/* * Copyright (C) 2011 Red Hat, Inc. * * CCID Device emulation * * Written by Alon Levy, with contributions from Robert Relyea. * * Based on usb-serial.c, see its copyright and attributions below. * * This work is licensed under the terms of the GNU GPL, version 2.1 or later. * See the COPYING file in the top-level directory. * ------- (original copyright & attribution for usb-serial.c below) -------- * Copyright (c) 2006 CodeSourcery. * Copyright (c) 2008 Samuel Thibault <samuel.thibault@ens-lyon.org> * Written by Paul Brook, reused for FTDI by Samuel Thibault, */ /* * References: * * CCID Specification Revision 1.1 April 22nd 2005 * "Universal Serial Bus, Device Class: Smart Card" * Specification for Integrated Circuit(s) Cards Interface Devices * * Endianness note: from the spec (1.3) * "Fields that are larger than a byte are stored in little endian" * * KNOWN BUGS * 1. remove/insert can sometimes result in removed state instead of inserted. * This is a result of the following: * symptom: dmesg shows ERMOTEIO (-121), pcscd shows -99. This can happen * when a short packet is sent, as seen in uhci-usb.c, resulting from a urb * from the guest requesting SPD and us returning a smaller packet. * Not sure which messages trigger this. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qapi/error.h" #include "qemu-common.h" #include "qemu/error-report.h" #include "hw/usb.h" #include "desc.h" #include "ccid.h" #define DPRINTF(s, lvl, fmt, ...) \ do { \ if (lvl <= s->debug) { \ printf("usb-ccid: " fmt , ## __VA_ARGS__); \ } \ } while (0) #define D_WARN 1 #define D_INFO 2 #define D_MORE_INFO 3 #define D_VERBOSE 4 #define CCID_DEV_NAME "usb-ccid" #define USB_CCID_DEV(obj) OBJECT_CHECK(USBCCIDState, (obj), CCID_DEV_NAME) /* * The two options for variable sized buffers: * make them constant size, for large enough constant, * or handle the migration complexity - VMState doesn't handle this case. * sizes are expected never to be exceeded, unless guest misbehaves. */ #define BULK_OUT_DATA_SIZE (64 * KiB) #define PENDING_ANSWERS_NUM 128 #define BULK_IN_BUF_SIZE 384 #define BULK_IN_PENDING_NUM 8 #define CCID_MAX_PACKET_SIZE 64 #define CCID_CONTROL_ABORT 0x1 #define CCID_CONTROL_GET_CLOCK_FREQUENCIES 0x2 #define CCID_CONTROL_GET_DATA_RATES 0x3 #define CCID_PRODUCT_DESCRIPTION "QEMU USB CCID" #define CCID_VENDOR_DESCRIPTION "QEMU" #define CCID_INTERFACE_NAME "CCID Interface" #define CCID_SERIAL_NUMBER_STRING "1" /* * Using Gemplus Vendor and Product id * Effect on various drivers: * usbccid.sys (winxp, others untested) is a class driver so it doesn't care. * linux has a number of class drivers, but openct filters based on * vendor/product (/etc/openct.conf under fedora), hence Gemplus. */ #define CCID_VENDOR_ID 0x08e6 #define CCID_PRODUCT_ID 0x4433 #define CCID_DEVICE_VERSION 0x0000 /* * BULK_OUT messages from PC to Reader * Defined in CCID Rev 1.1 6.1 (page 26) */ #define CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOn 0x62 #define CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOff 0x63 #define CCID_MESSAGE_TYPE_PC_to_RDR_GetSlotStatus 0x65 #define CCID_MESSAGE_TYPE_PC_to_RDR_XfrBlock 0x6f #define CCID_MESSAGE_TYPE_PC_to_RDR_GetParameters 0x6c #define CCID_MESSAGE_TYPE_PC_to_RDR_ResetParameters 0x6d #define CCID_MESSAGE_TYPE_PC_to_RDR_SetParameters 0x61 #define CCID_MESSAGE_TYPE_PC_to_RDR_Escape 0x6b #define CCID_MESSAGE_TYPE_PC_to_RDR_IccClock 0x6e #define CCID_MESSAGE_TYPE_PC_to_RDR_T0APDU 0x6a #define CCID_MESSAGE_TYPE_PC_to_RDR_Secure 0x69 #define CCID_MESSAGE_TYPE_PC_to_RDR_Mechanical 0x71 #define CCID_MESSAGE_TYPE_PC_to_RDR_Abort 0x72 #define CCID_MESSAGE_TYPE_PC_to_RDR_SetDataRateAndClockFrequency 0x73 /* * BULK_IN messages from Reader to PC * Defined in CCID Rev 1.1 6.2 (page 48) */ #define CCID_MESSAGE_TYPE_RDR_to_PC_DataBlock 0x80 #define CCID_MESSAGE_TYPE_RDR_to_PC_SlotStatus 0x81 #define CCID_MESSAGE_TYPE_RDR_to_PC_Parameters 0x82 #define CCID_MESSAGE_TYPE_RDR_to_PC_Escape 0x83 #define CCID_MESSAGE_TYPE_RDR_to_PC_DataRateAndClockFrequency 0x84 /* * INTERRUPT_IN messages from Reader to PC * Defined in CCID Rev 1.1 6.3 (page 56) */ #define CCID_MESSAGE_TYPE_RDR_to_PC_NotifySlotChange 0x50 #define CCID_MESSAGE_TYPE_RDR_to_PC_HardwareError 0x51 /* * Endpoints for CCID - addresses are up to us to decide. * To support slot insertion and removal we must have an interrupt in ep * in addition we need a bulk in and bulk out ep * 5.2, page 20 */ #define CCID_INT_IN_EP 1 #define CCID_BULK_IN_EP 2 #define CCID_BULK_OUT_EP 3 /* bmSlotICCState masks */ #define SLOT_0_STATE_MASK 1 #define SLOT_0_CHANGED_MASK 2 /* Status codes that go in bStatus (see 6.2.6) */ enum { ICC_STATUS_PRESENT_ACTIVE = 0, ICC_STATUS_PRESENT_INACTIVE, ICC_STATUS_NOT_PRESENT }; enum { COMMAND_STATUS_NO_ERROR = 0, COMMAND_STATUS_FAILED, COMMAND_STATUS_TIME_EXTENSION_REQUIRED }; /* Error codes that go in bError (see 6.2.6) */ enum { ERROR_CMD_NOT_SUPPORTED = 0, ERROR_CMD_ABORTED = -1, ERROR_ICC_MUTE = -2, ERROR_XFR_PARITY_ERROR = -3, ERROR_XFR_OVERRUN = -4, ERROR_HW_ERROR = -5, }; /* 6.2.6 RDR_to_PC_SlotStatus definitions */ enum { CLOCK_STATUS_RUNNING = 0, /* * 0 - Clock Running, 1 - Clock stopped in State L, 2 - H, * 3 - unknown state. rest are RFU */ }; typedef struct QEMU_PACKED CCID_Header { uint8_t bMessageType; uint32_t dwLength; uint8_t bSlot; uint8_t bSeq; } CCID_Header; typedef struct QEMU_PACKED CCID_BULK_IN { CCID_Header hdr; uint8_t bStatus; /* Only used in BULK_IN */ uint8_t bError; /* Only used in BULK_IN */ } CCID_BULK_IN; typedef struct QEMU_PACKED CCID_SlotStatus { CCID_BULK_IN b; uint8_t bClockStatus; } CCID_SlotStatus; typedef struct QEMU_PACKED CCID_T0ProtocolDataStructure { uint8_t bmFindexDindex; uint8_t bmTCCKST0; uint8_t bGuardTimeT0; uint8_t bWaitingIntegerT0; uint8_t bClockStop; } CCID_T0ProtocolDataStructure; typedef struct QEMU_PACKED CCID_T1ProtocolDataStructure { uint8_t bmFindexDindex; uint8_t bmTCCKST1; uint8_t bGuardTimeT1; uint8_t bWaitingIntegerT1; uint8_t bClockStop; uint8_t bIFSC; uint8_t bNadValue; } CCID_T1ProtocolDataStructure; typedef union CCID_ProtocolDataStructure { CCID_T0ProtocolDataStructure t0; CCID_T1ProtocolDataStructure t1; uint8_t data[7]; /* must be = max(sizeof(t0), sizeof(t1)) */ } CCID_ProtocolDataStructure; typedef struct QEMU_PACKED CCID_Parameter { CCID_BULK_IN b; uint8_t bProtocolNum; CCID_ProtocolDataStructure abProtocolDataStructure; } CCID_Parameter; typedef struct QEMU_PACKED CCID_DataBlock { CCID_BULK_IN b; uint8_t bChainParameter; uint8_t abData[0]; } CCID_DataBlock; /* 6.1.4 PC_to_RDR_XfrBlock */ typedef struct QEMU_PACKED CCID_XferBlock { CCID_Header hdr; uint8_t bBWI; /* Block Waiting Timeout */ uint16_t wLevelParameter; /* XXX currently unused */ uint8_t abData[0]; } CCID_XferBlock; typedef struct QEMU_PACKED CCID_IccPowerOn { CCID_Header hdr; uint8_t bPowerSelect; uint16_t abRFU; } CCID_IccPowerOn; typedef struct QEMU_PACKED CCID_IccPowerOff { CCID_Header hdr; uint16_t abRFU; } CCID_IccPowerOff; typedef struct QEMU_PACKED CCID_SetParameters { CCID_Header hdr; uint8_t bProtocolNum; uint16_t abRFU; CCID_ProtocolDataStructure abProtocolDataStructure; } CCID_SetParameters; typedef struct CCID_Notify_Slot_Change { uint8_t bMessageType; /* CCID_MESSAGE_TYPE_RDR_to_PC_NotifySlotChange */ uint8_t bmSlotICCState; } CCID_Notify_Slot_Change; /* used for DataBlock response to XferBlock */ typedef struct Answer { uint8_t slot; uint8_t seq; } Answer; /* pending BULK_IN messages */ typedef struct BulkIn { uint8_t data[BULK_IN_BUF_SIZE]; uint32_t len; uint32_t pos; } BulkIn; typedef struct CCIDBus { BusState qbus; } CCIDBus; /* * powered - defaults to true, changed by PowerOn/PowerOff messages */ typedef struct USBCCIDState { USBDevice dev; USBEndpoint *intr; USBEndpoint *bulk; CCIDBus bus; CCIDCardState *card; BulkIn bulk_in_pending[BULK_IN_PENDING_NUM]; /* circular */ uint32_t bulk_in_pending_start; uint32_t bulk_in_pending_end; /* first free */ uint32_t bulk_in_pending_num; BulkIn *current_bulk_in; uint8_t bulk_out_data[BULK_OUT_DATA_SIZE]; uint32_t bulk_out_pos; uint64_t last_answer_error; Answer pending_answers[PENDING_ANSWERS_NUM]; uint32_t pending_answers_start; uint32_t pending_answers_end; uint32_t pending_answers_num; uint8_t bError; uint8_t bmCommandStatus; uint8_t bProtocolNum; CCID_ProtocolDataStructure abProtocolDataStructure; uint32_t ulProtocolDataStructureSize; uint32_t state_vmstate; uint8_t bmSlotICCState; uint8_t powered; uint8_t notify_slot_change; uint8_t debug; } USBCCIDState; /* * CCID Spec chapter 4: CCID uses a standard device descriptor per Chapter 9, * "USB Device Framework", section 9.6.1, in the Universal Serial Bus * Specification. * * This device implemented based on the spec and with an Athena Smart Card * Reader as reference: * 0dc3:1004 Athena Smartcard Solutions, Inc. */ static const uint8_t qemu_ccid_descriptor[] = { /* Smart Card Device Class Descriptor */ 0x36, /* u8 bLength; */ 0x21, /* u8 bDescriptorType; Functional */ 0x10, 0x01, /* u16 bcdCCID; CCID Specification Release Number. */ 0x00, /* * u8 bMaxSlotIndex; The index of the highest available * slot on this device. All slots are consecutive starting * at 00h. */ 0x07, /* u8 bVoltageSupport; 01h - 5.0v, 02h - 3.0, 03 - 1.8 */ 0x01, 0x00, /* u32 dwProtocols; RRRR PPPP. RRRR = 0000h.