/* * QEMU USB emulation * * Copyright (c) 2005 Fabrice Bellard * * 2008 Generic packet handler rewrite by Max Krasnyansky * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu-common.h" #include "usb.h" #include "iov.h" void usb_attach(USBPort *port) { USBDevice *dev = port->dev; assert(dev != NULL); assert(dev->attached); assert(dev->state == USB_STATE_NOTATTACHED); port->ops->attach(port); dev->state = USB_STATE_ATTACHED; usb_device_handle_attach(dev); } void usb_detach(USBPort *port) { USBDevice *dev = port->dev; assert(dev != NULL); assert(dev->state != USB_STATE_NOTATTACHED); port->ops->detach(port); dev->state = USB_STATE_NOTATTACHED; } void usb_port_reset(USBPort *port) { USBDevice *dev = port->dev; assert(dev != NULL); usb_detach(port); usb_attach(port); usb_device_reset(dev); } void usb_device_reset(USBDevice *dev) { if (dev == NULL || !dev->attached) { return; } dev->remote_wakeup = 0; dev->addr = 0; dev->state = USB_STATE_DEFAULT; usb_device_handle_reset(dev); } void usb_wakeup(USBDevice *dev) { if (dev->remote_wakeup && dev->port && dev->port->ops->wakeup) { dev->port->ops->wakeup(dev->port); } } /**********************/ /* generic USB device helpers (you are not forced to use them when writing your USB device driver, but they help handling the protocol) */ #define SETUP_STATE_IDLE 0 #define SETUP_STATE_SETUP 1 #define SETUP_STATE_DATA 2 #define SETUP_STATE_ACK 3 static int do_token_setup(USBDevice *s, USBPacket *p) { int request, value, index; int ret = 0; if (p->iov.size != 8) { return USB_RET_STALL; } usb_packet_copy(p, s->setup_buf, p->iov.size); s->setup_len = (s->setup_buf[7] << 8) | s->setup_buf[6]; s->setup_index = 0; request = (s->setup_buf[0] << 8) | s->setup_buf[1]; value = (s->setup_buf[3] << 8) | s->setup_buf[2]; index = (s->setup_buf[5] << 8) | s->setup_buf[4]; if (s->setup_buf[0] & USB_DIR_IN) { ret = usb_device_handle_control(s, p, request, value, index, s->setup_len, s->data_buf); if (ret == USB_RET_ASYNC) { s->setup_state = SETUP_STATE_SETUP; return USB_RET_ASYNC; } if (ret < 0) return ret; if (ret < s->setup_len) s->setup_len = ret; s->setup_state = SETUP_STATE_DATA; } else { if (s->setup_len > sizeof(s->data_buf)) { fprintf(stderr, "usb_generic_handle_packet: ctrl buffer too small (%d > %zu)\n", s->setup_len, sizeof(s->data_buf)); return USB_RET_STALL; } if (s->setup_len == 0) s->setup_state = SETUP_STATE_ACK; else s->setup_state = SETUP_STATE_DATA; } return ret; } static int do_token_in(USBDevice *s, USBPacket *p) { int request, value, index; int ret = 0; if (p->devep != 0) return usb_device_handle_data(s, p); request = (s->setup_buf[0] << 8) | s->setup_buf[1]; value = (s->setup_buf[3] << 8) | s->setup_buf[2]; index = (s->setup_buf[5] << 8) | s->setup_buf[4]; switch(s->setup_state) { case SETUP_STATE_ACK: if (!(s->setup_buf[0] & USB_DIR_IN)) { ret = usb_device_handle_control(s, p, request, value, index, s->setup_len, s->data_buf); if (ret == USB_RET_ASYNC) { return USB_RET_ASYNC; } s->setup_state = SETUP_STATE_IDLE; if (ret > 0) return 0; return ret; } /* return 0 byte */ return 0; case SETUP_STATE_DATA: if (s->setup_buf[0] & USB_DIR_IN) { int len = s->setup_len - s->setup_index; if (len > p->iov.size) { len = p->iov.size; } usb_packet_copy(p, s->data_buf + s->setup_index, len); s->setup_index += len; if (s->setup_index >= s->setup_len) s->setup_state = SETUP_STATE_ACK; return len; } s->setup_state = SETUP_STATE_IDLE; return USB_RET_STALL; default: return USB_RET_STALL; } } static int do_token_out(USBDevice *s, USBPacket *p) { if (p->devep != 0) return usb_device_handle_data(s, p); switch(s->setup_state) { case SETUP_STATE_ACK: if (s->setup_buf[0] & USB_DIR_IN) { s->setup_state = SETUP_STATE_IDLE; /* transfer OK */ } else { /* ignore additional output */ } return 0; case SETUP_STATE_DATA: if (!