/* * USB xHCI controller emulation * * Copyright (c) 2011 Securiforest * Date: 2011-05-11 ; Author: Hector Martin * Based on usb-ohci.c, emulates Renesas NEC USB 3.0 * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "hw.h" #include "qemu-timer.h" #include "usb.h" #include "pci.h" #include "qdev-addr.h" #include "msi.h" //#define DEBUG_XHCI //#define DEBUG_DATA #ifdef DEBUG_XHCI #define DPRINTF(...) fprintf(stderr, __VA_ARGS__) #else #define DPRINTF(...) do {} while (0) #endif #define FIXME() do { fprintf(stderr, "FIXME %s:%d\n", \ __func__, __LINE__); abort(); } while (0) #define MAXSLOTS 8 #define MAXINTRS 1 #define USB2_PORTS 4 #define USB3_PORTS 4 #define MAXPORTS (USB2_PORTS+USB3_PORTS) #define TD_QUEUE 24 #define BG_XFERS 8 #define BG_PKTS 8 /* Very pessimistic, let's hope it's enough for all cases */ #define EV_QUEUE (((3*TD_QUEUE)+16)*MAXSLOTS) /* Do not deliver ER Full events. NEC's driver does some things not bound * to the specs when it gets them */ #define ER_FULL_HACK #define LEN_CAP 0x40 #define OFF_OPER LEN_CAP #define LEN_OPER (0x400 + 0x10 * MAXPORTS) #define OFF_RUNTIME ((OFF_OPER + LEN_OPER + 0x20) & ~0x1f) #define LEN_RUNTIME (0x20 + MAXINTRS * 0x20) #define OFF_DOORBELL (OFF_RUNTIME + LEN_RUNTIME) #define LEN_DOORBELL ((MAXSLOTS + 1) * 0x20) /* must be power of 2 */ #define LEN_REGS 0x2000 #if (OFF_DOORBELL + LEN_DOORBELL) > LEN_REGS # error Increase LEN_REGS #endif #if MAXINTRS > 1 # error TODO: only one interrupter supported #endif /* bit definitions */ #define USBCMD_RS (1<<0) #define USBCMD_HCRST (1<<1) #define USBCMD_INTE (1<<2) #define USBCMD_HSEE (1<<3) #define USBCMD_LHCRST (1<<7) #define USBCMD_CSS (1<<8) #define USBCMD_CRS (1<<9) #define USBCMD_EWE (1<<10) #define USBCMD_EU3S (1<<11) #define USBSTS_HCH (1<<0) #define USBSTS_HSE (1<<2) #define USBSTS_EINT (1<<3) #define USBSTS_PCD (1<<4) #define USBSTS_SSS (1<<8) #define USBSTS_RSS (1<<9) #define USBSTS_SRE (1<<10) #define USBSTS_CNR (1<<11) #define USBSTS_HCE (1<<12) #define PORTSC_CCS (1<<0) #define PORTSC_PED (1<<1) #define PORTSC_OCA (1<<3) #define PORTSC_PR (1<<4) #define PORTSC_PLS_SHIFT 5 #define PORTSC_PLS_MASK 0xf #define PORTSC_PP (1<<9) #define PORTSC_SPEED_SHIFT 10 #define PORTSC_SPEED_MASK 0xf #define PORTSC_SPEED_FULL (1<<10) #define PORTSC_SPEED_LOW (2<<10) #define PORTSC_SPEED_HIGH (3<<10) #define PORTSC_SPEED_SUPER (4<<10) #define PORTSC_PIC_SHIFT 14 #define PORTSC_PIC_MASK 0x3 #define PORTSC_LWS (1<<16) #define PORTSC_CSC (1<<17) #define PORTSC_PEC (1<<18) #define PORTSC_WRC (1<<19) #define PORTSC_OCC (1<<20) #define PORTSC_PRC (1<<21) #define PORTSC_PLC (1<<22) #define PORTSC_CEC (1<<23) #define PORTSC_CAS (1<<24) #define PORTSC_WCE (1<<25) #define PORTSC_WDE (1<<26) #define PORTSC_WOE (1<<27) #define PORTSC_DR (1<<30) #define PORTSC_WPR (1<<31) #define CRCR_RCS (1<<0) #define CRCR_CS (1<<1) #define CRCR_CA (1<<2) #define CRCR_CRR (1<<3) #define IMAN_IP (1<<0) #define IMAN_IE (1<<1) #define ERDP_EHB (1<<3) #define TRB_SIZE 16 typedef struct XHCITRB { uint64_t parameter; uint32_t status; uint32_t control; target_phys_addr_t addr; bool ccs; } XHCITRB; typedef enum TRBType { TRB_RESERVED = 0, TR_NORMAL, TR_SETUP, TR_DATA, TR_STATUS, TR_ISOCH, TR_LINK, TR_EVDATA, TR_NOOP, CR_ENABLE_SLOT, CR_DISABLE_SLOT, CR_ADDRESS_DEVICE, CR_CONFIGURE_ENDPOINT, CR_EVALUATE_CONTEXT, CR_RESET_ENDPOINT, CR_STOP_ENDPOINT, CR_SET_TR_DEQUEUE, CR_RESET_DEVICE, CR_FORCE_EVENT, CR_NEGOTIATE_BW, CR_SET_LATENCY_TOLERANCE, CR_GET_PORT_BANDWIDTH, CR_FORCE_HEADER, CR_NOOP, ER_TRANSFER = 32, ER_COMMAND_COMPLETE, ER_PORT_STATUS_CHANGE, ER_BANDWIDTH_REQUEST, ER_DOORBELL, ER_HOST_CONTROLLER, ER_DEVICE_NOTIFICATION, ER_MFINDEX_WRAP, /* vendor specific bits */ CR_VENDOR_VIA_CHALLENGE_RESPONSE = 48, CR_VENDOR_NEC_FIRMWARE_REVISION = 49, CR_VENDOR_NEC_CHALLENGE_RESPONSE = 50, } TRBType; #define CR_LINK TR_LINK typedef enum TRBCCode { CC_INVALID = 0, CC_SUCCESS, CC_DATA_BUFFER_ERROR, CC_BABBLE_DETECTED, CC_USB_TRANSACTION_ERROR, CC_TRB_ERROR, CC_STALL_ERROR, CC_RESOURCE_ERROR, CC_BANDWIDTH_ERROR, CC_NO_SLOTS_ERROR, CC_INVALID_STREAM_TYPE_ERROR, CC_SLOT_NOT_ENABLED_ERROR, CC_EP_NOT_ENABLED_ERROR, CC_SHORT_PACKET, CC_RING_UNDERRUN, CC_RING_OVERRUN, CC_VF_ER_FULL, CC_PARAMETER_ERROR, CC_BANDWIDTH_OVERRUN, CC_CONTEXT_STATE_ERROR, CC_NO_PING_RESPONSE_ERROR, CC_EVENT_RING_FULL_ERROR, CC_INCOMPATIBLE_DEVICE_ERROR, CC_MISSED_SERVICE_ERROR, CC_COMMAND_RING_STOPPED, CC_COMMAND_ABORTED, CC_STOPPED, CC_STOPPED_LENGTH_INVALID, CC_MAX_EXIT_LATENCY_TOO_LARGE_ERROR = 29, CC_ISOCH_BUFFER_OVERRUN = 31, CC_EVENT_LOST_ERROR, CC_UNDEFINED_ERROR, CC_INVALID_STREAM_ID_ERROR, CC_SECONDARY_BANDWIDTH_ERROR, CC_SPLIT_TRANSACTION_ERROR } TRBCCode; #define TRB_C (1<<0) #define TRB_TYPE_SHIFT 10 #define TRB_TYPE_MASK 0x3f #define TRB_TYPE(t) (((t).control >> TRB_TYPE_SHIFT) & TRB_TYPE_MASK) #define TRB_EV_ED (1<<2) #define TRB_TR_ENT (1<<1) #define TRB_TR_ISP (1<<2) #define TRB_TR_NS (1<<3) #define TRB_TR_CH (1<<4) #define TRB_TR_IOC (1<<5) #define TRB_TR_IDT (1<<6) #define TRB_TR_TBC_SHIFT 7 #define TRB_TR_TBC_MASK 0x3 #define TRB_TR_BEI (1<<9) #define TRB_TR_TLBPC_SHIFT 16 #define TRB_TR_TLBPC_MASK 0xf #define TRB_TR_FRAMEID_SHIFT 20 #define TRB_TR_FRAMEID_MASK 0x7ff #define TRB_TR_SIA (1<<31) #define TRB_TR_DIR (1<<16) #define TRB_CR_SLOTID_SHIFT 24 #define TRB_CR_SLOTID_MASK 0xff #define TRB_CR_EPID_SHIFT 16 #define TRB_CR_EPID_MASK 0x1f #define TRB_CR_BSR (1<<9) #define TRB_CR_DC (1<<9) #define TRB_LK_TC (1<<1) #define EP_TYPE_MASK 0x7 #define EP_TYPE_SHIFT 3 #define EP_STATE_MASK 0x7 #define EP_DISABLED (0<<0) #define EP_RUNNING (1<<0) #define EP_HALTED (2<<0) #define EP_STOPPED (3<<0) #define EP_ERROR (4<<0) #define SLOT_STATE_MASK 0x1f #define SLOT_STATE_SHIFT 27 #define SLOT_STATE(s) (((s)>>SLOT_STATE_SHIFT)&SLOT_STATE_MASK) #define SLOT_ENABLED 0 #define SLOT_DEFAULT 1 #define SLOT_ADDRESSED 2 #define SLOT_CONFIGURED 3 #define SLOT_CONTEXT_ENTRIES_MASK 0x1f #define SLOT_CONTEXT_ENTRIES_SHIFT 27 typedef enum EPType { ET_INVALID = 0, ET_ISO_OUT, ET_BULK_OUT, ET_INTR_OUT, ET_CONTROL, ET_ISO_IN, ET_BULK_IN, ET_INTR_IN, } EPType; typedef struct XHCIRing { target_phys_addr_t base; target_phys_addr_t dequeue; bool ccs; } XHCIRing; typedef struct XHCIPort { USBPort port; uint32_t portsc; } XHCIPort; struct XHCIState; typedef struct XHCIState XHCIState; typedef struct XHCITransfer { XHCIState *xhci; USBPacket packet; bool running; bool cancelled; bool complete; bool backgrounded; unsigned int iso_pkts; unsigned int slotid; unsigned int epid; bool in_xfer; bool iso_xfer; bool bg_xfer; unsigned int trb_count; unsigned int trb_alloced; XHCITRB *trbs; unsigned int data_length; unsigned int data_alloced; uint8_t *data; TRBCCode status; unsigned int pkts; unsigned int pktsize; unsigned int cur_pkt; } XHCITransfer; typedef struct XHCIEPContext { XHCIRing ring; unsigned int next_xfer; unsigned int comp_xfer; XHCITransfer transfers[TD_QUEUE]; bool bg_running; bool bg_updating; unsigned int next_bg; XHCITransfer bg_transfers[BG_XFERS]; EPType type; target_phys_addr_t pctx; unsigned int max_psize; bool has_bg; uint32_t state; } XHCIEPContext; typedef struct XHCISlot { bool enabled; target_phys_addr_t ctx; unsigned int port; unsigned int devaddr; XHCIEPContext * eps[31]; } XHCISlot; typedef struct XHCIEvent { TRBType type; TRBCCode