*/ 0x00, 0x00, /* PPPP: 0001h = Protocol T=0, 0002h = Protocol T=1 */ /* u32 dwDefaultClock; in kHZ (0x0fa0 is 4 MHz) */ 0xa0, 0x0f, 0x00, 0x00, /* u32 dwMaximumClock; */ 0x00, 0x00, 0x01, 0x00, 0x00, /* u8 bNumClockSupported; * * 0 means just the default and max. */ /* u32 dwDataRate ;bps. 9600 == 00002580h */ 0x80, 0x25, 0x00, 0x00, /* u32 dwMaxDataRate ; 11520 bps == 0001C200h */ 0x00, 0xC2, 0x01, 0x00, 0x00, /* u8 bNumDataRatesSupported; 00 means all rates between * default and max */ /* u32 dwMaxIFSD; * * maximum IFSD supported by CCID for protocol * * T=1 (Maximum seen from various cards) */ 0xfe, 0x00, 0x00, 0x00, /* u32 dwSyncProtocols; 1 - 2-wire, 2 - 3-wire, 4 - I2C */ 0x00, 0x00, 0x00, 0x00, /* u32 dwMechanical; 0 - no special characteristics. */ 0x00, 0x00, 0x00, 0x00, /* * u32 dwFeatures; * 0 - No special characteristics * + 2 Automatic parameter configuration based on ATR data * + 4 Automatic activation of ICC on inserting * + 8 Automatic ICC voltage selection * + 10 Automatic ICC clock frequency change * + 20 Automatic baud rate change * + 40 Automatic parameters negotiation made by the CCID * + 80 automatic PPS made by the CCID * 100 CCID can set ICC in clock stop mode * 200 NAD value other then 00 accepted (T=1 protocol) * + 400 Automatic IFSD exchange as first exchange (T=1) * One of the following only: * + 10000 TPDU level exchanges with CCID * 20000 Short APDU level exchange with CCID * 40000 Short and Extended APDU level exchange with CCID * * 100000 USB Wake up signaling supported on card * insertion and removal. Must set bit 5 in bmAttributes * in Configuration descriptor if 100000 is set. */ 0xfe, 0x04, 0x01, 0x00, /* * u32 dwMaxCCIDMessageLength; For extended APDU in * [261 + 10 , 65544 + 10]. Otherwise the minimum is * wMaxPacketSize of the Bulk-OUT endpoint */ 0x12, 0x00, 0x01, 0x00, 0xFF, /* * u8 bClassGetResponse; Significant only for CCID that * offers an APDU level for exchanges. Indicates the * default class value used by the CCID when it sends a * Get Response command to perform the transportation of * an APDU by T=0 protocol * FFh indicates that the CCID echos the class of the APDU. */ 0xFF, /* * u8 bClassEnvelope; EAPDU only. Envelope command for * T=0 */ 0x00, 0x00, /* * u16 wLcdLayout; XXYY Number of lines (XX) and chars per * line for LCD display used for PIN entry. 0000 - no LCD */ 0x01, /* * u8 bPINSupport; 01h PIN Verification, * 02h PIN Modification */ 0x01, /* u8 bMaxCCIDBusySlots; */ }; enum { STR_MANUFACTURER = 1, STR_PRODUCT, STR_SERIALNUMBER, STR_INTERFACE, }; static const USBDescStrings desc_strings = { [STR_MANUFACTURER] = "QEMU", [STR_PRODUCT] = "QEMU USB CCID", [STR_SERIALNUMBER] = "1", [STR_INTERFACE] = "CCID Interface", }; static const USBDescIface desc_iface0 = { .bInterfaceNumber = 0, .bNumEndpoints = 3, .bInterfaceClass = USB_CLASS_CSCID, .bInterfaceSubClass = USB_SUBCLASS_UNDEFINED, .bInterfaceProtocol = 0x00, .iInterface = STR_INTERFACE, .ndesc = 1, .descs = (USBDescOther[]) { { /* smartcard descriptor */ .data = qemu_ccid_descriptor, }, }, .eps = (USBDescEndpoint[]) { { .bEndpointAddress = USB_DIR_IN | CCID_INT_IN_EP, .bmAttributes = USB_ENDPOINT_XFER_INT, .bInterval = 255, .wMaxPacketSize = 64, },{ .bEndpointAddress = USB_DIR_IN | CCID_BULK_IN_EP, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = 64, },{ .bEndpointAddress = USB_DIR_OUT | CCID_BULK_OUT_EP, .bmAttributes = USB_ENDPOINT_XFER_BULK, .wMaxPacketSize = 64, }, } }; static const USBDescDevice desc_device = { .bcdUSB = 0x0110, .bMaxPacketSize0 = 64, .bNumConfigurations = 1, .confs = (USBDescConfig[]) { { .bNumInterfaces = 1, .bConfigurationValue = 1, .bmAttributes = USB_CFG_ATT_ONE | USB_CFG_ATT_SELFPOWER | USB_CFG_ATT_WAKEUP, .bMaxPower = 50, .nif = 1, .ifs = &desc_iface0, }, }, }; static const USBDesc desc_ccid = { .id = { .idVendor = CCID_VENDOR_ID, .idProduct = CCID_PRODUCT_ID, .bcdDevice = CCID_DEVICE_VERSION, .iManufacturer = STR_MANUFACTURER, .iProduct = STR_PRODUCT, .iSerialNumber = STR_SERIALNUMBER, }, .full = &desc_device, .str = desc_strings, }; static const uint8_t *ccid_card_get_atr(CCIDCardState *card, uint32_t *len) { CCIDCardClass *cc = CCID_CARD_GET_CLASS(card); if (cc->get_atr) { return cc->get_atr(card, len); } return NULL; } static void ccid_card_apdu_from_guest(CCIDCardState *card, const uint8_t *apdu, uint32_t len) { CCIDCardClass *cc = CCID_CARD_GET_CLASS(card); if (cc->apdu_from_guest) { cc->apdu_from_guest(card, apdu, len); } } static bool ccid_has_pending_answers(USBCCIDState *s) { return s->pending_answers_num > 0; } static void ccid_clear_pending_answers(USBCCIDState *s) { s->pending_answers_num = 0; s->pending_answers_start = 0; s->pending_answers_end = 0; } static void ccid_print_pending_answers(USBCCIDState *s) { Answer *answer; int i, count; DPRINTF(s, D_VERBOSE, "usb-ccid: pending answers:"); if (!ccid_has_pending_answers(s)) { DPRINTF(s, D_VERBOSE, " empty\n"); return; } for (i = s->pending_answers_start, count = s->pending_answers_num ; count > 0; count--, i++) { answer = &s->pending_answers[i % PENDING_ANSWERS_NUM]; if (count == 1) { DPRINTF(s, D_VERBOSE, "%d:%d\n", answer->slot, answer->seq); } else { DPRINTF(s, D_VERBOSE, "%d:%d,", answer->slot, answer->seq); } } } static void ccid_add_pending_answer(USBCCIDState *s, CCID_Header *hdr) { Answer *answer; assert(s->pending_answers_num < PENDING_ANSWERS_NUM); s->pending_answers_num++; answer = &s->pending_answers[(s->pending_answers_end++) % PENDING_ANSWERS_NUM]; answer->slot = hdr->bSlot; answer->seq = hdr->bSeq; ccid_print_pending_answers(s); } static void ccid_remove_pending_answer(USBCCIDState *s, uint8_t *slot, uint8_t *seq) { Answer *answer; assert(s->pending_answers_num > 0); s->pending_answers_num--; answer = &s->pending_answers[(s->pending_answers_start++) % PENDING_ANSWERS_NUM]; *slot = answer->slot; *seq = answer->seq; ccid_print_pending_answers(s); } static void ccid_bulk_in_clear(USBCCIDState *s) { s->bulk_in_pending_start = 0; s->bulk_in_pending_end = 0; s->bulk_in_pending_num = 0; } static void ccid_bulk_in_release(USBCCIDState *s) { assert(s->current_bulk_in != NULL); s->current_bulk_in->pos = 0; s->current_bulk_in = NULL; } static void ccid_bulk_in_get(USBCCIDState *s) { if (s->current_bulk_in != NULL || s->bulk_in_pending_num == 0) { return; } assert(s->bulk_in_pending_num > 0); s->bulk_in_pending_num--; s->current_bulk_in = &s->bulk_in_pending[(s->bulk_in_pending_start++) % BULK_IN_PENDING_NUM]; } static void *ccid_reserve_recv_buf(USBCCIDState *s, uint16_t len) { BulkIn *bulk_in; DPRINTF(s, D_VERBOSE, "%s: QUEUE: reserve %d bytes\n", __func__, len); /* look for an existing element */ if (len > BULK_IN_BUF_SIZE) { DPRINTF(s, D_WARN, "usb-ccid.c: %s: len larger then max (%d>%d). " "discarding message.\n", __func__, len, BULK_IN_BUF_SIZE); return NULL; } if (s->bulk_in_pending_num >= BULK_IN_PENDING_NUM) { DPRINTF(s, D_WARN, "usb-ccid.c: %s: No free bulk_in buffers. " "discarding message.\n", __func__); return NULL; } bulk_in = &s->bulk_in_pending[(s->bulk_in_pending_end++) % BULK_IN_PENDING_NUM]; s->bulk_in_pending_num++; bulk_in->len = len; return bulk_in->data; } static void ccid_reset(USBCCIDState *s) { ccid_bulk_in_clear(s); ccid_clear_pending_answers(s); } static void ccid_detach(USBCCIDState *s) { ccid_reset(s); } static void ccid_handle_reset(USBDevice *dev) { USBCCIDState *s = USB_CCID_DEV(dev); DPRINTF(s, 1, "Reset\n"); ccid_reset(s); } static const char *ccid_control_to_str(USBCCIDState *s, int request) { switch (request) { /* generic - should be factored out if there are other debugees */ case DeviceOutRequest | USB_REQ_SET_ADDRESS: return "(generic) set address"; case DeviceRequest | USB_REQ_GET_DESCRIPTOR: return "(generic) get descriptor"; case DeviceRequest | USB_REQ_GET_CONFIGURATION: return "(generic) get configuration"; case DeviceOutRequest | USB_REQ_SET_CONFIGURATION: return "(generic) set configuration"; case DeviceRequest | USB_REQ_GET_STATUS: return "(generic) get status"; case DeviceOutRequest | USB_REQ_CLEAR_FEATURE: return "(generic) clear feature"; case DeviceOutRequest | USB_REQ_SET_FEATURE: return "(generic) set_feature"; case InterfaceRequest | USB_REQ_GET_INTERFACE: return "(generic) get interface"; case InterfaceOutRequest | USB_REQ_SET_INTERFACE: return "(generic) set interface"; /* class requests */ case ClassInterfaceOutRequest | CCID_CONTROL_ABORT: return "ABORT"; case ClassInterfaceRequest | CCID_CONTROL_GET_CLOCK_FREQUENCIES: return "GET_CLOCK_FREQUENCIES"; case ClassInterfaceRequest | CCID_CONTROL_GET_DATA_RATES: return "GET_DATA_RATES"; } return "unknown"; } static void ccid_handle_control(USBDevice *dev, USBPacket *p, int request, int value, int index, int length, uint8_t *data) { USBCCIDState *s = USB_CCID_DEV(dev); int ret; DPRINTF(s, 1, "%s: got control %s (%x), value %x\n", __func__, ccid_control_to_str(s, request), request, value); ret = usb_desc_handle_control(dev, p, request, value, index, length, data); if (ret >= 0) { return; } switch (request) { /* Class specific requests. */ case ClassInterfaceOutRequest | CCID_CONTROL_ABORT: DPRINTF(s, 1, "ccid_control abort UNIMPLEMENTED\n"); p->status = USB_RET_STALL; break; case ClassInterfaceRequest | CCID_CONTROL_GET_CLOCK_FREQUENCIES: DPRINTF(s, 1, "ccid_control get clock frequencies UNIMPLEMENTED\n"); p->status = USB_RET_STALL; break; case ClassInterfaceRequest | CCID_CONTROL_GET_DATA_RATES: DPRINTF(s, 1, "ccid_control get data rates UNIMPLEMENTED\n"); p->status = USB_RET_STALL; break; default: DPRINTF(s, 1, "got unsupported/bogus control %x, value %x\n", request, value); p->status = USB_RET_STALL; break; } } static bool ccid_card_inserted(USBCCIDState *s) { return s->bmSlotICCState & SLOT_0_STATE_MASK; } static uint8_t ccid_card_status(USBCCIDState *s) { return ccid_card_inserted(s) ? (s->powered ? ICC_STATUS_PRESENT_ACTIVE : ICC_STATUS_PRESENT_INACTIVE ) : ICC_STATUS_NOT_PRESENT; } static uint8_t ccid_calc_status(USBCCIDState *s) { /* * page 55, 6.2.6, calculation of bStatus from bmICCStatus and * bmCommandStatus */ uint8_t ret = ccid_card_status(s) | (s->bmCommandStatus << 6); DPRINTF(s, D_VERBOSE, "%s: status = %d\n", __func__, ret); return ret; } static void ccid_reset_error_status(USBCCIDState *s) { s->bError = ERROR_CMD_NOT_SUPPORTED; s->bmCommandStatus = COMMAND_STATUS_NO_ERROR; } static void ccid_write_slot_status(USBCCIDState *s, CCID_Header *recv) { CCID_SlotStatus *h = ccid_reserve_recv_buf(s, sizeof(CCID_SlotStatus)); if (h == NULL) { return; } h->b.hdr.bMessageType = CCID_MESSAGE_TYPE_RDR_to_PC_SlotStatus; h->b.hdr.dwLength = 0; h->b.hdr.bSlot = recv->bSlot; h->b.hdr.bSeq = recv->bSeq; h->b.bStatus = ccid_calc_status(s); h->b.bError = s->bError; h->bClockStatus = CLOCK_STATUS_RUNNING; ccid_reset_error_status(s); usb_wakeup(s->bulk, 0); } static void ccid_write_parameters(USBCCIDState *s, CCID_Header *recv) { CCID_Parameter *h; uint32_t len = s->ulProtocolDataStructureSize; h = ccid_reserve_recv_buf(s, sizeof(CCID_Parameter) + len); if (h == NULL) { return; } h->b.hdr.bMessageType = CCID_MESSAGE_TYPE_RDR_to_PC_Parameters; h->b.hdr.dwLength = 0; h->b.hdr.bSlot = recv->bSlot; h->b.hdr.bSeq = recv->bSeq; h->b.bStatus = ccid_calc_status(s); h->b.bError = s->bError; h->bProtocolNum = s->bProtocolNum; h->abProtocolDataStructure = s->abProtocolDataStructure; ccid_reset_error_status(s); usb_wakeup(s->bulk, 0); } static void ccid_write_data_block(USBCCIDState *s, uint8_t slot, uint8_t seq, const uint8_t *data, uint32_t len) { CCID_DataBlock *p = ccid_reserve_recv_buf(s, sizeof(*p) + len); if (p == NULL) { return; } p->b.hdr.bMessageType = CCID_MESSAGE_TYPE_RDR_to_PC_DataBlock; p->b.hdr.dwLength = cpu_to_le32(len); p->b.hdr.bSlot = slot; p->b.hdr.bSeq = seq; p->b.bStatus = ccid_calc_status(s); p->b.bError = s->bError; if (p->b.bError) { DPRINTF(s, D_VERBOSE, "error %d\n", p->b.bError); } if (len) { assert(data); memcpy(p->abData, data, len); } ccid_reset_error_status(s); usb_wakeup(s->bulk, 0); } static void ccid_report_error_failed(USBCCIDState *s, uint8_t error) { s->bmCommandStatus = COMMAND_STATUS_FAILED; s->bError = error; } static void ccid_write_data_block_answer(USBCCIDState *s, const uint8_t *data, uint32_t len) { uint8_t seq; uint8_t slot; if (!ccid_has_pending_answers(s)) { DPRINTF(s, D_WARN, "error: no pending answer to return to guest\n"); ccid_report_error_failed(s, ERROR_ICC_MUTE); return; } ccid_remove_pending_answer(s, &slot, &seq); ccid_write_data_block(s, slot, seq, data, len); } static uint8_t atr_get_protocol_num(const uint8_t *atr, uint32_t len) { int i; if (len < 2 || !(atr[1] & 0x80)) { /* too short or TD1 not included */ return 0; /* T=0, default */ } i = 1 + !!(atr[1] & 0x10) + !!(atr[1] & 0x20) + !!(atr[1] & 0x40); i += !!(atr[1] & 0x80); return atr[i] & 0x0f; } static void ccid_write_data_block_atr(USBCCIDState *s, CCID_Header *recv) { const uint8_t *atr = NULL; uint32_t len = 0; uint8_t atr_protocol_num; CCID_T0ProtocolDataStructure *t0 = &s->abProtocolDataStructure.t0; CCID_T1ProtocolDataStructure *t1 = &s->abProtocolDataStructure.t1; if (s->card) { atr = ccid_card_get_atr(s->card, &len); } atr_protocol_num = atr_get_protocol_num(atr, len); DPRINTF(s, D_VERBOSE, "%s: atr contains protocol=%d\n", __func__, atr_protocol_num); /* set parameters from ATR - see spec page 109 */ s->bProtocolNum = (atr_protocol_num <= 1 ? atr_protocol_num : s->bProtocolNum); switch (atr_protocol_num) { case 0: /* TODO: unimplemented ATR T0 parameters */ t0->bmFindexDindex = 0; t0->bmTCCKST0 = 0; t0->bGuardTimeT0 = 0; t0->bWaitingIntegerT0 = 0; t0->bClockStop = 0; break; case 1: /* TODO: unimplemented ATR T1 parameters */ t1->bmFindexDindex = 0; t1->bmTCCKST1 = 0; t1->bGuardTimeT1 = 0; t1->bWaitingIntegerT1 = 0; t1->bClockStop = 0; t1->bIFSC = 0; t1->bNadValue = 0; break; default: DPRINTF(s, D_WARN, "%s: error: unsupported ATR protocol %d\n", __func__, atr_protocol_num); } ccid_write_data_block(s, recv->bSlot, recv->bSeq, atr, len); } static void ccid_set_parameters(USBCCIDState *s, CCID_Header *recv) { CCID_SetParameters *ph = (CCID_SetParameters *) recv; uint32_t protocol_num = ph->bProtocolNum & 3; if (protocol_num != 0 && protocol_num != 1) { ccid_report_error_failed(s, ERROR_CMD_NOT_SUPPORTED); return; } s->bProtocolNum = protocol_num; s->abProtocolDataStructure = ph->abProtocolDataStructure; } /* * must be 5 bytes for T=0, 7 bytes for T=1 * See page 52 */ static const CCID_ProtocolDataStructure defaultProtocolDataStructure = { .t1 = { .bmFindexDindex = 0x77, .bmTCCKST1 = 0x00, .bGuardTimeT1 = 0x00, .bWaitingIntegerT1 = 0x00, .bClockStop = 0x00, .bIFSC = 0xfe, .bNadValue = 0x00, } }; static void ccid_reset_parameters(USBCCIDState *s) { s->bProtocolNum = 0; /* T=0 */ s->abProtocolDataStructure = defaultProtocolDataStructure; } /* NOTE: only a single slot is supported (SLOT_0) */ static void ccid_on_slot_change(USBCCIDState *s, bool full) { /* RDR_to_PC_NotifySlotChange, 6.3.1 page 56 */ uint8_t current = s->bmSlotICCState; if (full) { s->bmSlotICCState |= SLOT_0_STATE_MASK; } else { s->bmSlotICCState &= ~SLOT_0_STATE_MASK; } if (current != s->bmSlotICCState) { s->bmSlotICCState |= SLOT_0_CHANGED_MASK; } s->notify_slot_change = true; usb_wakeup(s->intr, 0); } static void ccid_write_data_block_error( USBCCIDState *s, uint8_t slot, uint8_t seq) { ccid_write_data_block(s, slot, seq, NULL, 0); } static void ccid_on_apdu_from_guest(USBCCIDState *s, CCID_XferBlock *recv) { uint32_t len; if (ccid_card_status(s) != ICC_STATUS_PRESENT_ACTIVE) { DPRINTF(s, 1, "usb-ccid: not sending apdu to client, no card connected\n"); ccid_write_data_block_error(s, recv->hdr.bSlot, recv->hdr.bSeq); return; } len = le32_to_cpu(recv->hdr.dwLength); DPRINTF(s, 