(s->setup_buf[0] & USB_DIR_IN)) { int len = s->setup_len - s->setup_index; if (len > p->iov.size) { len = p->iov.size; } usb_packet_copy(p, s->data_buf + s->setup_index, len); s->setup_index += len; if (s->setup_index >= s->setup_len) s->setup_state = SETUP_STATE_ACK; return len; } s->setup_state = SETUP_STATE_IDLE; return USB_RET_STALL; default: return USB_RET_STALL; } } /* * Generic packet handler. * Called by the HC (host controller). * * Returns length of the transaction or one of the USB_RET_XXX codes. */ int usb_generic_handle_packet(USBDevice *s, USBPacket *p) { /* Rest of the PIDs must match our address */ if (s->state < USB_STATE_DEFAULT || p->devaddr != s->addr) return USB_RET_NODEV; switch (p->pid) { case USB_TOKEN_SETUP: return do_token_setup(s, p); case USB_TOKEN_IN: return do_token_in(s, p); case USB_TOKEN_OUT: return do_token_out(s, p); default: return USB_RET_STALL; } } /* ctrl complete function for devices which use usb_generic_handle_packet and may return USB_RET_ASYNC from their handle_control callback. Device code which does this *must* call this function instead of the normal usb_packet_complete to complete their async control packets. */ void usb_generic_async_ctrl_complete(USBDevice *s, USBPacket *p) { if (p->result < 0) { s->setup_state = SETUP_STATE_IDLE; } switch (s->setup_state) { case SETUP_STATE_SETUP: if (p->result < s->setup_len) { s->setup_len = p->result; } s->setup_state = SETUP_STATE_DATA; p->result = 8; break; case SETUP_STATE_ACK: s->setup_state = SETUP_STATE_IDLE; p->result = 0; break; default: break; } usb_packet_complete(s, p); } /* XXX: fix overflow */ int set_usb_string(uint8_t *buf, const char *str) { int len, i; uint8_t *q; q = buf; len = strlen(str); *q++ = 2 * len + 2; *q++ = 3; for(i = 0; i < len; i++) { *q++ = str[i]; *q++ = 0; } return q - buf; } USBDevice *usb_find_device(USBPort *port, uint8_t addr) { USBDevice *dev = port->dev; if (dev == NULL || !dev->attached || dev->state != USB_STATE_DEFAULT) { return NULL; } if (dev->addr == addr) { return dev; } return usb_device_find_device(dev, addr); } /* Hand over a packet to a device for processing. Return value USB_RET_ASYNC indicates the processing isn't finished yet, the driver will call usb_packet_complete() when done processing it. */ int usb_handle_packet(USBDevice *dev, USBPacket *p) { int ret; if (dev == NULL) { return USB_RET_NODEV; } assert(p->owner == NULL); ret = usb_device_handle_packet(dev, p); if (ret == USB_RET_ASYNC) { if (p->owner == NULL) { p->owner = usb_ep_get(dev, p->pid, p->devep); } else { /* We'll end up here when usb_handle_packet is called * recursively due to a hub being in the chain. Nothing * to do. Leave p->owner pointing to the device, not the * hub. */; } } return ret; } /* Notify the controller that an async packet is complete. This should only be called for packets previously deferred by returning USB_RET_ASYNC from handle_packet. */ void usb_packet_complete(USBDevice *dev, USBPacket *p) { /* Note: p->owner != dev is possible in case dev is a hub */ assert(p->owner != NULL); p->owner = NULL; dev->port->ops->complete(dev->port, p); } /* Cancel an active packet. The packed must have been deferred by returning USB_RET_ASYNC from handle_packet, and not yet completed. */ void usb_cancel_packet(USBPacket * p) { assert(p->owner != NULL); usb_device_cancel_packet(p->owner->dev, p); p->owner = NULL; } void usb_packet_init(USBPacket *p) { qemu_iovec_init(&p->iov, 1); } void usb_packet_setup(USBPacket *p, int pid, uint8_t addr, uint8_t ep) { p->pid = pid; p->devaddr = addr; p->devep = ep; p->result = 0; qemu_iovec_reset(&p->iov); } void