_port, UHCIPort), VMSTATE_UINT16(cmd, UHCIState), VMSTATE_UINT16(status, UHCIState), VMSTATE_UINT16(intr, UHCIState), VMSTATE_UINT16(frnum, UHCIState), VMSTATE_UINT32(fl_base_addr, UHCIState), VMSTATE_UINT8(sof_timing, UHCIState), VMSTATE_UINT8(status2, UHCIState), VMSTATE_TIMER(frame_timer, UHCIState), VMSTATE_INT64_V(expire_time, UHCIState, 2), VMSTATE_END_OF_LIST() } }; static void uhci_ioport_writeb(void *opaque, uint32_t addr, uint32_t val) { UHCIState *s = opaque; addr &= 0x1f; switch(addr) { case 0x0c: s->sof_timing = val; break; } } static uint32_t uhci_ioport_readb(void *opaque, uint32_t addr) { UHCIState *s = opaque; uint32_t val; addr &= 0x1f; switch(addr) { case 0x0c: val = s->sof_timing; break; default: val = 0xff; break; } return val; } static void uhci_ioport_writew(void *opaque, uint32_t addr, uint32_t val) { UHCIState *s = opaque; addr &= 0x1f; trace_usb_uhci_mmio_writew(addr, val); switch(addr) { case 0x00: if ((val & UHCI_CMD_RS) && !(s->cmd & UHCI_CMD_RS)) { /* start frame processing */ trace_usb_uhci_schedule_start(); s->expire_time = qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() / FRAME_TIMER_FREQ); qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock)); s->status &= ~UHCI_STS_HCHALTED; } else if (!(val & UHCI_CMD_RS)) { s->status |= UHCI_STS_HCHALTED; } if (val & UHCI_CMD_GRESET) { UHCIPort *port; int i; /* send reset on the USB bus */ for(i = 0; i < NB_PORTS; i++) { port = &s->ports[i]; usb_device_reset(port->port.dev); } uhci_reset(s); return; } if (val & UHCI_CMD_HCRESET) { uhci_reset(s); return; } s->cmd = val; break; case 0x02: s->status &= ~val; /* XXX: the chip spec is not coherent, so we add a hidden register to distinguish between IOC and SPD */ if (val & UHCI_STS_USBINT) s->status2 = 0; uhci_update_irq(s); break; case 0x04: s->intr = val; uhci_update_irq(s); break; case 0x06: if (s->status & UHCI_STS_HCHALTED) s->frnum = val & 0x7ff; break; case 0x10 ... 0x1f: { UHCIPort *port; USBDevice *dev; int n; n = (addr >> 1) & 7; if (n >= NB_PORTS) return; port = &s->ports[n]; dev = port->port.dev; if (dev && dev->attached) { /* port reset */ if ( (val & UHCI_PORT_RESET) && !(port->ctrl & UHCI_PORT_RESET) ) { usb_device_reset(dev); } } port->ctrl &= UHCI_PORT_READ_ONLY; port->ctrl |= (val & ~UHCI_PORT_READ_ONLY); /* some bits are reset when a '1' is written to them */ port->ctrl &= ~(val & UHCI_PORT_WRITE_CLEAR); } break; } } static uint32_t uhci_ioport_readw(void *opaque, uint32_t addr) { UHCIState *s = opaque; uint32_t val; addr &= 0x1f; switch(addr) { case 0x00: val = s->cmd; break; case 0x02: val = s->status; break; case 0x04: val = s->intr; break; case 0x06: val = s->frnum; break; case 0x10 ... 