1, "%s: seq %d, len %d\n", __func__, recv->hdr.bSeq, len); ccid_add_pending_answer(s, (CCID_Header *)recv); if (s->card && len <= BULK_OUT_DATA_SIZE) { ccid_card_apdu_from_guest(s->card, recv->abData, len); } else { DPRINTF(s, D_WARN, "warning: discarded apdu\n"); } } static const char *ccid_message_type_to_str(uint8_t type) { switch (type) { case CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOn: return "IccPowerOn"; case CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOff: return "IccPowerOff"; case CCID_MESSAGE_TYPE_PC_to_RDR_GetSlotStatus: return "GetSlotStatus"; case CCID_MESSAGE_TYPE_PC_to_RDR_XfrBlock: return "XfrBlock"; case CCID_MESSAGE_TYPE_PC_to_RDR_GetParameters: return "GetParameters"; case CCID_MESSAGE_TYPE_PC_to_RDR_ResetParameters: return "ResetParameters"; case CCID_MESSAGE_TYPE_PC_to_RDR_SetParameters: return "SetParameters"; case CCID_MESSAGE_TYPE_PC_to_RDR_Escape: return "Escape"; case CCID_MESSAGE_TYPE_PC_to_RDR_IccClock: return "IccClock"; case CCID_MESSAGE_TYPE_PC_to_RDR_T0APDU: return "T0APDU"; case CCID_MESSAGE_TYPE_PC_to_RDR_Secure: return "Secure"; case CCID_MESSAGE_TYPE_PC_to_RDR_Mechanical: return "Mechanical"; case CCID_MESSAGE_TYPE_PC_to_RDR_Abort: return "Abort"; case CCID_MESSAGE_TYPE_PC_to_RDR_SetDataRateAndClockFrequency: return "SetDataRateAndClockFrequency"; } return "unknown"; } static void ccid_handle_bulk_out(USBCCIDState *s, USBPacket *p) { CCID_Header *ccid_header; if (p->iov.size + s->bulk_out_pos > BULK_OUT_DATA_SIZE) { goto err; } usb_packet_copy(p, s->bulk_out_data + s->bulk_out_pos, p->iov.size); s->bulk_out_pos += p->iov.size; if (s->bulk_out_pos < 10) { DPRINTF(s, 1, "%s: header incomplete\n", __func__); goto err; } ccid_header = (CCID_Header *)s->bulk_out_data; if ((s->bulk_out_pos - 10 < ccid_header->dwLength) && (p->iov.size == CCID_MAX_PACKET_SIZE)) { DPRINTF(s, D_VERBOSE, "usb-ccid: bulk_in: expecting more packets (%d/%d)\n", s->bulk_out_pos - 10, ccid_header->dwLength); return; } if (s->bulk_out_pos - 10 != ccid_header->dwLength) { DPRINTF(s, 1, "usb-ccid: bulk_in: message size mismatch (got %d, expected %d)\n", s->bulk_out_pos - 10, ccid_header->dwLength); goto err; } DPRINTF(s, D_MORE_INFO, "%s %x %s\n", __func__, ccid_header->bMessageType, ccid_message_type_to_str(ccid_header->bMessageType)); switch (ccid_header->bMessageType) { case CCID_MESSAGE_TYPE_PC_to_RDR_GetSlotStatus: ccid_write_slot_status(s, ccid_header); break; case CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOn: DPRINTF(s, 1, "%s: PowerOn: %d\n", __func__, ((CCID_IccPowerOn *)(ccid_header))->bPowerSelect); s->powered = true; if (!ccid_card_inserted(s)) { ccid_report_error_failed(s, ERROR_ICC_MUTE); } /* atr is written regardless of error. */ ccid_write_data_block_atr(s, ccid_header); break; case CCID_MESSAGE_TYPE_PC_to_RDR_IccPowerOff: ccid_reset_error_status(s); s->powered = false; ccid_write_slot_status(s, ccid_header); break; case CCID_MESSAGE_TYPE_PC_to_RDR_XfrBlock: ccid_on_apdu_from_guest(s, (CCID_XferBlock *)s->bulk_out_data); break; case CCID_MESSAGE_TYPE_PC_to_RDR_SetParameters: ccid_reset_error_status(s); ccid_set_parameters(s, ccid_header); ccid_write_parameters(s, ccid_header); break; case CCID_MESSAGE_TYPE_PC_to_RDR_ResetParameters: ccid_reset_error_status(s); ccid_reset_parameters(s); ccid_write_parameters(s, ccid_header); break; case CCID_MESSAGE_TYPE_PC_to_RDR_GetParameters: ccid_reset_error_status(s); ccid_write_parameters(s, ccid_header); break; case CCID_MESSAGE_TYPE_PC_to_RDR_Mechanical: ccid_report_error_failed(s, 0); ccid_write_slot_status(s, ccid_header); break; default: DPRINTF(s, 1, "handle_data: ERROR: unhandled message type %Xh\n", ccid_header->bMessageType); /* * The caller is expecting the device to respond, tell it we * don't support the operation. */ ccid_report_error_failed(s, ERROR_CMD_NOT_SUPPORTED); ccid_write_slot_status(s, ccid_header); break; } s->bulk_out_pos = 0; return; err: p->status = USB_RET_STALL; s->bulk_out_pos = 0; return; } static void ccid_bulk_in_copy_to_guest(USBCCIDState *s, USBPacket *p, unsigned int max_packet_size) { int len = 0; ccid_bulk_in_get(s); if (s->current_bulk_in != NULL) { len = MIN(s->current_bulk_in->len - s->current_bulk_in->pos, p->iov.size); if (len) { usb_packet_copy(p, s->current_bulk_in->data + s->current_bulk_in->pos, len); } s->current_bulk_in->pos += len; if (s->current_bulk_in->pos == s->current_bulk_in->len && len != max_packet_size) { ccid_bulk_in_release(s); } } else { /* return when device has no data - usb 2.0 spec Table 8-4 */ p->status = USB_RET_NAK; } if (len) { DPRINTF(s, D_MORE_INFO, "%s: %zd/%d req/act to guest (BULK_IN)\n", __func__, p->iov.size, len); } if (len < p->iov.size) { DPRINTF(s, 1, "%s: returning short (EREMOTEIO) %d < %zd\n", __func__, len, p->iov.size); } } static void ccid_handle_data(USBDevice *dev, USBPacket *p) { USBCCIDState *s = USB_CCID_DEV(dev); uint8_t buf[2]; switch (p->pid) { case USB_TOKEN_OUT: ccid_handle_bulk_out(s, p); break; case