usb_packet_addbuf(USBPacket *p, void *ptr, size_t len) { qemu_iovec_add(&p->iov, ptr, len); } void usb_packet_copy(USBPacket *p, void *ptr, size_t bytes) { assert(p->result >= 0); assert(p->result + bytes <= p->iov.size); switch (p->pid) { case USB_TOKEN_SETUP: case USB_TOKEN_OUT: iov_to_buf(p->iov.iov, p->iov.niov, ptr, p->result, bytes); break; case USB_TOKEN_IN: iov_from_buf(p->iov.iov, p->iov.niov, ptr, p->result, bytes); break; default: fprintf(stderr, "%s: invalid pid: %x\n", __func__, p->pid); abort(); } p->result += bytes; } void usb_packet_skip(USBPacket *p, size_t bytes) { assert(p->result >= 0); assert(p->result + bytes <= p->iov.size); if (p->pid == USB_TOKEN_IN) { iov_clear(p->iov.iov, p->iov.niov, p->result, bytes); } p->result += bytes; } void usb_packet_cleanup(USBPacket *p) { qemu_iovec_destroy(&p->iov); } void usb_ep_init(USBDevice *dev) { int ep; dev->ep_ctl.type = USB_ENDPOINT_XFER_CONTROL; dev->ep_ctl.ifnum = 0; dev->ep_ctl.dev = dev; for (ep = 0; ep < USB_MAX_ENDPOINTS; ep++) { dev->ep_in[ep].type = USB_ENDPOINT_XFER_INVALID; dev->ep_out[ep].type = USB_ENDPOINT_XFER_INVALID; dev->ep_in[ep].ifnum = 0; dev->ep_out[ep].ifnum = 0; dev->ep_in[ep].dev = dev; dev->ep_out[ep].dev = dev; } } void usb_ep_dump(USBDevice *dev) { static const char *tname[] = { [USB_ENDPOINT_XFER_CONTROL] = "control", [USB_ENDPOINT_XFER_ISOC] = "isoc", [USB_ENDPOINT_XFER_BULK] = "bulk", [USB_ENDPOINT_XFER_INT] = "int", }; int ifnum, ep, first; fprintf(stderr, "Device \"%s\", config %d\n", dev->product_desc, dev->configuration); for (ifnum = 0; ifnum < 16; ifnum++) { first = 1; for (ep = 0; ep < USB_MAX_ENDPOINTS; ep++) { if (dev->ep_in[ep].type != USB_ENDPOINT_XFER_INVALID && dev->ep_in[ep].ifnum == ifnum) { if (first) { first = 0; fprintf(stderr, " Interface %d, alternative %d\n", ifnum, dev->altsetting[ifnum]); } fprintf(stderr, " Endpoint %d, IN, %s, %d max\n", ep, tname[dev->ep_in[ep].type], dev->ep_in[ep].max_packet_size); } if (dev->ep_out[ep].type != USB_ENDPOINT_XFER_INVALID && dev->ep_out[ep].ifnum == ifnum) { if (first) { first = 0; fprintf(stderr, " Interface %d, alternative %d\n", ifnum, dev->altsetting[ifnum]); } fprintf(stderr, " Endpoint %d, OUT, %s, %d max\n", ep, tname[dev->ep_out[ep].type], dev->ep_out[ep].max_packet_size); } } } fprintf(stderr, "--\n"); } struct USBEndpoint *usb_ep_get(USBDevice *dev, int pid, int ep) { struct USBEndpoint *eps = pid == USB_TOKEN_IN ? dev->ep_in : dev->ep_out; if (ep == 0) { return &dev->ep_ctl; } assert(pid == USB_TOKEN_IN || pid == USB_TOKEN_OUT); assert(ep > 0 && ep <= USB_MAX_ENDPOINTS); return eps + ep - 1; } uint8_t usb_ep_get_type(USBDevice *dev, int pid, int ep) { struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); return uep->type; } void usb_ep_set_type(USBDevice *dev, int pid, int ep, uint8_t type) { struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); uep->type = type; } uint8_t usb_ep_get_ifnum(USBDevice *dev, int pid, int ep) { struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); return uep->ifnum; } void usb_ep_set_ifnum(USBDevice *dev, int pid, int ep, uint8_t ifnum) { struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); uep->ifnum = ifnum; } void usb_ep_set_max_packet_size(USBDevice *dev, int pid, int ep, uint16_t raw) { struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); int size, microframes; size = raw & 0x7ff; switch ((raw >> 11) & 3) { case 1: microframes = 2; break; case 2: microframes = 3; break; default: microframes = 1; break; } uep->max_packet_size = size * microframes; } int usb_ep_get_max_packet_size(USBDevice *dev, int pid, int ep) { struct USBEndpoint *uep = usb_ep_get(dev, pid, ep); return uep->max_packet_size; }