0x1f: { UHCIPort *port; int n; n = (addr >> 1) & 7; if (n >= NB_PORTS) goto read_default; port = &s->ports[n]; val = port->ctrl; } break; default: read_default: val = 0xff7f; /* disabled port */ break; } trace_usb_uhci_mmio_readw(addr, val); return val; } static void uhci_ioport_writel(void *opaque, uint32_t addr, uint32_t val) { UHCIState *s = opaque; addr &= 0x1f; trace_usb_uhci_mmio_writel(addr, val); switch(addr) { case 0x08: s->fl_base_addr = val & ~0xfff; break; } } static uint32_t uhci_ioport_readl(void *opaque, uint32_t addr) { UHCIState *s = opaque; uint32_t val; addr &= 0x1f; switch(addr) { case 0x08: val = s->fl_base_addr; break; default: val = 0xffffffff; break; } trace_usb_uhci_mmio_readl(addr, val); return val; } /* signal resume if controller suspended */ static void uhci_resume (void *opaque) { UHCIState *s = (UHCIState *)opaque; if (!s) return; if (s->cmd & UHCI_CMD_EGSM) { s->cmd |= UHCI_CMD_FGR; s->status |= UHCI_STS_RD; uhci_update_irq(s); } } static void uhci_attach(USBPort *port1) { UHCIState *s = port1->opaque; UHCIPort *port = &s->ports[port1->index]; /* set connect status */ port->ctrl |= UHCI_PORT_CCS | UHCI_PORT_CSC; /* update speed */ if (port->port.dev->speed == USB_SPEED_LOW) { port->ctrl |= UHCI_PORT_LSDA; } else { port->ctrl &= ~UHCI_PORT_LSDA; } uhci_resume(s); } static void uhci_detach(USBPort *port1) { UHCIState *s = port1->opaque; UHCIPort *port = &s->ports[port1->index]; uhci_async_cancel_device(s, port1->dev); /* set connect status */ if (port->ctrl & UHCI_PORT_CCS) { port->ctrl &= ~UHCI_PORT_CCS; port->ctrl |= UHCI_PORT_CSC; } /* disable port */ if (port->ctrl & UHCI_PORT_EN) { port->ctrl &= ~UHCI_PORT_EN; port->ctrl |= UHCI_PORT_ENC; } uhci_resume(s); } static void uhci_child_detach(USBPort *port1, USBDevice *child) { UHCIState *s = port1->opaque; uhci_async_cancel_device(s, child); } static void uhci_wakeup(USBPort *port1) { UHCIState *s = port1->opaque; UHCIPort *port = &s->ports[port1->index]; if (port->ctrl & UHCI_PORT_SUSPEND && !(port->ctrl & UHCI_PORT_RD)) { port->ctrl |= UHCI_PORT_RD; uhci_resume(s); } } static USBDevice *uhci_find_device(UHCIState *s, uint8_t addr) { USBDevice *dev; int i; for (i = 0; i < NB_PORTS; i++) { UHCIPort *port = &s->ports[i]; if (!(port->ctrl & UHCI_PORT_EN)) { continue; } dev = usb_find_device(&port->port, addr); if (dev != NULL) { return dev; } } return NULL; } static void uhci_async_complete(USBPort *port, USBPacket *packet); static void uhci_process_frame(UHCIState *s); /* return -1 if fatal error (frame must be stopped) 0 if TD successful 1 if TD unsuccessful or inactive */ static int uhci_complete_td(UHCIState *s, UHCI_TD *td, UHCIAsync *async, uint32_t *int_mask) { int len = 0, max_len, err, ret; uint8_t pid; max_len = ((td->token >> 21) + 1) & 0x7ff; pid = td->token & 0xff; ret = async->packet.result; if (td->ctrl & TD_CTRL_IOS) td->ctrl &= ~TD_CTRL_ACTIVE; if (ret < 0) goto out; len = async->packet.result; td->ctrl = (td->ctrl & ~0x7ff) | ((len - 1) & 0x7ff); /* The NAK bit may have been set by a previous frame, so clear it here. The docs are somewhat unclear, but win2k relies on this behavior. */ td->ctrl &= ~(TD_CTRL_ACTIVE | TD_CTRL_NAK); if (td->ctrl & TD_CTRL_IOC) *int_mask |= 0x01; if (pid == USB_TOKEN_IN) { if (len > max_len) { ret = USB_RET_BABBLE; goto out; } if ((td->ctrl & TD_CTRL_SPD) && len < max_len) { *int_mask |= 0x02; /* short packet: do not update QH */ trace_usb_uhci_packet_complete_shortxfer(async->queue->token, async->td); return TD_RESULT_NEXT_QH; } } /* success */ trace_usb_uhci_packet_complete_success(async->queue->token, async->td); return