USB_TOKEN_IN: switch (p->ep->nr) { case CCID_BULK_IN_EP: ccid_bulk_in_copy_to_guest(s, p, dev->ep_ctl.max_packet_size); break; case CCID_INT_IN_EP: if (s->notify_slot_change) { /* page 56, RDR_to_PC_NotifySlotChange */ buf[0] = CCID_MESSAGE_TYPE_RDR_to_PC_NotifySlotChange; buf[1] = s->bmSlotICCState; usb_packet_copy(p, buf, 2); s->notify_slot_change = false; s->bmSlotICCState &= ~SLOT_0_CHANGED_MASK; DPRINTF(s, D_INFO, "handle_data: int_in: notify_slot_change %X, " "requested len %zd\n", s->bmSlotICCState, p->iov.size); } else { p->status = USB_RET_NAK; } break; default: DPRINTF(s, 1, "Bad endpoint\n"); p->status = USB_RET_STALL; break; } break; default: DPRINTF(s, 1, "Bad token\n"); p->status = USB_RET_STALL; break; } } static void ccid_unrealize(USBDevice *dev, Error **errp) { USBCCIDState *s = USB_CCID_DEV(dev); ccid_bulk_in_clear(s); } static void ccid_flush_pending_answers(USBCCIDState *s) { while (ccid_has_pending_answers(s)) { ccid_write_data_block_answer(s, NULL, 0); } } static Answer *ccid_peek_next_answer(USBCCIDState *s) { return s->pending_answers_num == 0 ? NULL : &s->pending_answers[s->pending_answers_start % PENDING_ANSWERS_NUM]; } static Property ccid_props[] = { DEFINE_PROP_UINT32("slot", struct CCIDCardState, slot, 0), DEFINE_PROP_END_OF_LIST(), }; #define TYPE_CCID_BUS "ccid-bus" #define CCID_BUS(obj) OBJECT_CHECK(CCIDBus, (obj), TYPE_CCID_BUS) static const TypeInfo ccid_bus_info = { .name = TYPE_CCID_BUS, .parent = TYPE_BUS, .instance_size = sizeof(CCIDBus), }; void ccid_card_send_apdu_to_guest(CCIDCardState *card, uint8_t *apdu, uint32_t len) { DeviceState *qdev = DEVICE(card); USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent); USBCCIDState *s = USB_CCID_DEV(dev); Answer *answer; if (!ccid_has_pending_answers(s)) { DPRINTF(s, 1, "CCID ERROR: got an APDU without pending answers\n"); return; } s->bmCommandStatus = COMMAND_STATUS_NO_ERROR; answer = ccid_peek_next_answer(s); if (answer == NULL) { DPRINTF(s, D_WARN, "%s: error: unexpected lack of answer\n", __func__); ccid_report_error_failed(s, ERROR_HW_ERROR); return; } DPRINTF(s, 1, "APDU returned to guest %d (answer seq %d, slot %d)\n", len, answer->seq, answer->slot); ccid_write_data_block_answer(s, apdu, len); } void ccid_card_card_removed(CCIDCardState *card) { DeviceState *qdev = DEVICE(card); USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent); USBCCIDState *s = USB_CCID_DEV(dev); ccid_on_slot_change(s, false); ccid_flush_pending_answers(s); ccid_reset(s); } int ccid_card_ccid_attach(CCIDCardState *card) { DeviceState *qdev = DEVICE(card); USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent); USBCCIDState *s = USB_CCID_DEV(dev); DPRINTF(s, 1, "CCID Attach\n"); return 0; } void ccid_card_ccid_detach(CCIDCardState *card) { DeviceState *qdev = DEVICE(card); USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent); USBCCIDState *s = USB_CCID_DEV(dev); DPRINTF(s, 1, "CCID Detach\n"); if (ccid_card_inserted(s)) { ccid_on_slot_change(s, false); } ccid_detach(s); } void ccid_card_card_error(CCIDCardState *card, uint64_t error) { DeviceState *qdev = DEVICE(card); USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent); USBCCIDState *s = USB_CCID_DEV(dev); s->bmCommandStatus = COMMAND_STATUS_FAILED; s->last_answer_error = error; DPRINTF(s, 1, "VSC_Error: %" PRIX64 "\n", s->last_answer_error); /* TODO: these errors should be more verbose and propagated to the guest.*/ /* * We flush all pending answers on CardRemove message in ccid-card-passthru, * so check that first to not trigger abort */ if (ccid_has_pending_answers(s)) { ccid_write_data_block_answer(s, NULL, 0); } } void ccid_card_card_inserted(CCIDCardState *card) { DeviceState *qdev = DEVICE(card); USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent); USBCCIDState *s = USB_CCID_DEV(dev); s->bmCommandStatus = COMMAND_STATUS_NO_ERROR; ccid_flush_pending_answers(s); ccid_on_slot_change(s, true); } static void ccid_card_unrealize(DeviceState *qdev, Error **errp) { CCIDCardState *card = CCID_CARD(qdev); CCIDCardClass *cc = CCID_CARD_GET_CLASS(card); USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent); USBCCIDState *s = USB_CCID_DEV(dev); Error *local_err = NULL; if (ccid_card_inserted(s)) { ccid_card_card_removed(card); } if (cc->unrealize) { cc->unrealize(card, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } } s->card = NULL; } static void ccid_card_realize(DeviceState *qdev, Error **errp) { CCIDCardState *card = CCID_CARD(qdev); CCIDCardClass *cc = CCID_CARD_GET_CLASS(card); USBDevice *dev = USB_DEVICE(qdev->parent_bus->parent); USBCCIDState *s = USB_CCID_DEV(dev); Error *local_err = NULL; if (card->slot != 0) { error_setg(errp, "usb-ccid supports one slot, can't add %d", card->slot); return; } if (s->card != NULL) { error_setg(errp, "usb-ccid card already full, not adding"); return; } if (cc->realize) { cc->realize(card, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } } s->card = card; } static void