ccode; uint64_t ptr; uint32_t length; uint32_t flags; uint8_t slotid; uint8_t epid; } XHCIEvent; struct XHCIState { PCIDevice pci_dev; USBBus bus; qemu_irq irq; MemoryRegion mem; const char *name; uint32_t msi; unsigned int devaddr; /* Operational Registers */ uint32_t usbcmd; uint32_t usbsts; uint32_t dnctrl; uint32_t crcr_low; uint32_t crcr_high; uint32_t dcbaap_low; uint32_t dcbaap_high; uint32_t config; XHCIPort ports[MAXPORTS]; XHCISlot slots[MAXSLOTS]; /* Runtime Registers */ uint32_t mfindex; /* note: we only support one interrupter */ uint32_t iman; uint32_t imod; uint32_t erstsz; uint32_t erstba_low; uint32_t erstba_high; uint32_t erdp_low; uint32_t erdp_high; target_phys_addr_t er_start; uint32_t er_size; bool er_pcs; unsigned int er_ep_idx; bool er_full; XHCIEvent ev_buffer[EV_QUEUE]; unsigned int ev_buffer_put; unsigned int ev_buffer_get; XHCIRing cmd_ring; }; typedef struct XHCIEvRingSeg { uint32_t addr_low; uint32_t addr_high; uint32_t size; uint32_t rsvd; } XHCIEvRingSeg; static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid); static inline target_phys_addr_t xhci_addr64(uint32_t low, uint32_t high) { #if TARGET_PHYS_ADDR_BITS > 32 return low | ((target_phys_addr_t)high << 32); #else return low; #endif } static inline target_phys_addr_t xhci_mask64(uint64_t addr) { #if TARGET_PHYS_ADDR_BITS > 32 return addr; #else return addr & 0xffffffff; #endif } static void xhci_irq_update(XHCIState *xhci) { int level = 0; if (xhci->iman & IMAN_IP && xhci->iman & IMAN_IE && xhci->usbcmd && USBCMD_INTE) { level = 1; } DPRINTF("xhci_irq_update(): %d\n", level); if (xhci->msi && msi_enabled(&xhci->pci_dev)) { if (level) { DPRINTF("xhci_irq_update(): MSI signal\n"); msi_notify(&xhci->pci_dev, 0); } } else { qemu_set_irq(xhci->irq, level); } } static inline int xhci_running(XHCIState *xhci) { return !(xhci->usbsts & USBSTS_HCH) && !xhci->er_full; } static void xhci_die(XHCIState *xhci) { xhci->usbsts |= USBSTS_HCE; fprintf(stderr, "xhci: asserted controller error\n"); } static void xhci_write_event(XHCIState *xhci, XHCIEvent *event) { XHCITRB ev_trb; target_phys_addr_t addr; ev_trb.parameter = cpu_to_le64(event->ptr); ev_trb.status = cpu_to_le32(event->length | (event->ccode << 24)); ev_trb.control = (event->slotid << 24) | (event->epid << 16) | event->flags | (event->type << TRB_TYPE_SHIFT); if (xhci->er_pcs) { ev_trb.control |= TRB_C; } ev_trb.control = cpu_to_le32(ev_trb.control); DPRINTF("xhci_write_event(): [%d] %016"PRIx64" %08x %08x\n", xhci->er_ep_idx, ev_trb.parameter, ev_trb.status, ev_trb.control); addr = xhci->er_start + TRB_SIZE*xhci->er_ep_idx; cpu_physical_memory_write(addr, (uint8_t *) &ev_trb, TRB_SIZE); xhci->er_ep_idx++; if (xhci->er_ep_idx >= xhci->er_size) { xhci->er_ep_idx = 0; xhci->er_pcs = !xhci->er_pcs; } } static void xhci_events_update(XHCIState *xhci) { target_phys_addr_t erdp; unsigned int dp_idx; bool do_irq = 0; if (xhci->usbsts & USBSTS_HCH) { return; } erdp = xhci_addr64(xhci->erdp_low, xhci->erdp_high); if (erdp < xhci->er_start || erdp >= (xhci->er_start + TRB_SIZE*xhci->er_size)) { fprintf(stderr, "xhci: ERDP out of bounds: "TARGET_FMT_plx"\n", erdp); fprintf(stderr, "xhci: ER at "TARGET_FMT_plx" len %d\n", xhci->er_start, xhci->er_size); xhci_die(xhci); return; } dp_idx = (erdp - xhci->er_start) / TRB_SIZE; assert(dp_idx < xhci->er_size); /* NEC didn't read section 4.9.4 of the spec (v1.0 p139 top Note) and thus * deadlocks when the ER is full. Hack it by holding off events until * the driver decides to free at least half of the ring */ if (xhci->er_full) { int er_free = dp_idx - xhci->er_ep_idx; if (er_free <= 0) { er_free += xhci->er_size; } if (er_free < (xhci->er_size/2)) { DPRINTF("xhci_events_update(): event ring still " "more than half full (hack)\n"); return; } } while (xhci->ev_buffer_put != xhci->ev_buffer_get) { assert(xhci->er_full); if (((xhci->er_ep_idx+1) % xhci->er_size) == dp_idx) { DPRINTF("xhci_events_update(): event ring full again\n"); #ifndef ER_FULL_HACK XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR}; xhci_write_event(xhci, &full); #endif do_irq = 1; break; } XHCIEvent *event = &xhci->ev_buffer[xhci->ev_buffer_get]; xhci_write_event(xhci, event); xhci->ev_buffer_get++; do_irq = 1; if (xhci->ev_buffer_get == EV_QUEUE) { xhci->ev_buffer_get = 0; } } if (do_irq) { xhci->erdp_low |= ERDP_EHB; xhci->iman |= IMAN_IP; xhci->usbsts |= USBSTS_EINT; xhci_irq_update(xhci); } if (xhci->er_full && xhci->ev_buffer_put == xhci->ev_buffer_get) { DPRINTF("xhci_events_update(): event ring no longer full\n"); xhci->er_full = 0; } return; } static void xhci_event(XHCIState *xhci, XHCIEvent *event) { target_phys_addr_t erdp; unsigned int dp_idx; if (xhci->er_full) { DPRINTF("xhci_event(): ER full, queueing\n"); if (((xhci->ev_buffer_put+1) % EV_QUEUE) == xhci->ev_buffer_get) { fprintf(stderr, "xhci: event queue full, dropping event!\n"); return; } xhci->ev_buffer[xhci->ev_buffer_put++] = *event; if (xhci->ev_buffer_put == EV_QUEUE) { xhci->ev_buffer_put = 0; } return; } erdp = xhci_addr64(xhci->erdp_low, xhci->erdp_high); if (erdp < xhci->er_start || erdp >= (xhci->er_start + TRB_SIZE*xhci->er_size)) { fprintf(stderr, "xhci: ERDP out of bounds: "TARGET_FMT_plx"\n", erdp); fprintf(stderr, "xhci: ER at "TARGET_FMT_plx" len %d\n", xhci->er_start, xhci->er_size); xhci_die(xhci); return; } dp_idx = (erdp - xhci->er_start) / TRB_SIZE; assert(dp_idx < xhci->er_size); if ((xhci->er_ep_idx+1) % xhci->er_size == dp_idx) { DPRINTF("xhci_event(): ER full, queueing\n"); #ifndef ER_FULL_HACK XHCIEvent full = {ER_HOST_CONTROLLER, CC_EVENT_RING_FULL_ERROR}; xhci_write_event(xhci, &full); #endif xhci->er_full = 1; if (((xhci->ev_buffer_put+1) % EV_QUEUE) == xhci->ev_buffer_get) { fprintf(stderr, "xhci: event queue full, dropping event!\n"); return; } xhci->ev_buffer[xhci->ev_buffer_put++] = *event; if (xhci->ev_buffer_put == EV_QUEUE) { xhci->ev_buffer_put = 0; } } else { xhci_write_event(xhci, event); } xhci->erdp_low |= ERDP_EHB; xhci->iman |= IMAN_IP; xhci->usbsts |= USBSTS_EINT; xhci_irq_update(xhci); } static void xhci_ring_init(XHCIState *xhci, XHCIRing *ring, target_phys_addr_t base) { ring->base = base; ring->dequeue = base; ring->ccs = 1; } static TRBType xhci_ring_fetch(XHCIState *xhci, XHCIRing *ring, XHCITRB *trb, target_phys_addr_t *addr) { while (1) { TRBType type; cpu_physical_memory_read(ring->dequeue, (uint8_t *) trb, TRB_SIZE); trb->addr = ring->dequeue; trb->ccs = ring->ccs; le64_to_cpus(&trb->parameter); le32_to_cpus(&trb->status); le32_to_cpus(&trb->control); DPRINTF("xhci: TRB fetched [" TARGET_FMT_plx "]: " "%016" PRIx64 " %08x %08x\n", ring->dequeue, trb->parameter, trb->status, trb->control); if ((trb->control & TRB_C) != ring->ccs) { return 0; } type = TRB_TYPE(*trb); if (type != TR_LINK) { if (addr) { *addr = ring->dequeue; } ring->dequeue += TRB_SIZE; return type; } else { ring->dequeue = xhci_mask64(trb->parameter); if (trb->control & TRB_LK_TC) { ring->ccs = !ring->ccs; } } } } static int xhci_ring_chain_length(XHCIState *xhci, const XHCIRing *ring) { XHCITRB trb; int length = 0; target_phys_addr_t dequeue = ring->dequeue; bool ccs = ring->ccs; /* hack to bundle together the two/three TDs that make a setup transfer */ bool control_td_set = 0; while (1) { TRBType type; cpu_physical_memory_read(dequeue, (uint8_t *) &trb, TRB_SIZE); le64_to_cpus(&trb.parameter); le32_to_cpus(&trb.status); le32_to_cpus(&trb.control); DPRINTF("xhci: TRB peeked [" TARGET_FMT_plx "]: " "%016" PRIx64 " %08x %08x\n", dequeue, trb.parameter, trb.status, trb.control); if ((trb.control & TRB_C) != ccs) { return -length; } type = TRB_TYPE(trb); if (type == TR_LINK) { dequeue = xhci_mask64(trb.parameter); if (trb.control & TRB_LK_TC) { ccs = !ccs; } continue; } length += 1; dequeue += TRB_SIZE; if (type == TR_SETUP) { control_td_set = 1; } else if (type == TR_STATUS) { control_td_set = 0; } if (!control_td_set && !