TD_RESULT_COMPLETE; out: /* * We should not do any further processing on a queue with errors! * This is esp. important for bulk endpoints with pipelining enabled * (redirection to a real USB device), where we must cancel all the * transfers after this one so that: * 1) If they've completed already, they are not processed further * causing more stalls, originating from the same failed transfer * 2) If still in flight, they are cancelled before the guest does * a clear stall, otherwise the guest and device can loose sync! */ while (!QTAILQ_EMPTY(&async->queue->asyncs)) { UHCIAsync *as = QTAILQ_FIRST(&async->queue->asyncs); uhci_async_unlink(as); uhci_async_cancel(as); } switch(ret) { case USB_RET_STALL: td->ctrl |= TD_CTRL_STALL; td->ctrl &= ~TD_CTRL_ACTIVE; s->status |= UHCI_STS_USBERR; if (td->ctrl & TD_CTRL_IOC) { *int_mask |= 0x01; } uhci_update_irq(s); trace_usb_uhci_packet_complete_stall(async->queue->token, async->td); return TD_RESULT_NEXT_QH; case USB_RET_BABBLE: td->ctrl |= TD_CTRL_BABBLE | TD_CTRL_STALL; td->ctrl &= ~TD_CTRL_ACTIVE; s->status |= UHCI_STS_USBERR; if (td->ctrl & TD_CTRL_IOC) { *int_mask |= 0x01; } uhci_update_irq(s); /* frame interrupted */ trace_usb_uhci_packet_complete_babble(async->queue->token, async->td); return TD_RESULT_STOP_FRAME; case USB_RET_NAK: td->ctrl |= TD_CTRL_NAK; if (pid == USB_TOKEN_SETUP) break; return TD_RESULT_NEXT_QH; case USB_RET_IOERROR: case USB_RET_NODEV: default: break; } /* Retry the TD if error count is not zero */ td->ctrl |= TD_CTRL_TIMEOUT; err = (td->ctrl >> TD_CTRL_ERROR_SHIFT) & 3; if (err != 0) { err--; if (err == 0) { td->ctrl &= ~TD_CTRL_ACTIVE; s->status |= UHCI_STS_USBERR; if (td->ctrl & TD_CTRL_IOC) *int_mask |= 0x01; uhci_update_irq(s); trace_usb_uhci_packet_complete_error(async->queue->token, async->td); } } td->ctrl = (td->ctrl & ~(3 << TD_CTRL_ERROR_SHIFT)) | (err << TD_CTRL_ERROR_SHIFT); return TD_RESULT_NEXT_QH; } static int uhci_handle_td(UHCIState *s, uint32_t addr, UHCI_TD *td, uint32_t *int_mask, bool queuing) { UHCIAsync *async; int len = 0, max_len; uint8_t pid; USBDevice *dev; USBEndpoint *ep; /* Is active ? */ if (!(td->ctrl & TD_CTRL_ACTIVE)) return TD_RESULT_NEXT_QH; async = uhci_async_find_td(s, addr, td); if (async) { /* Already submitted */ async->queue->valid = 32; if (!async->done) return TD_RESULT_ASYNC_CONT; if (queuing) { /* we are busy filling the queue, we are not prepared to consume completed packages then, just leave them in async state */ return TD_RESULT_ASYNC_CONT; } uhci_async_unlink(async); goto done; } /* Allocate new packet */ async = uhci_async_alloc(uhci_queue_get(s, td), addr); /* valid needs to be large enough to handle 10 frame delay * for initial isochronous requests */ async->queue->valid = 32; async->isoc = td->ctrl & TD_CTRL_IOS; max_len = ((td->token >> 21) + 1) & 0x7ff; pid = td->token & 0xff; dev = uhci_find_device(s, (td->token >> 8) & 0x7f); ep = usb_ep_get(dev, pid, (td->token >> 15) & 0xf); usb_packet_setup(&async->packet, pid, ep); qemu_sglist_add(&async->sgl, td->buffer, max_len); usb_packet_map(&async->packet, &async->sgl); switch(pid) { case USB_TOKEN_OUT: case USB_TOKEN_SETUP: len = usb_handle_packet(dev, &async->packet); if (len >= 0) len = max_len; break; case USB_TOKEN_IN: len = usb_handle_packet(dev, &async->packet); break; default: /* invalid pid : frame interrupted */ uhci_async_free(async); s->status |= UHCI_STS_HCPERR; uhci_update_irq(s); return TD_RESULT_STOP_FRAME; } if (len == USB_RET_ASYNC) { uhci_async_link(async); return TD_RESULT_ASYNC_START; } async->packet.result = len; done: len = uhci_complete_td(s, td, async, int_mask); usb_packet_unmap(&async->packet, &async->sgl); uhci_async_free(async); return len; } static void uhci_async_complete(USBPort *port, USBPacket *packet) { UHCIAsync *async = container_of(packet, UHCIAsync, packet); UHCIState *s = async->queue->uhci; if (async->isoc) { UHCI_TD td; uint32_t link = async->td; uint32_t int_mask = 0, val; pci_dma_read(&s->dev, link & ~0xf, &td, sizeof(td)); le32_to_cpus(&td.link); le32_to_cpus(&td.ctrl); le32_to_cpus(&td.token); le32_to_cpus(&td.buffer); uhci_async_unlink(async); uhci_complete_td(s, &td, async, &int_mask); s->pending_int_mask |= int_mask; /* update the status bits of the TD */ val = cpu_to_le32(td.ctrl); pci_dma_write(&s->dev, (link & ~0xf) + 4, &val, sizeof(val)); uhci_async_free(async); } else { async->done = 1; if (s->frame_bytes < s->frame_bandwidth) { qemu_bh_schedule(s->bh); } } } static int is_valid(uint32_t link) { return (link & 1) == 0; } static int is_qh(uint32_t link) { return (link & 2) != 0; } static int depth_first(uint32_t link) { return (link & 4) != 0; } /* QH DB used for detecting QH loops */ #define UHCI_MAX_QUEUES 128 typedef struct { uint32_t addr[UHCI_MAX_QUEUES]; int count; } QhDb; static void qhdb_reset(QhDb *db) { db->count = 0; } /* Add QH to DB. Returns 1 if already present or DB is full. */ static int qhdb_insert(QhDb *db, uint32_t addr) { int i; for (i = 0; i < db->count; i++) if (db->addr[i] == addr) return 1; if (db->count >= UHCI_MAX_QUEUES) return 1; db->addr[db->count++] = addr; return 0; } static void uhci_fill_queue(UHCIState *s, UHCI_TD *td) { uint32_t int_mask = 0; uint32_t plink = td->link; uint32_t token = uhci_queue_token(td); UHCI_TD ptd; int ret; while (is_valid(plink)) { pci_dma_read(&s->dev, plink & ~0xf, &ptd, sizeof(ptd)); le32_to_cpus(&ptd.link); le32_to_cpus(&ptd.ctrl); le32_to_cpus(&ptd.token); le32_to_cpus(&ptd.buffer); if (!(ptd.ctrl & TD_CTRL_ACTIVE)) { break; } if (uhci_queue_token(&ptd) != token) { break; } trace_usb_uhci_td_queue(plink & ~0xf, ptd.ctrl, ptd.token); ret = uhci_handle_td(s, plink, &ptd, &int_mask, true); if (ret == TD_RESULT_ASYNC_CONT) { break; } assert(ret == TD_RESULT_ASYNC_START); assert(int_mask == 0); plink = ptd.link; } } static void uhci_process_frame(UHCIState *s) { uint32_t frame_addr, link, old_td_ctrl, val, int_mask; uint32_t curr_qh, td_count = 0; int cnt, ret; UHCI_TD td; UHCI_QH qh; QhDb qhdb; frame_addr = s->fl_base_addr + ((s->frnum & 0x3ff) << 2); pci_dma_read(&s->dev, frame_addr, &link, 4); le32_to_cpus(&link); int_mask = 0; curr_qh = 0; qhdb_reset(&qhdb); for (cnt = FRAME_MAX_LOOPS; is_valid(link) && cnt; cnt--) { if (s->frame_bytes >= s->frame_bandwidth) { /* We've