ccid_realize(USBDevice *dev, Error **errp) { USBCCIDState *s = USB_CCID_DEV(dev); usb_desc_create_serial(dev); usb_desc_init(dev); qbus_create_inplace(&s->bus, sizeof(s->bus), TYPE_CCID_BUS, DEVICE(dev), NULL); qbus_set_hotplug_handler(BUS(&s->bus), DEVICE(dev), &error_abort); s->intr = usb_ep_get(dev, USB_TOKEN_IN, CCID_INT_IN_EP); s->bulk = usb_ep_get(dev, USB_TOKEN_IN, CCID_BULK_IN_EP); s->card = NULL; s->dev.speed = USB_SPEED_FULL; s->dev.speedmask = USB_SPEED_MASK_FULL; s->notify_slot_change = false; s->powered = true; s->pending_answers_num = 0; s->last_answer_error = 0; s->bulk_in_pending_start = 0; s->bulk_in_pending_end = 0; s->current_bulk_in = NULL; ccid_reset_error_status(s); s->bulk_out_pos = 0; ccid_reset_parameters(s); ccid_reset(s); s->debug = parse_debug_env("QEMU_CCID_DEBUG", D_VERBOSE, s->debug); } static int ccid_post_load(void *opaque, int version_id) { USBCCIDState *s = opaque; /* * This must be done after usb_device_attach, which sets state to ATTACHED, * while it must be DEFAULT in order to accept packets (like it is after * reset, but reset will reset our addr and call our reset handler which * may change state, and we don't want to do that when migrating). */ s->dev.state = s->state_vmstate; return 0; } static int ccid_pre_save(void *opaque) { USBCCIDState *s = opaque; s->state_vmstate = s->dev.state; return 0; } static VMStateDescription bulk_in_vmstate = { .name = "CCID BulkIn state", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_BUFFER(data, BulkIn), VMSTATE_UINT32(len, BulkIn), VMSTATE_UINT32(pos, BulkIn), VMSTATE_END_OF_LIST() } }; static VMStateDescription answer_vmstate = { .name = "CCID Answer state", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(slot, Answer), VMSTATE_UINT8(seq, Answer), VMSTATE_END_OF_LIST() } }; static VMStateDescription usb_device_vmstate = { .name = "usb_device", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT8(addr, USBDevice), VMSTATE_BUFFER(setup_buf, USBDevice), VMSTATE_BUFFER(data_buf, USBDevice), VMSTATE_END_OF_LIST() } }; static VMStateDescription ccid_vmstate = { .name = "usb-ccid", .version_id = 1, .minimum_version_id = 1, .post_load = ccid_post_load, .pre_save = ccid_pre_save, .fields = (VMStateField[]) { VMSTATE_STRUCT(dev, USBCCIDState, 1, usb_device_vmstate, USBDevice), VMSTATE_UINT8(debug, USBCCIDState), VMSTATE_BUFFER(bulk_out_data, USBCCIDState), VMSTATE_UINT32(bulk_out_pos, USBCCIDState), VMSTATE_UINT8(bmSlotICCState, USBCCIDState), VMSTATE_UINT8(powered, USBCCIDState), VMSTATE_UINT8(notify_slot_change, USBCCIDState), VMSTATE_UINT64(last_answer_error, USBCCIDState), VMSTATE_UINT8(bError, USBCCIDState), VMSTATE_UINT8(bmCommandStatus, USBCCIDState), VMSTATE_UINT8(bProtocolNum, USBCCIDState), VMSTATE_BUFFER(abProtocolDataStructure.data, USBCCIDState), VMSTATE_UINT32(ulProtocolDataStructureSize, USBCCIDState), VMSTATE_STRUCT_ARRAY(bulk_in_pending, USBCCIDState, BULK_IN_PENDING_NUM, 1, bulk_in_vmstate, BulkIn), VMSTATE_UINT32(bulk_in_pending_start, USBCCIDState), VMSTATE_UINT32(bulk_in_pending_end, USBCCIDState), VMSTATE_STRUCT_ARRAY(pending_answers, USBCCIDState, PENDING_ANSWERS_NUM, 1, answer_vmstate, Answer), VMSTATE_UINT32(pending_answers_num, USBCCIDState), VMSTATE_UNUSED(1), /* was migration_state */ VMSTATE_UINT32(state_vmstate, USBCCIDState), VMSTATE_END_OF_LIST() } }; static Property ccid_properties[] = { DEFINE_PROP_UINT8("debug", USBCCIDState, debug, 0), DEFINE_PROP_END_OF_LIST(), }; static void ccid_class_initfn(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); USBDeviceClass *uc = USB_DEVICE_CLASS(klass); HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(klass); uc->realize = ccid_realize; uc->product_desc = "QEMU USB CCID"; uc->usb_desc = &desc_ccid; uc->handle_reset = ccid_handle_reset; uc->handle_control = ccid_handle_control; uc->handle_data = ccid_handle_data; uc->unrealize = ccid_unrealize; dc->desc = "CCID Rev 1.1 smartcard reader"; dc->vmsd = &ccid_vmstate; dc->props = ccid_properties; set_bit(DEVICE_CATEGORY_INPUT, dc->categories); hc->unplug = qdev_simple_device_unplug_cb; } static const TypeInfo ccid_info = { .name = CCID_DEV_NAME, .parent = TYPE_USB_DEVICE, .instance_size = sizeof(USBCCIDState), .class_init = ccid_class_initfn, .interfaces = (InterfaceInfo[]) { { TYPE_HOTPLUG_HANDLER }, { } } }; static void ccid_card_class_init(ObjectClass *klass, void *data) { DeviceClass *k = DEVICE_CLASS(klass); k->bus_type = TYPE_CCID_BUS; k->realize = ccid_card_realize; k->unrealize = ccid_card_unrealize; k->props = ccid_props; } static const TypeInfo ccid_card_type_info = { .name = TYPE_CCID_CARD, .parent = TYPE_DEVICE, .instance_size = sizeof(CCIDCardState), .abstract = true, .class_size = sizeof(CCIDCardClass), .class_init = ccid_card_class_init, }; static void ccid_register_types(void) { type_register_static(&ccid_bus_info); type_register_static(&ccid_card_type_info); type_register_static(&ccid_info); usb_legacy_register(CCID_DEV_NAME, "ccid", NULL); } type_init(ccid_register_types)