reached the usb 1.1 bandwidth, which is 1280 bytes/frame, stop processing */ trace_usb_uhci_frame_stop_bandwidth(); break; } if (is_qh(link)) { /* QH */ trace_usb_uhci_qh_load(link & ~0xf); if (qhdb_insert(&qhdb, link)) { /* * We're going in circles. Which is not a bug because * HCD is allowed to do that as part of the BW management. * * Stop processing here if no transaction has been done * since we've been here last time. */ if (td_count == 0) { trace_usb_uhci_frame_loop_stop_idle(); break; } else { trace_usb_uhci_frame_loop_continue(); td_count = 0; qhdb_reset(&qhdb); qhdb_insert(&qhdb, link); } } pci_dma_read(&s->dev, link & ~0xf, &qh, sizeof(qh)); le32_to_cpus(&qh.link); le32_to_cpus(&qh.el_link); if (!is_valid(qh.el_link)) { /* QH w/o elements */ curr_qh = 0; link = qh.link; } else { /* QH with elements */ curr_qh = link; link = qh.el_link; } continue; } /* TD */ pci_dma_read(&s->dev, link & ~0xf, &td, sizeof(td)); le32_to_cpus(&td.link); le32_to_cpus(&td.ctrl); le32_to_cpus(&td.token); le32_to_cpus(&td.buffer); trace_usb_uhci_td_load(curr_qh & ~0xf, link & ~0xf, td.ctrl, td.token); old_td_ctrl = td.ctrl; ret = uhci_handle_td(s, link, &td, &int_mask, false); if (old_td_ctrl != td.ctrl) { /* update the status bits of the TD */ val = cpu_to_le32(td.ctrl); pci_dma_write(&s->dev, (link & ~0xf) + 4, &val, sizeof(val)); } switch (ret) { case TD_RESULT_STOP_FRAME: /* interrupted frame */ goto out; case TD_RESULT_NEXT_QH: case TD_RESULT_ASYNC_CONT: trace_usb_uhci_td_nextqh(curr_qh & ~0xf, link & ~0xf); link = curr_qh ? qh.link : td.link; continue; case TD_RESULT_ASYNC_START: trace_usb_uhci_td_async(curr_qh & ~0xf, link & ~0xf); if (is_valid(td.link)) { uhci_fill_queue(s, &td); } link = curr_qh ? qh.link : td.link; continue; case TD_RESULT_COMPLETE: trace_usb_uhci_td_complete(curr_qh & ~0xf, link & ~0xf); link = td.link; td_count++; s->frame_bytes += (td.ctrl & 0x7ff) + 1; if (curr_qh) { /* update QH element link */ qh.el_link = link; val = cpu_to_le32(qh.el_link); pci_dma_write(&s->dev, (curr_qh & ~0xf) + 4, &val, sizeof(val)); if (!depth_first(link)) { /* done with this QH */ curr_qh = 0; link = qh.link; } } break; default: assert(!"unknown return code"); } /* go to the next entry */ } out: s->pending_int_mask |= int_mask; } static void uhci_bh(void *opaque) { UHCIState *s = opaque; uhci_process_frame(s); } static void uhci_frame_timer(void *opaque) { UHCIState *s = opaque; /* prepare the timer for the next frame */ s->expire_time += (get_ticks_per_sec() / FRAME_TIMER_FREQ); s->frame_bytes = 0; qemu_bh_cancel(s->bh); if (!(s->cmd & UHCI_CMD_RS)) { /* Full stop */ trace_usb_uhci_schedule_stop(); qemu_del_timer(s->frame_timer); uhci_async_cancel_all(s); /* set hchalted bit in status - UHCI11D 2.1.2 */ s->status |= UHCI_STS_HCHALTED; return; } /* Complete the previous frame */ if (s->pending_int_mask) { s->status2 |= s->pending_int_mask; s->status |= UHCI_STS_USBINT; uhci_update_irq(s); } s->pending_int_mask = 0; /* Start new frame */ s->frnum = (s->frnum + 1) & 0x7ff; trace_usb_uhci_frame_start(s->frnum); uhci_async_validate_begin(s); uhci_process_frame(s); uhci_async_validate_end(s); qemu_mod_timer(s->frame_timer, s->expire_time); } static const MemoryRegionPortio uhci_portio[] = { { 0, 32, 2, .write = uhci_ioport_writew, }, { 0, 32, 2, .read = uhci_ioport_readw, }, { 0, 32, 4, .write = uhci_ioport_writel, }, { 0, 32, 4, .read = uhci_ioport_readl, }, { 0, 32, 1, .write = uhci_ioport_writeb, }, { 0, 32, 1, .read = uhci_ioport_readb, }, PORTIO_END_OF_LIST() }; static const MemoryRegionOps uhci_ioport_ops = { .old_portio = uhci_portio, }; static USBPortOps uhci_port_ops = { .attach = uhci_attach, .detach = uhci_detach, .child_detach = uhci_child_detach, .wakeup = uhci_wakeup, .complete = uhci_async_complete, }; static USBBusOps uhci_bus_ops = { }; static int usb_uhci_common_initfn(PCIDevice *dev) { PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(dev); UHCIState *s = DO_UPCAST(UHCIState, dev, dev); uint8_t *pci_conf = s->dev.config; int i; pci_conf[PCI_CLASS_PROG] = 0x00; /* TODO: reset value should be 0. */ pci_conf[USB_SBRN] = USB_RELEASE_1; // release number switch (pc->device_id) { case PCI_DEVICE_ID_INTEL_82801I_UHCI1: s->irq_pin = 0; /* A */ break; case PCI_DEVICE_ID_INTEL_82801I_UHCI2: s->irq_pin = 1; /* B */ break; case PCI_DEVICE_ID_INTEL_82801I_UHCI3: s->irq_pin = 2; /* C */ break; default: s->irq_pin = 3; /* D */ break; } pci_config_set_interrupt_pin(pci_conf, s->irq_pin + 1); if (s->masterbus) { USBPort *ports[NB_PORTS]; for(i = 0; i < NB_PORTS; i++) { ports[i] = &s->ports[i].port; } if (usb_register_companion(s->masterbus, ports, NB_PORTS, s->firstport, s, &uhci_port_ops, USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL) != 0) { return -1; } } else { usb_bus_new(&s->bus, &uhci_bus_ops, &s->dev.qdev); for (i = 0; i < NB_PORTS; i++) { usb_register_port(&s->bus, &s->ports[i].port, s, i, &uhci_port_ops, USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL); } } s->bh = qemu_bh_new(uhci_bh, s); s->frame_timer = qemu_new_timer_ns(vm_clock, uhci_frame_timer, s); s->num_ports_vmstate = NB_PORTS; QTAILQ_INIT(&s->queues); qemu_register_reset(uhci_reset, s); memory_region_init_io(&s->io_bar, &uhci_ioport_ops, s, "uhci", 0x20); /* Use region 4 for consistency with real hardware. BSD guests seem to rely on this. */ pci_register_bar(&s->dev, 4, PCI_BASE_ADDRESS_SPACE_IO, &s->io_bar); return 0; } static int usb_uhci_vt82c686b_initfn(PCIDevice *dev) { UHCIState *s = DO_UPCAST(UHCIState, dev, dev); uint8_t *pci_conf = s->dev.config; /* USB misc control 1/2 */ pci_set_long(pci_conf + 0x40,0x00001000); /* PM capability */ pci_set_long(pci_conf + 0x80,0x00020001); /* USB legacy support */ pci_set_long(pci_conf + 0xc0,0x00002000); return usb_uhci_common_initfn(dev); } static void usb_uhci_exit(PCIDevice *dev) { UHCIState *s = DO_UPCAST(UHCIState, dev, dev); memory_region_destroy(&s->io_bar); } static Property uhci_properties[] = { DEFINE_PROP_STRING("masterbus", UHCIState, masterbus), DEFINE_PROP_UINT32("firstport", UHCIState, firstport, 0), DEFINE_PROP_UINT32("bandwidth", UHCIState, frame_bandwidth, 1280), DEFINE_PROP_END_OF_LIST(), }; static void piix3_uhci_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); k->init = usb_uhci_common_initfn; k->exit = usb_uhci_exit; k->vendor_id = PCI_VENDOR_ID_INTEL; k->device_id = PCI_DEVICE_ID_INTEL_82371SB_2; k->revision = 0x01; k->class_id = PCI_CLASS_SERIAL_USB; dc->vmsd = &vmstate_uhci; dc->props = uhci_properties; } static TypeInfo piix3_uhci_info = { .name = "piix3-usb-uhci", .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(UHCIState), .class_init = piix3_uhci_class_init, }; static void piix4_uhci_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); k->init = usb_uhci_common_initfn; k->exit = usb_uhci_exit; k->vendor_id = PCI_VENDOR_ID_INTEL; k->device_id = PCI_DEVICE_ID_INTEL_82371AB_2; k->revision = 0x01; k->class_id = PCI_CLASS_SERIAL_USB; dc->vmsd = &vmstate_uhci; dc->props = uhci_properties; } static TypeInfo piix4_uhci_info = { .name = "piix4-usb-uhci", .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(UHCIState), .class_init = piix4_uhci_class_init, }; static void vt82c686b_uhci_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); k->init = usb_uhci_vt82c686b_initfn; k->exit = usb_uhci_exit; k->vendor_id = PCI_VENDOR_ID_VIA; k->device_id = PCI_DEVICE_ID_VIA_UHCI; k->revision = 0x01; k->class_id = PCI_CLASS_SERIAL_USB; dc->vmsd = &vmstate_uhci; dc->props = uhci_properties; } static TypeInfo vt82c686b_uhci_info = { .name = "vt82c686b-usb-uhci", .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(UHCIState), .class_init = vt82c686b_uhci_class_init, }; static void ich9_uhci1_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); k->init = usb_uhci_common_initfn; k->vendor_id = PCI_VENDOR_ID_INTEL; k->device_id = PCI_DEVICE_ID_INTEL_82801I_UHCI1; k->revision = 0x03; k->class_id = PCI_CLASS_SERIAL_USB; dc->vmsd = &vmstate_uhci; dc->props = uhci_properties; } static TypeInfo ich9_uhci1_info = { .name = "ich9-usb-uhci1", .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(UHCIState), .class_init = ich9_uhci1_class_init, }; static void ich9_uhci2_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); k->init = usb_uhci_common_initfn; k->vendor_id = PCI_VENDOR_ID_INTEL; k->device_id = PCI_DEVICE_ID_INTEL_82801I_UHCI2; k->revision = 0x03; k->class_id = PCI_CLASS_SERIAL_USB; dc->vmsd = &vmstate_uhci; dc->props = uhci_properties; } static TypeInfo ich9_uhci2_info = { .name = "ich9-usb-uhci2", .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(UHCIState), .class_init = ich9_uhci2_class_init, }; static void ich9_uhci3_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); k->init = usb_uhci_common_initfn; k->vendor_id = PCI_VENDOR_ID_INTEL; k->device_id = PCI_DEVICE_ID_INTEL_82801I_UHCI3; k->revision = 0x03; k->class_id = PCI_CLASS_SERIAL_USB; dc->vmsd = &vmstate_uhci; dc->props = uhci_properties; } static TypeInfo ich9_uhci3_info = { .name = "ich9-usb-uhci3", .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(UHCIState), .class_init = ich9_uhci3_class_init, }; static void uhci_register_types(void) { type_register_static(&piix3_uhci_info); type_register_static(&piix4_uhci_info); type_register_static(&vt82c686b_uhci_info); type_register_static(&ich9_uhci1_info); type_register_static(&ich9_uhci2_info); type_register_static(&ich9_uhci3_info); } type_init(uhci_register_types)