(trb.control & TRB_TR_CH)) { return length; } } } static void xhci_er_reset(XHCIState *xhci) { XHCIEvRingSeg seg; /* cache the (sole) event ring segment location */ if (xhci->erstsz != 1) { fprintf(stderr, "xhci: invalid value for ERSTSZ: %d\n", xhci->erstsz); xhci_die(xhci); return; } target_phys_addr_t erstba = xhci_addr64(xhci->erstba_low, xhci->erstba_high); cpu_physical_memory_read(erstba, (uint8_t *) &seg, sizeof(seg)); le32_to_cpus(&seg.addr_low); le32_to_cpus(&seg.addr_high); le32_to_cpus(&seg.size); if (seg.size < 16 || seg.size > 4096) { fprintf(stderr, "xhci: invalid value for segment size: %d\n", seg.size); xhci_die(xhci); return; } xhci->er_start = xhci_addr64(seg.addr_low, seg.addr_high); xhci->er_size = seg.size; xhci->er_ep_idx = 0; xhci->er_pcs = 1; xhci->er_full = 0; DPRINTF("xhci: event ring:" TARGET_FMT_plx " [%d]\n", xhci->er_start, xhci->er_size); } static void xhci_run(XHCIState *xhci) { DPRINTF("xhci_run()\n"); xhci->usbsts &= ~USBSTS_HCH; } static void xhci_stop(XHCIState *xhci) { DPRINTF("xhci_stop()\n"); xhci->usbsts |= USBSTS_HCH; xhci->crcr_low &= ~CRCR_CRR; } static void xhci_set_ep_state(XHCIState *xhci, XHCIEPContext *epctx, uint32_t state) { uint32_t ctx[5]; if (epctx->state == state) { return; } cpu_physical_memory_read(epctx->pctx, (uint8_t *) ctx, sizeof(ctx)); ctx[0] &= ~EP_STATE_MASK; ctx[0] |= state; ctx[2] = epctx->ring.dequeue | epctx->ring.ccs; ctx[3] = (epctx->ring.dequeue >> 16) >> 16; DPRINTF("xhci: set epctx: " TARGET_FMT_plx " state=%d dequeue=%08x%08x\n", epctx->pctx, state, ctx[3], ctx[2]); cpu_physical_memory_write(epctx->pctx, (uint8_t *) ctx, sizeof(ctx)); epctx->state = state; } static TRBCCode xhci_enable_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid, target_phys_addr_t pctx, uint32_t *ctx) { XHCISlot *slot; XHCIEPContext *epctx; target_phys_addr_t dequeue; int i; assert(slotid >= 1 && slotid <= MAXSLOTS); assert(epid >= 1 && epid <= 31); DPRINTF("xhci_enable_ep(%d, %d)\n", slotid, epid); slot = &xhci->slots[slotid-1]; if (slot->eps[epid-1]) { fprintf(stderr, "xhci: slot %d ep %d already enabled!\n", slotid, epid); return CC_TRB_ERROR; } epctx = g_malloc(sizeof(XHCIEPContext)); memset(epctx, 0, sizeof(XHCIEPContext)); slot->eps[epid-1] = epctx; dequeue = xhci_addr64(ctx[2] & ~0xf, ctx[3]); xhci_ring_init(xhci, &epctx->ring, dequeue); epctx->ring.ccs = ctx[2] & 1; epctx->type = (ctx[1] >> EP_TYPE_SHIFT) & EP_TYPE_MASK; DPRINTF("xhci: endpoint %d.%d type is %d\n", epid/2, epid%2, epctx->type); epctx->pctx = pctx; epctx->max_psize = ctx[1]>>16; epctx->max_psize *= 1+((ctx[1]>>8)&0xff); epctx->has_bg = false; if (epctx->type == ET_ISO_IN) { epctx->has_bg = true; } DPRINTF("xhci: endpoint %d.%d max transaction (burst) size is %d\n", epid/2, epid%2, epctx->max_psize); for (i = 0; i < ARRAY_SIZE(epctx->transfers); i++) { usb_packet_init(&epctx->transfers[i].packet); } epctx->state = EP_RUNNING; ctx[0] &= ~EP_STATE_MASK; ctx[0] |= EP_RUNNING; return CC_SUCCESS; } static int xhci_ep_nuke_xfers(XHCIState *xhci, unsigned int slotid, unsigned int epid) { XHCISlot *slot; XHCIEPContext *epctx; int i, xferi, killed = 0; assert(slotid >= 1 && slotid <= MAXSLOTS); assert(epid >= 1 && epid <= 31); DPRINTF("xhci_ep_nuke_xfers(%d, %d)\n", slotid, epid); slot = &xhci->slots[slotid-1]; if (!slot->eps[epid-1]) { return 0; } epctx = slot->eps[epid-1]; xferi = epctx->next_xfer; for (i = 0; i < TD_QUEUE; i++) { XHCITransfer *t = &epctx->transfers[xferi]; if (t->running) { t->cancelled = 1; /* libusb_cancel_transfer(t->usbxfer) */ DPRINTF("xhci: cancelling transfer %d, waiting for it to complete...\n", i); killed++; } if (t->backgrounded) { t->backgrounded = 0; } if (t->trbs) { g_free(t->trbs); } if (t->data) { g_free(t->data); } t->trbs = NULL; t->data = NULL; t->trb_count = t->trb_alloced = 0; t->data_length = t->data_alloced = 0; xferi = (xferi + 1) % TD_QUEUE; } if (epctx->has_bg) { xferi = epctx->next_bg; for (i = 0; i < BG_XFERS; i++) { XHCITransfer *t = &epctx->bg_transfers[xferi]; if (t->running) { t->cancelled = 1; /* libusb_cancel_transfer(t->usbxfer); */ DPRINTF("xhci: cancelling bg transfer %d, waiting for it to complete...\n", i); killed++; } if (t->data) { g_free(t->data); } t->data = NULL; xferi = (xferi + 1) % BG_XFERS; } } return killed; } static TRBCCode xhci_disable_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid) { XHCISlot *slot; XHCIEPContext *epctx; assert(slotid >= 1 && slotid <= MAXSLOTS); assert(epid >= 1 && epid <= 31); DPRINTF("xhci_disable_ep(%d, %d)\n", slotid, epid); slot = &xhci->slots[slotid-1]; if (!slot->eps[epid-1]) { DPRINTF("xhci: slot %d ep %d already disabled\n", slotid, epid); return CC_SUCCESS; } xhci_ep_nuke_xfers(xhci, slotid, epid); epctx = slot->eps[epid-1]; xhci_set_ep_state(xhci, epctx, EP_DISABLED); g_free(epctx); slot->eps[epid-1] = NULL; return CC_SUCCESS; } static TRBCCode xhci_stop_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid) { XHCISlot *slot; XHCIEPContext *epctx; DPRINTF("xhci_stop_ep(%d, %d)\n", slotid, epid); assert(slotid >= 1 && slotid <= MAXSLOTS); if (epid < 1 || epid > 31) { fprintf(stderr, "xhci: bad ep %d\n", epid); return CC_TRB_ERROR; } slot = &xhci->slots[slotid-1]; if (!slot->eps[epid-1]) { DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid); return CC_EP_NOT_ENABLED_ERROR; } if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) { fprintf(stderr, "xhci: FIXME: endpoint stopped w/ xfers running, " "data might be lost\n"); } epctx = slot->eps[epid-1]; xhci_set_ep_state(xhci, epctx, EP_STOPPED); return CC_SUCCESS; } static TRBCCode xhci_reset_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid) { XHCISlot *slot; XHCIEPContext *epctx; USBDevice *dev; assert(slotid >= 1 && slotid <= MAXSLOTS); DPRINTF("xhci_reset_ep(%d, %d)\n", slotid, epid); if (epid < 1 || epid > 31) { fprintf(stderr, "xhci: bad ep %d\n", epid); return CC_TRB_ERROR; } slot = &xhci->slots[slotid-1]; if (!slot->eps[epid-1]) { DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid); return CC_EP_NOT_ENABLED_ERROR; } epctx = slot->eps[epid-1]; if (epctx->state != EP_HALTED) { fprintf(stderr, "xhci: reset EP while EP %d not halted (%d)\n", epid, epctx->state); return CC_CONTEXT_STATE_ERROR; } if (xhci_ep_nuke_xfers(xhci, slotid, epid) > 0) { fprintf(stderr, "xhci: FIXME: endpoint reset w/ xfers running, " "data might be lost\n"); } uint8_t ep = epid>>1; if (epid & 1) { ep |= 0x80; } dev = xhci->ports[xhci->slots[slotid-1].port-1].port.dev; if (!dev) { return CC_USB_TRANSACTION_ERROR; } xhci_set_ep_state(xhci, epctx, EP_STOPPED); return CC_SUCCESS; } static TRBCCode xhci_set_ep_dequeue(XHCIState *xhci, unsigned int slotid, unsigned int epid, uint64_t pdequeue) { XHCISlot *slot; XHCIEPContext *epctx; target_phys_addr_t dequeue; assert(slotid >= 1 && slotid <= MAXSLOTS); if (epid < 1 || epid > 31) { fprintf(stderr, "xhci: bad ep %d\n", epid); return CC_TRB_ERROR; } DPRINTF("xhci_set_ep_dequeue(%d, %d, %016"PRIx64")\n", slotid, epid, pdequeue); dequeue = xhci_mask64(pdequeue); slot = &xhci->slots[slotid-1]; if (!slot->eps[epid-1]) { DPRINTF("xhci: slot %d ep %d not enabled\n", slotid, epid); return CC_EP_NOT_ENABLED_ERROR; } epctx = slot->eps[epid-1]; if (epctx->state != EP_STOPPED) { fprintf(stderr, "xhci: set EP dequeue pointer while EP %d not stopped\n", epid); return CC_CONTEXT_STATE_ERROR; } xhci_ring_init(xhci, &epctx->ring, dequeue & ~0xF); epctx->ring.ccs = dequeue & 1; xhci_set_ep_state(xhci, epctx, EP_STOPPED); return CC_SUCCESS; } static int xhci_xfer_data(XHCITransfer *xfer, uint8_t *data, unsigned int length, bool in_xfer, bool out_xfer, bool report) { int i; uint32_t edtla = 0; unsigned int transferred = 0; unsigned int left = length; bool reported = 0; bool shortpkt = 0; XHCIEvent event = {ER_TRANSFER, CC_SUCCESS}; XHCIState *xhci = xfer->xhci; DPRINTF("xhci_xfer_data(len=%d, in_xfer=%d, out_xfer=%d, report=%d)\n", length, in_xfer, out_xfer, report); assert(!(in_xfer && out_xfer)); for (i = 0; i < xfer->trb_count; i++) { XHCITRB *trb = &xfer->trbs[i]; target_phys_addr_t addr; unsigned int chunk = 0; switch (TRB_TYPE(*trb)) { case TR_DATA: if ((!(trb->control & TRB_TR_DIR)) != (!in_xfer)) { fprintf(stderr, "xhci: data direction mismatch for TR_DATA\n"); xhci_die(xhci); return transferred; } /* fallthrough */ case TR_NORMAL: case TR_ISOCH: addr = xhci_mask64(trb->parameter); chunk = trb->status & 0x1ffff; if (chunk > left) { chunk = left; shortpkt = 1; } if (in_xfer || out_xfer) { if (trb->control & TRB_TR_IDT) { uint64_t idata; if (chunk > 8 || in_xfer) { fprintf(stderr, "xhci: invalid immediate data TRB\n"); xhci_die(xhci); return transferred; } idata = le64_to_cpu(trb->parameter); memcpy(data, &idata, chunk); } else { DPRINTF("xhci_xfer_data: r/w(%d) %d bytes at " TARGET_FMT_plx "\n", in_xfer, chunk, addr); if (in_xfer) { cpu_physical_memory_write(addr, data, chunk); } else { cpu_physical_memory_read(addr, data, chunk); } #ifdef DEBUG_DATA unsigned int count = chunk; int i; if (count > 16) { count = 16; } DPRINTF(" ::"); for (i = 0; i < count; i++) { DPRINTF(" %02x", data[i]); } DPRINTF("\n"); #endif } } left -= chunk; data += chunk; edtla += chunk; transferred += chunk; break; case TR_STATUS: reported = 0; shortpkt = 0; break; } if (report && !reported && (trb->control & TRB_TR_IOC || (shortpkt && (trb->control & TRB_TR_ISP)))) { event.slotid = xfer->slotid; event.epid = xfer->epid; event.length = (trb->status & 0x1ffff) - chunk; event.flags = 0; event.ptr = trb->addr; if (xfer->status == CC_SUCCESS) { event.ccode = shortpkt ? CC_SHORT_PACKET : CC_SUCCESS; } else { event.ccode = xfer->status; } if (TRB_TYPE(*trb) == TR_EVDATA) { event.ptr = trb->parameter; event.flags |= TRB_EV_ED; event.length = edtla & 0xffffff; DPRINTF("xhci_xfer_data: EDTLA=%d\n", event.length); edtla = 0; } xhci_event(xhci, &event); reported = 1; } } return transferred; } static void xhci_stall_ep(XHCITransfer *xfer) { XHCIState *xhci = xfer->xhci; XHCISlot *slot = &xhci->slots[xfer->slotid-1]; XHCIEPContext *epctx = slot->eps[xfer->epid-1]; epctx->ring.dequeue = xfer->trbs[0].addr; epctx->ring.ccs = xfer->trbs[0].ccs; xhci_set_ep_state(xhci, epctx, EP_HALTED); DPRINTF("xhci: stalled slot %d ep %d\n", xfer->slotid, xfer->epid); DPRINTF("xhci: will continue at "TARGET_FMT_plx"\n", epctx->ring.dequeue); } static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx); static void xhci_bg_update(XHCIState *xhci, XHCIEPContext *epctx) { if (epctx->bg_updating) { return; } DPRINTF("xhci_bg_update(%p, %p)\n", xhci, epctx); assert(epctx->has_bg); DPRINTF("xhci: fg=%d bg=%d\n", epctx->comp_xfer, epctx->next_bg); epctx->bg_updating = 1; while (epctx->transfers[epctx->comp_xfer].backgrounded && epctx->bg_transfers[epctx->next_bg].complete) { XHCITransfer *fg = &epctx->transfers[epctx->comp_xfer]; XHCITransfer *bg = &epctx->bg_transfers[epctx->next_bg]; #if 0 DPRINTF("xhci: completing fg %d from bg %d.%d (stat: %d)\n", epctx->comp_xfer, epctx->next_bg, bg->cur_pkt, bg->usbxfer->iso_packet_desc[bg->cur_pkt].status ); #endif assert(epctx->type == ET_ISO_IN); assert(bg->iso_xfer); assert(bg->in_xfer); uint8_t *p = bg->data + bg->cur_pkt * bg->pktsize; #if 0 int len = bg->usbxfer->iso_packet_desc[bg->cur_pkt].actual_length; fg->status = libusb_to_ccode(bg->usbxfer->iso_packet_desc[bg->cur_pkt].status); #else int len = 0; FIXME(); #endif fg->complete = 1; fg->backgrounded = 0; if (fg->status == CC_STALL_ERROR) { xhci_stall_ep(fg); } xhci_xfer_data(fg, p, len, 1, 0, 1); epctx->comp_xfer++; if (epctx->comp_xfer == TD_QUEUE) { epctx->comp_xfer = 0; } DPRINTF("next fg xfer: %d\n", epctx->comp_xfer); bg->cur_pkt++; if (bg->cur_pkt == bg->pkts) { bg->complete = 0; if (xhci_submit(xhci, bg, epctx) < 0) { fprintf(stderr, "xhci: bg resubmit failed\n"); } epctx->next_bg++; if (epctx->next_bg == BG_XFERS) { epctx->next_bg = 0; } DPRINTF("next bg xfer: %d\n", epctx->next_bg); xhci_kick_ep(xhci, fg->slotid, fg->epid); } } epctx->bg_updating = 0; } #if 0 static void xhci_xfer_cb(struct libusb_transfer *transfer) { XHCIState *xhci; XHCITransfer *xfer; xfer = (XHCITransfer *)transfer->user_data; xhci = xfer->xhci; DPRINTF("xhci_xfer_cb(slot=%d, ep=%d, status=%d)\n", xfer->slotid, xfer->epid, transfer->status); assert(xfer->slotid >= 1 && xfer->slotid <= MAXSLOTS); assert(xfer->epid >= 1 && xfer->epid <= 31); if (xfer->cancelled) { DPRINTF("xhci: transfer cancelled, not reporting anything\n"); xfer->running = 0; return; } XHCIEPContext *epctx; XHCISlot *slot; slot = &xhci->slots[xfer->slotid-1]; assert(slot->eps[xfer->epid-1]); epctx = slot->eps[xfer->epid-1]; if (xfer->bg_xfer) { DPRINTF("xhci: background transfer, updating\n"); xfer->complete = 1; xfer->running = 0; xhci_bg_update(xhci, epctx); return; } if (xfer->iso_xfer) { transfer->status = transfer->iso_packet_desc[0].status; transfer->actual_length = transfer->iso_packet_desc[0].actual_length; } xfer->status = libusb_to_ccode(transfer->status); xfer->complete = 1; xfer->running = 0; if (transfer->status == LIBUSB_TRANSFER_STALL) xhci_stall_ep(xhci, epctx, xfer); DPRINTF("xhci: transfer actual length = %d\n", transfer->actual_length); if (xfer->in_xfer) { if (xfer->epid == 1) { xhci_xfer_data(xhci, xfer, xfer->data + 8, transfer->actual_length, 1, 0, 1); } else { xhci_xfer_data(xhci, xfer, xfer->data, transfer->actual_length, 1, 0, 1); } } else { xhci_xfer_data(xhci, xfer, NULL, transfer->actual_length, 0, 0, 1); } xhci_kick_ep(xhci, xfer->slotid, xfer->epid); } static int xhci_hle_control(XHCIState *xhci, XHCITransfer *xfer, uint8_t bmRequestType, uint8_t bRequest, uint16_t wValue, uint16_t wIndex, uint16_t wLength) { uint16_t type_req = (bmRequestType << 8) | bRequest; switch (type_req) { case 0x0000 | USB_REQ_SET_CONFIGURATION: DPRINTF("xhci: HLE switch configuration\n"); return xhci_switch_config(xhci, xfer->slotid, wValue) == 0; case 0x0100 | USB_REQ_SET_INTERFACE: DPRINTF("xhci: HLE set interface altsetting\n"); return xhci_set_iface_alt(xhci, xfer->slotid, wIndex, wValue) == 0; case 0x0200 | USB_REQ_CLEAR_FEATURE: if (wValue == 0) { // endpoint halt DPRINTF("xhci: HLE clear halt\n"); return xhci_clear_halt(xhci, xfer->slotid, wIndex); } case 0x0000 | USB_REQ_SET_ADDRESS: fprintf(stderr, "xhci: warn: illegal SET_ADDRESS request\n"); return 0; default: return 0; } } #endif static int xhci_setup_packet(XHCITransfer *xfer, XHCIPort *port, int ep) { usb_packet_setup(&xfer->packet, xfer->in_xfer ? USB_TOKEN_IN : USB_TOKEN_OUT, xfer->xhci->slots[xfer->slotid-1].devaddr, ep & 0x7f); usb_packet_addbuf(&xfer->packet, xfer->data, xfer->data_length); DPRINTF("xhci: setup packet pid 0x%x addr %d ep %d\n", xfer->packet.pid, xfer->packet.devaddr, xfer->packet.devep); return 0; } static int xhci_complete_packet(XHCITransfer *xfer, int ret) { if (ret == USB_RET_ASYNC) { xfer->running = 1; xfer->complete = 0; xfer->cancelled = 0; return 0; } else { xfer->running = 0; xfer->complete = 1; } if (ret >= 0) { xfer->status = CC_SUCCESS; xhci_xfer_data(xfer, xfer->data, ret, xfer->in_xfer, 0, 1); return 0; } /* error */ switch (ret) { case USB_RET_NODEV: xfer->status = CC_USB_TRANSACTION_ERROR; xhci_xfer_data(xfer, xfer->data, 0, xfer->in_xfer, 0, 1); xhci_stall_ep(xfer); break; case USB_RET_STALL: xfer->status = CC_STALL_ERROR; xhci_xfer_data(xfer, xfer->data, 0, xfer->in_xfer, 0, 1); xhci_stall_ep(xfer); break; default: fprintf(stderr, "%s: FIXME: ret = %d\n", __FUNCTION__, ret); FIXME(); } return 0; } static int xhci_fire_ctl_transfer(XHCIState *xhci, XHCITransfer *xfer) { XHCITRB *trb_setup, *trb_status; uint8_t bmRequestType, bRequest; uint16_t wValue, wLength, wIndex; XHCIPort *port; USBDevice *dev; int ret; DPRINTF("xhci_fire_ctl_transfer(slot=%d)\n", xfer->slotid); trb_setup = &xfer->trbs[0]; trb_status = &xfer->trbs[xfer->trb_count-1]; /* at most one Event Data TRB allowed after STATUS */ if (TRB_TYPE(*trb_status) == TR_EVDATA && xfer->trb_count > 2) { trb_status--; } /* do some sanity checks */ if (TRB_TYPE(*trb_setup) != TR_SETUP) { fprintf(stderr, "xhci: ep0 first TD not SETUP: %d\n", TRB_TYPE(*trb_setup)); return -1; } if (TRB_TYPE(*trb_status) != TR_STATUS) { fprintf(stderr, "xhci: ep0 last TD not STATUS: %d\n", TRB_TYPE(*trb_status)); return -1; } if (!(trb_setup->control & TRB_TR_IDT)) { fprintf(stderr, "xhci: Setup TRB doesn't have IDT set\n"); return -1; } if ((trb_setup->status & 0x1ffff) != 8) { fprintf(stderr, "xhci: Setup TRB has bad length (%d)\n", (trb_setup->status & 0x1ffff)); return -1; } bmRequestType = trb_setup->parameter; bRequest = trb_setup->parameter >> 8; wValue = trb_setup->parameter >> 16; wIndex = trb_setup->parameter >> 32; wLength = trb_setup->parameter >> 48; if (xfer->data && xfer->data_alloced < wLength) { xfer->data_alloced = 0; g_free(xfer->data); xfer->data = NULL; } if (!xfer->data) { DPRINTF("xhci: alloc %d bytes data\n", wLength); xfer->data = g_malloc(wLength+1); xfer->data_alloced = wLength; } xfer->data_length = wLength; port = &xhci->ports[xhci->slots[xfer->slotid-1].port-1]; dev = port->port.dev; if (!dev) { fprintf(stderr, "xhci: slot %d port %d has no device\n", xfer->slotid, xhci->slots[xfer->slotid-1].port); return -1; } xfer->in_xfer = bmRequestType & USB_DIR_IN; xfer->iso_xfer = false; xhci_setup_packet(xfer, port, 0); if (!xfer->in_xfer) { xhci_xfer_data(xfer, xfer->data, wLength, 0, 1, 0); } ret = usb_device_handle_control(dev, &xfer->packet, (bmRequestType << 8) | bRequest, wValue, wIndex, wLength, xfer->data); xhci_complete_packet(xfer, ret); if (!xfer->running) { xhci_kick_ep(xhci, xfer->slotid, xfer->epid); } return 0; } static int xhci_submit(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx) { XHCIPort *port; USBDevice *dev; int ret; DPRINTF("xhci_submit(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid); uint8_t ep = xfer->epid>>1; xfer->in_xfer = epctx->type>>2; if (xfer->in_xfer) { ep |= 0x80; } if (xfer->data && xfer->data_alloced < xfer->data_length) { xfer->data_alloced = 0; g_free(xfer->data); xfer->data = NULL; } if (!xfer->data && xfer->data_length) { DPRINTF("xhci: alloc %d bytes data\n", xfer->data_length); xfer->data = g_malloc(xfer->data_length); xfer->data_alloced = xfer->data_length; } if (epctx->type == ET_ISO_IN || epctx->type == ET_ISO_OUT) { if (!xfer->bg_xfer) { xfer->pkts = 1; } } else { xfer->pkts = 0; } port = &xhci->ports[xhci->slots[xfer->slotid-1].port-1]; dev = port->port.dev; if (!dev) { fprintf(stderr, "xhci: slot %d port %d has no device\n", xfer->slotid, xhci->slots[xfer->slotid-1].port); return -1; } xhci_setup_packet(xfer, port, ep); switch(epctx->type) { case ET_INTR_OUT: case ET_INTR_IN: case ET_BULK_OUT: case ET_BULK_IN: break; case ET_ISO_OUT: case ET_ISO_IN: FIXME(); break; default: fprintf(stderr, "xhci: unknown or unhandled EP type %d (ep %02x)\n", epctx->type, ep); return -1; } if (!xfer->in_xfer) { xhci_xfer_data(xfer, xfer->data, xfer->data_length, 0, 1, 0); } ret = usb_handle_packet(dev, &xfer->packet); xhci_complete_packet(xfer, ret); if (!xfer->running) { xhci_kick_ep(xhci, xfer->slotid, xfer->epid); } return 0; } static int xhci_fire_transfer(XHCIState *xhci, XHCITransfer *xfer, XHCIEPContext *epctx) { int i; unsigned int length = 0; XHCITRB *trb; DPRINTF("xhci_fire_transfer(slotid=%d,epid=%d)\n", xfer->slotid, xfer->epid); for (i = 0; i < xfer->trb_count; i++) { trb = &xfer->trbs[i]; if (TRB_TYPE(*trb) == TR_NORMAL || TRB_TYPE(*trb) == TR_ISOCH) { length += trb->status & 0x1ffff; } } DPRINTF("xhci: total TD length=%d\n", length); if (!epctx->has_bg) { xfer->data_length = length; xfer->backgrounded = 0; return xhci_submit(xhci, xfer, epctx); } else { if (!epctx->bg_running) { for (i = 0; i < BG_XFERS; i++) { XHCITransfer *t = &epctx->bg_transfers[i]; t->xhci = xhci; t->epid = xfer->epid; t->slotid = xfer->slotid; t->pkts = BG_PKTS; t->pktsize = epctx->max_psize; t->data_length = t->pkts * t->pktsize; t->bg_xfer = 1; if (xhci_submit(xhci, t, epctx) < 0) { fprintf(stderr, "xhci: bg submit failed\n"); return -1; } } epctx->bg_running = 1; } xfer->backgrounded = 1; xhci_bg_update(xhci, epctx); return 0; } } static void xhci_kick_ep(XHCIState *xhci, unsigned int slotid, unsigned int epid) { XHCIEPContext *epctx; int length; int i; assert(slotid >= 1 && slotid <= MAXSLOTS); assert(epid >= 1 && epid <= 31); DPRINTF("xhci_kick_ep(%d, %d)\n", slotid, epid); if (!xhci->slots[slotid-1].enabled) { fprintf(stderr, "xhci: xhci_kick_ep for disabled slot %d\n", slotid); return; } epctx = xhci->slots[slotid-1].eps[epid-1]; if (!epctx) { fprintf(stderr, "xhci: xhci_kick_ep for disabled endpoint %d,%d\n", epid, slotid); return; } if (epctx->state == EP_HALTED) { DPRINTF("xhci: ep halted, not running schedule\n"); return; } xhci_set_ep_state(xhci, epctx, EP_RUNNING); while (1) { XHCITransfer *xfer = &epctx->transfers[epctx->next_xfer]; if (xfer->running || xfer->backgrounded) { DPRINTF("xhci: ep is busy\n"); break; } length = xhci_ring_chain_length(xhci, &epctx->ring); if (length < 0) { DPRINTF("xhci: incomplete TD (%d TRBs)\n", -length); break; } else if (length == 0) { break; } DPRINTF("xhci: fetching %d-TRB TD\n", length); if (xfer->trbs && xfer->trb_alloced < length) { xfer->trb_count = 0; xfer->trb_alloced = 0; g_free(xfer->trbs); xfer->trbs = NULL; } if (!xfer->trbs) { xfer->trbs = g_malloc(sizeof(XHCITRB) * length); xfer->trb_alloced = length; } xfer->trb_count = length; for (i = 0; i < length; i++) { assert(xhci_ring_fetch(xhci, &epctx->ring, &xfer->trbs[i], NULL)); } xfer->xhci = xhci; xfer->epid = epid; xfer->slotid = slotid; if (epid == 1) { if (xhci_fire_ctl_transfer(xhci, xfer) >= 0) { epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE; } else { fprintf(stderr, "xhci: error firing CTL transfer\n"); } } else { if (xhci_fire_transfer(xhci, xfer, epctx) >= 0) { epctx->next_xfer = (epctx->next_xfer + 1) % TD_QUEUE; } else { fprintf(stderr, "xhci: error firing data transfer\n"); } } /* * Qemu usb can't handle multiple in-flight xfers. * Also xfers might be finished here already, * possibly with an error. Stop here for now. */ break; } } static TRBCCode xhci_enable_slot(XHCIState *xhci, unsigned int slotid) { assert(slotid >= 1 && slotid <= MAXSLOTS); DPRINTF("xhci_enable_slot(%d)\n", slotid); xhci->slots[slotid-1].enabled = 1; xhci->slots[slotid-1].port = 0; memset(xhci->slots[slotid-1].eps, 0, sizeof(XHCIEPContext*)*31); return CC_SUCCESS; } static TRBCCode xhci_disable_slot(XHCIState *xhci, unsigned int slotid) { int i; assert(slotid >= 1 && slotid <= MAXSLOTS); DPRINTF("xhci_disable_slot(%d)\n", slotid); for (i = 1; i <= 31; i++) { if (xhci->slots[slotid-1].eps[i-1]) { xhci_disable_ep(xhci, slotid, i); } } xhci->slots[slotid-1].enabled = 0; return CC_SUCCESS; } static TRBCCode xhci_address_slot(XHCIState *xhci, unsigned int slotid, uint64_t pictx, bool bsr) { XHCISlot *slot; USBDevice *dev; target_phys_addr_t ictx, octx, dcbaap; uint64_t poctx; uint32_t ictl_ctx[2]; uint32_t slot_ctx[4]; uint32_t ep0_ctx[5]; unsigned int port; int i; TRBCCode res; assert(slotid >= 1 && slotid <= MAXSLOTS); DPRINTF("xhci_address_slot(%d)\n", slotid); dcbaap = xhci_addr64(xhci->dcbaap_low, xhci->dcbaap_high); cpu_physical_memory_read(dcbaap + 8*slotid, (uint8_t *) &poctx, sizeof(poctx)); ictx = xhci_mask64(pictx); octx = xhci_mask64(le64_to_cpu(poctx)); DPRINTF("xhci: input context at "TARGET_FMT_plx"\n", ictx); DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx); cpu_physical_memory_read(ictx, (uint8_t *) ictl_ctx, sizeof(ictl_ctx)); if (ictl_ctx[0] != 0x0 || ictl_ctx[1] != 0x3) { fprintf(stderr, "xhci: invalid input context control %08x %08x\n", ictl_ctx[0], ictl_ctx[1]); return CC_TRB_ERROR; } cpu_physical_memory_read(ictx+32, (uint8_t *) slot_ctx, sizeof(slot_ctx)); cpu_physical_memory_read(ictx+64, (uint8_t *) ep0_ctx, sizeof(ep0_ctx)); DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n", ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]); port = (slot_ctx[1]>>16) & 0xFF; dev = xhci->ports[port-1].port.dev; if (port < 1 || port > MAXPORTS) { fprintf(stderr, "xhci: bad port %d\n", port); return CC_TRB_ERROR; } else if (!dev) { fprintf(stderr, "xhci: port %d not connected\n", port); return CC_USB_TRANSACTION_ERROR; } for (i = 0; i < MAXSLOTS; i++) { if (xhci->slots[i].port == port) { fprintf(stderr, "xhci: port %d already assigned to slot %d\n", port, i+1); return CC_TRB_ERROR; } } slot = &xhci->slots[slotid-1]; slot->port = port; slot->ctx = octx; if (bsr) { slot_ctx[3] = SLOT_DEFAULT << SLOT_STATE_SHIFT; } else { slot->devaddr = xhci->devaddr++; slot_ctx[3] = (SLOT_ADDRESSED << SLOT_STATE_SHIFT) | slot->devaddr; DPRINTF("xhci: device address is %d\n", slot->devaddr); usb_device_handle_control(dev, NULL, DeviceOutRequest | USB_REQ_SET_ADDRESS, slot->devaddr, 0, 0, NULL); } res = xhci_enable_ep(xhci, slotid, 1, octx+32, ep0_ctx); DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n", ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]); cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx)); cpu_physical_memory_write(octx+32, (uint8_t *) ep0_ctx, sizeof(ep0_ctx)); return res; } static TRBCCode xhci_configure_slot(XHCIState *xhci, unsigned int slotid, uint64_t pictx, bool dc) { target_phys_addr_t ictx, octx; uint32_t ictl_ctx[2]; uint32_t slot_ctx[4]; uint32_t islot_ctx[4]; uint32_t ep_ctx[5]; int i; TRBCCode res; assert(slotid >= 1 && slotid <= MAXSLOTS); DPRINTF("xhci_configure_slot(%d)\n", slotid); ictx = xhci_mask64(pictx); octx = xhci->slots[slotid-1].ctx; DPRINTF("xhci: input context at "TARGET_FMT_plx"\n", ictx); DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx); if (dc) { for (i = 2; i <= 31; i++) { if (xhci->slots[slotid-1].eps[i-1]) { xhci_disable_ep(xhci, slotid, i); } } cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx)); slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT); slot_ctx[3] |= SLOT_ADDRESSED << SLOT_STATE_SHIFT; DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx)); return CC_SUCCESS; } cpu_physical_memory_read(ictx, (uint8_t *) ictl_ctx, sizeof(ictl_ctx)); if ((ictl_ctx[0] & 0x3) != 0x0 || (ictl_ctx[1] & 0x3) != 0x1) { fprintf(stderr, "xhci: invalid input context control %08x %08x\n", ictl_ctx[0], ictl_ctx[1]); return CC_TRB_ERROR; } cpu_physical_memory_read(ictx+32, (uint8_t *) islot_ctx, sizeof(islot_ctx)); cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx)); if (SLOT_STATE(slot_ctx[3]) < SLOT_ADDRESSED) { fprintf(stderr, "xhci: invalid slot state %08x\n", slot_ctx[3]); return CC_CONTEXT_STATE_ERROR; } for (i = 2; i <= 31; i++) { if (ictl_ctx[0] & (1<= 1 && slotid <= MAXSLOTS); DPRINTF("xhci_evaluate_slot(%d)\n", slotid); ictx = xhci_mask64(pictx); octx = xhci->slots[slotid-1].ctx; DPRINTF("xhci: input context at "TARGET_FMT_plx"\n", ictx); DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx); cpu_physical_memory_read(ictx, (uint8_t *) ictl_ctx, sizeof(ictl_ctx)); if (ictl_ctx[0] != 0x0 || ictl_ctx[1] & ~0x3) { fprintf(stderr, "xhci: invalid input context control %08x %08x\n", ictl_ctx[0], ictl_ctx[1]); return CC_TRB_ERROR; } if (ictl_ctx[1] & 0x1) { cpu_physical_memory_read(ictx+32, (uint8_t *) islot_ctx, sizeof(islot_ctx)); DPRINTF("xhci: input slot context: %08x %08x %08x %08x\n", islot_ctx[0], islot_ctx[1], islot_ctx[2], islot_ctx[3]); cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx)); slot_ctx[1] &= ~0xFFFF; /* max exit latency */ slot_ctx[1] |= islot_ctx[1] & 0xFFFF; slot_ctx[2] &= ~0xFF00000; /* interrupter target */ slot_ctx[2] |= islot_ctx[2] & 0xFF000000; DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx)); } if (ictl_ctx[1] & 0x2) { cpu_physical_memory_read(ictx+64, (uint8_t *) iep0_ctx, sizeof(iep0_ctx)); DPRINTF("xhci: input ep0 context: %08x %08x %08x %08x %08x\n", iep0_ctx[0], iep0_ctx[1], iep0_ctx[2], iep0_ctx[3], iep0_ctx[4]); cpu_physical_memory_read(octx+32, (uint8_t *) ep0_ctx, sizeof(ep0_ctx)); ep0_ctx[1] &= ~0xFFFF0000; /* max packet size*/ ep0_ctx[1] |= iep0_ctx[1] & 0xFFFF0000; DPRINTF("xhci: output ep0 context: %08x %08x %08x %08x %08x\n", ep0_ctx[0], ep0_ctx[1], ep0_ctx[2], ep0_ctx[3], ep0_ctx[4]); cpu_physical_memory_write(octx+32, (uint8_t *) ep0_ctx, sizeof(ep0_ctx)); } return CC_SUCCESS; } static TRBCCode xhci_reset_slot(XHCIState *xhci, unsigned int slotid) { uint32_t slot_ctx[4]; target_phys_addr_t octx; int i; assert(slotid >= 1 && slotid <= MAXSLOTS); DPRINTF("xhci_reset_slot(%d)\n", slotid); octx = xhci->slots[slotid-1].ctx; DPRINTF("xhci: output context at "TARGET_FMT_plx"\n", octx); for (i = 2; i <= 31; i++) { if (xhci->slots[slotid-1].eps[i-1]) { xhci_disable_ep(xhci, slotid, i); } } cpu_physical_memory_read(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx)); slot_ctx[3] &= ~(SLOT_STATE_MASK << SLOT_STATE_SHIFT); slot_ctx[3] |= SLOT_DEFAULT << SLOT_STATE_SHIFT; DPRINTF("xhci: output slot context: %08x %08x %08x %08x\n", slot_ctx[0], slot_ctx[1], slot_ctx[2], slot_ctx[3]); cpu_physical_memory_write(octx, (uint8_t *) slot_ctx, sizeof(slot_ctx)); return CC_SUCCESS; } static unsigned int xhci_get_slot(XHCIState *xhci, XHCIEvent *event, XHCITRB *trb) { unsigned int slotid; slotid = (trb->control >> TRB_CR_SLOTID_SHIFT) & TRB_CR_SLOTID_MASK; if (slotid < 1 || slotid > MAXSLOTS) { fprintf(stderr, "xhci: bad slot id %d\n", slotid); event->ccode = CC_TRB_ERROR; return 0; } else if (!xhci->slots[slotid-1].enabled) { fprintf(stderr, "xhci: slot id %d not enabled\n", slotid); event->ccode = CC_SLOT_NOT_ENABLED_ERROR; return 0; } return slotid; } static TRBCCode xhci_get_port_bandwidth(XHCIState *xhci, uint64_t pctx) { target_phys_addr_t ctx; uint8_t bw_ctx[MAXPORTS+1]; DPRINTF("xhci_get_port_bandwidth()\n"); ctx = xhci_mask64(pctx); DPRINTF("xhci: bandwidth context at "TARGET_FMT_plx"\n", ctx); /* TODO: actually implement real values here */ bw_ctx[0] = 0; memset(&bw_ctx[1], 80, MAXPORTS); /* 80% */ cpu_physical_memory_write(ctx, bw_ctx, sizeof(bw_ctx)); return CC_SUCCESS; } static uint32_t rotl(uint32_t v, unsigned count) { count &= 31; return (v << count) | (v >> (32 - count)); } static uint32_t xhci_nec_challenge(uint32_t hi, uint32_t lo) { uint32_t val; val = rotl(lo - 0x49434878, 32 - ((hi>>8) & 0x1F)); val += rotl(lo + 0x49434878, hi & 0x1F); val -= rotl(hi ^ 0x49434878, (lo >> 16) & 0x1F); return ~val; } static void xhci_via_challenge(uint64_t addr) { uint32_t buf[8]; uint32_t obuf[8]; target_phys_addr_t paddr = xhci_mask64(addr); cpu_physical_memory_read(paddr, (uint8_t *) &buf, 32); memcpy(obuf, buf, sizeof(obuf)); if ((buf[0] & 0xff) == 2) { obuf[0] = 0x49932000 + 0x54dc200 * buf[2] + 0x7429b578 * buf[3]; obuf[0] |= (buf[2] * buf[3]) & 0xff; obuf[1] = 0x0132bb37 + 0xe89 * buf[2] + 0xf09 * buf[3]; obuf[2] = 0x0066c2e9 + 0x2091 * buf[2] + 0x19bd * buf[3]; obuf[3] = 0xd5281342 + 0x2cc9691 * buf[2] + 0x2367662 * buf[3]; obuf[4] = 0x0123c75c + 0x1595 * buf[2] + 0x19ec * buf[3]; obuf[5] = 0x00f695de + 0x26fd * buf[2] + 0x3e9 * buf[3]; obuf[6] = obuf[2] ^ obuf[3] ^ 0x29472956; obuf[7] = obuf[2] ^ obuf[3] ^ 0x65866593; } cpu_physical_memory_write(paddr, (uint8_t *) &obuf, 32); } static void xhci_process_commands(XHCIState *xhci) { XHCITRB trb; TRBType type; XHCIEvent event = {ER_COMMAND_COMPLETE, CC_SUCCESS}; target_phys_addr_t addr; unsigned int i, slotid = 0; DPRINTF("xhci_process_commands()\n"); if (!xhci_running(xhci)) { DPRINTF("xhci_process_commands() called while xHC stopped or paused\n"); return; } xhci->crcr_low |= CRCR_CRR; while ((type = xhci_ring_fetch(xhci, &xhci->cmd_ring, &trb, &addr))) { event.ptr = addr; switch (type) { case CR_ENABLE_SLOT: for (i = 0; i < MAXSLOTS; i++) { if (!xhci->slots[i].enabled) { break; } } if (i >= MAXSLOTS) { fprintf(stderr, "xhci: no device slots available\n"); event.ccode = CC_NO_SLOTS_ERROR; } else { slotid = i+1; event.ccode = xhci_enable_slot(xhci, slotid); } break; case CR_DISABLE_SLOT: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { event.ccode = xhci_disable_slot(xhci, slotid); } break; case CR_ADDRESS_DEVICE: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { event.ccode = xhci_address_slot(xhci, slotid, trb.parameter, trb.control & TRB_CR_BSR); } break; case CR_CONFIGURE_ENDPOINT: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { event.ccode = xhci_configure_slot(xhci, slotid, trb.parameter, trb.control & TRB_CR_DC); } break; case CR_EVALUATE_CONTEXT: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { event.ccode = xhci_evaluate_slot(xhci, slotid, trb.parameter); } break; case CR_STOP_ENDPOINT: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT) & TRB_CR_EPID_MASK; event.ccode = xhci_stop_ep(xhci, slotid, epid); } break; case CR_RESET_ENDPOINT: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT) & TRB_CR_EPID_MASK; event.ccode = xhci_reset_ep(xhci, slotid, epid); } break; case CR_SET_TR_DEQUEUE: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { unsigned int epid = (trb.control >> TRB_CR_EPID_SHIFT) & TRB_CR_EPID_MASK; event.ccode = xhci_set_ep_dequeue(xhci, slotid, epid, trb.parameter); } break; case CR_RESET_DEVICE: slotid = xhci_get_slot(xhci, &event, &trb); if (slotid) { event.ccode = xhci_reset_slot(xhci, slotid); } break; case CR_GET_PORT_BANDWIDTH: event.ccode = xhci_get_port_bandwidth(xhci, trb.parameter); break; case CR_VENDOR_VIA_CHALLENGE_RESPONSE: xhci_via_challenge(trb.parameter); break; case CR_VENDOR_NEC_FIRMWARE_REVISION: event.type = 48; /* NEC reply */ event.length = 0x3025; break; case CR_VENDOR_NEC_CHALLENGE_RESPONSE: { uint32_t chi = trb.parameter >> 32; uint32_t clo = trb.parameter; uint32_t val = xhci_nec_challenge(chi, clo); event.length = val & 0xFFFF; event.epid = val >> 16; slotid = val >> 24; event.type = 48; /* NEC reply */ } break; default: fprintf(stderr, "xhci: unimplemented command %d\n", type); event.ccode = CC_TRB_ERROR; break; } event.slotid = slotid; xhci_event(xhci, &event); } } static void xhci_update_port(XHCIState *xhci, XHCIPort *port, int is_detach) { int nr = port->port.index + 1; port->portsc = PORTSC_PP; if (port->port.dev && !is_detach) { port->portsc |= PORTSC_CCS; switch (port->port.dev->speed) { case USB_SPEED_LOW: port->portsc |= PORTSC_SPEED_LOW; break; case USB_SPEED_FULL: port->portsc |= PORTSC_SPEED_FULL; break; case USB_SPEED_HIGH: port->portsc |= PORTSC_SPEED_HIGH; break; } } if (xhci_running(xhci)) { port->portsc |= PORTSC_CSC; XHCIEvent ev = { ER_PORT_STATUS_CHANGE, CC_SUCCESS, nr << 24}; xhci_event(xhci, &ev); DPRINTF("xhci: port change event for port %d\n", nr); } } static void xhci_reset(void *opaque) { XHCIState *xhci = opaque; int i; DPRINTF("xhci: full reset\n"); if (!(xhci->usbsts & USBSTS_HCH)) { fprintf(stderr, "xhci: reset while running!\n"); } xhci->usbcmd = 0; xhci->usbsts = USBSTS_HCH; xhci->dnctrl = 0; xhci->crcr_low = 0; xhci->crcr_high = 0; xhci->dcbaap_low = 0; xhci->dcbaap_high = 0; xhci->config = 0; xhci->devaddr = 2; for (i = 0; i < MAXSLOTS; i++) { xhci_disable_slot(xhci, i+1); } for (i = 0; i < MAXPORTS; i++) { xhci_update_port(xhci, xhci->ports + i, 0); } xhci->mfindex = 0; xhci->iman = 0; xhci->imod = 0; xhci->erstsz = 0; xhci->erstba_low = 0; xhci->erstba_high = 0; xhci->erdp_low = 0; xhci->erdp_high = 0; xhci->er_ep_idx = 0; xhci->er_pcs = 1; xhci->er_full = 0; xhci->ev_buffer_put = 0; xhci->ev_buffer_get = 0; } static uint32_t xhci_cap_read(XHCIState *xhci, uint32_t reg) { DPRINTF("xhci_cap_read(0x%x)\n", reg); switch (reg) { case 0x00: /* HCIVERSION, CAPLENGTH */ return 0x01000000 | LEN_CAP; case 0x04: /* HCSPARAMS 1 */ return (MAXPORTS<<24) | (MAXINTRS<<8) | MAXSLOTS; case 0x08: /* HCSPARAMS 2 */ return 0x0000000f; case 0x0c: /* HCSPARAMS 3 */ return 0x00000000; case 0x10: /* HCCPARAMS */ #if TARGET_PHYS_ADDR_BITS > 32 return 0x00081001; #else return 0x00081000; #endif case 0x14: /* DBOFF */ return OFF_DOORBELL; case 0x18: /* RTSOFF */ return OFF_RUNTIME; /* extended capabilities */ case 0x20: /* Supported Protocol:00 */ #if USB3_PORTS > 0 return 0x02000402; /* USB 2.0 */ #else return 0x02000002; /* USB 2.0 */ #endif case 0x24: /* Supported Protocol:04 */ return 0x20425455; /* "USB " */ case 0x28: /* Supported Protocol:08 */ return 0x00000001 | (USB2_PORTS<<8); case 0x2c: /* Supported Protocol:0c */ return 0x00000000; /* reserved */ #if USB3_PORTS > 0 case 0x30: /* Supported Protocol:00 */ return 0x03000002; /* USB 3.0 */ case 0x34: /* Supported Protocol:04 */ return 0x20425455; /* "USB " */ case 0x38: /* Supported Protocol:08 */ return 0x00000000 | (USB2_PORTS+1) | (USB3_PORTS<<8); case 0x3c: /* Supported Protocol:0c */ return 0x00000000; /* reserved */ #endif default: fprintf(stderr, "xhci_cap_read: reg %d unimplemented\n", reg); } return 0; } static uint32_t xhci_port_read(XHCIState *xhci, uint32_t reg) { uint32_t port = reg >> 4; if (port >= MAXPORTS) { fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port); return 0; } switch (reg & 0xf) { case 0x00: /* PORTSC */ return xhci->ports[port].portsc; case 0x04: /* PORTPMSC */ case 0x08: /* PORTLI */ return 0; case 0x0c: /* reserved */ default: fprintf(stderr, "xhci_port_read (port %d): reg 0x%x unimplemented\n", port, reg); return 0; } } static void xhci_port_write(XHCIState *xhci, uint32_t reg, uint32_t val) { uint32_t port = reg >> 4; uint32_t portsc; if (port >= MAXPORTS) { fprintf(stderr, "xhci_port_read: port %d out of bounds\n", port); return; } switch (reg & 0xf) { case 0x00: /* PORTSC */ portsc = xhci->ports[port].portsc; /* write-1-to-clear bits*/ portsc &= ~(val & (PORTSC_CSC|PORTSC_PEC|PORTSC_WRC|PORTSC_OCC| PORTSC_PRC|PORTSC_PLC|PORTSC_CEC)); if (val & PORTSC_LWS) { /* overwrite PLS only when LWS=1 */ portsc &= ~(PORTSC_PLS_MASK << PORTSC_PLS_SHIFT); portsc |= val & (PORTSC_PLS_MASK << PORTSC_PLS_SHIFT); } /* read/write bits */ portsc &= ~(PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE); portsc |= (val & (PORTSC_PP|PORTSC_WCE|PORTSC_WDE|PORTSC_WOE)); /* write-1-to-start bits */ if (val & PORTSC_PR) { DPRINTF("xhci: port %d reset\n", port); if (xhci->ports[port].port.dev) { usb_send_msg(xhci->ports[port].port.dev, USB_MSG_RESET); } portsc |= PORTSC_PRC | PORTSC_PED; } xhci->ports[port].portsc = portsc; break; case 0x04: /* PORTPMSC */ case 0x08: /* PORTLI */ default: fprintf(stderr, "xhci_port_write (port %d): reg 0x%x unimplemented\n", port, reg); } } static uint32_t xhci_oper_read(XHCIState *xhci, uint32_t reg) { DPRINTF("xhci_oper_read(0x%x)\n", reg); if (reg >= 0x400) { return xhci_port_read(xhci, reg - 0x400); } switch (reg) { case 0x00: /* USBCMD */ return xhci->usbcmd; case 0x04: /* USBSTS */ return xhci->usbsts; case 0x08: /* PAGESIZE */ return 1; /* 4KiB */ case 0x14: /* DNCTRL */ return xhci->dnctrl; case 0x18: /* CRCR low */ return xhci->crcr_low & ~0xe; case 0x1c: /* CRCR high */ return xhci->crcr_high; case 0x30: /* DCBAAP low */ return xhci->dcbaap_low; case 0x34: /* DCBAAP high */ return xhci->dcbaap_high; case 0x38: /* CONFIG */ return xhci->config; default: fprintf(stderr, "xhci_oper_read: reg 0x%x unimplemented\n", reg); } return 0; } static void xhci_oper_write(XHCIState *xhci, uint32_t reg, uint32_t val) { DPRINTF("xhci_oper_write(0x%x, 0x%08x)\n", reg, val); if (reg >= 0x400) { xhci_port_write(xhci, reg - 0x400, val); return; } switch (reg) { case 0x00: /* USBCMD */ if ((val & USBCMD_RS) && !(xhci->usbcmd & USBCMD_RS)) { xhci_run(xhci); } else if (!(val & USBCMD_RS) && (xhci->usbcmd & USBCMD_RS)) { xhci_stop(xhci); } xhci->usbcmd = val & 0xc0f; if (val & USBCMD_HCRST) { xhci_reset(xhci); } xhci_irq_update(xhci); break; case 0x04: /* USBSTS */ /* these bits are write-1-to-clear */ xhci->usbsts &= ~(val & (USBSTS_HSE|USBSTS_EINT|USBSTS_PCD|USBSTS_SRE)); xhci_irq_update(xhci); break; case 0x14: /* DNCTRL */ xhci->dnctrl = val & 0xffff; break; case 0x18: /* CRCR low */ xhci->crcr_low = (val & 0xffffffcf) | (xhci->crcr_low & CRCR_CRR); break; case 0x1c: /* CRCR high */ xhci->crcr_high = val; if (xhci->crcr_low & (CRCR_CA|CRCR_CS) && (xhci->crcr_low & CRCR_CRR)) { XHCIEvent event = {ER_COMMAND_COMPLETE, CC_COMMAND_RING_STOPPED}; xhci->crcr_low &= ~CRCR_CRR; xhci_event(xhci, &event); DPRINTF("xhci: command ring stopped (CRCR=%08x)\n", xhci->crcr_low); } else { target_phys_addr_t base = xhci_addr64(xhci->crcr_low & ~0x3f, val); xhci_ring_init(xhci, &xhci->cmd_ring, base); } xhci->crcr_low &= ~(CRCR_CA | CRCR_CS); break; case 0x30: /* DCBAAP low */ xhci->dcbaap_low = val & 0xffffffc0; break; case 0x34: /* DCBAAP high */ xhci->dcbaap_high = val; break; case 0x38: /* CONFIG */ xhci->config = val & 0xff; break; default: fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", reg); } } static uint32_t xhci_runtime_read(XHCIState *xhci, uint32_t reg) { DPRINTF("xhci_runtime_read(0x%x)\n", reg); switch (reg) { case 0x00: /* MFINDEX */ fprintf(stderr, "xhci_runtime_read: MFINDEX not yet implemented\n"); return xhci->mfindex; case 0x20: /* IMAN */ return xhci->iman; case 0x24: /* IMOD */ return xhci->imod; case 0x28: /* ERSTSZ */ return xhci->erstsz; case 0x30: /* ERSTBA low */ return xhci->erstba_low; case 0x34: /* ERSTBA high */ return xhci->erstba_high; case 0x38: /* ERDP low */ return xhci->erdp_low; case 0x3c: /* ERDP high */ return xhci->erdp_high; default: fprintf(stderr, "xhci_runtime_read: reg 0x%x unimplemented\n", reg); } return 0; } static void xhci_runtime_write(XHCIState *xhci, uint32_t reg, uint32_t val) { DPRINTF("xhci_runtime_write(0x%x, 0x%08x)\n", reg, val); switch (reg) { case 0x20: /* IMAN */ if (val & IMAN_IP) { xhci->iman &= ~IMAN_IP; } xhci->iman &= ~IMAN_IE; xhci->iman |= val & IMAN_IE; xhci_irq_update(xhci); break; case 0x24: /* IMOD */ xhci->imod = val; break; case 0x28: /* ERSTSZ */ xhci->erstsz = val & 0xffff; break; case 0x30: /* ERSTBA low */ /* XXX NEC driver bug: it doesn't align this to 64 bytes xhci->erstba_low = val & 0xffffffc0; */ xhci->erstba_low = val & 0xfffffff0; break; case 0x34: /* ERSTBA high */ xhci->erstba_high = val; xhci_er_reset(xhci); break; case 0x38: /* ERDP low */ if (val & ERDP_EHB) { xhci->erdp_low &= ~ERDP_EHB; } xhci->erdp_low = (val & ~ERDP_EHB) | (xhci->erdp_low & ERDP_EHB); break; case 0x3c: /* ERDP high */ xhci->erdp_high = val; xhci_events_update(xhci); break; default: fprintf(stderr, "xhci_oper_write: reg 0x%x unimplemented\n", reg); } } static uint32_t xhci_doorbell_read(XHCIState *xhci, uint32_t reg) { DPRINTF("xhci_doorbell_read(0x%x)\n", reg); /* doorbells always read as 0 */ return 0; } static void xhci_doorbell_write(XHCIState *xhci, uint32_t reg, uint32_t val) { DPRINTF("xhci_doorbell_write(0x%x, 0x%08x)\n", reg, val); if (!xhci_running(xhci)) { fprintf(stderr, "xhci: wrote doorbell while xHC stopped or paused\n"); return; } reg >>= 2; if (reg == 0) { if (val == 0) { xhci_process_commands(xhci); } else { fprintf(stderr, "xhci: bad doorbell 0 write: 0x%x\n", val); } } else { if (reg > MAXSLOTS) { fprintf(stderr, "xhci: bad doorbell %d\n", reg); } else if (val > 31) { fprintf(stderr, "xhci: bad doorbell %d write: 0x%x\n", reg, val); } else { xhci_kick_ep(xhci, reg, val); } } } static uint64_t xhci_mem_read(void *ptr, target_phys_addr_t addr, unsigned size) { XHCIState *xhci = ptr; /* Only aligned reads are allowed on xHCI */ if (addr & 3) { fprintf(stderr, "xhci_mem_read: Mis-aligned read\n"); return 0; } if (addr < LEN_CAP) { return xhci_cap_read(xhci, addr); } else if (addr >= OFF_OPER && addr < (OFF_OPER + LEN_OPER)) { return xhci_oper_read(xhci, addr - OFF_OPER); } else if (addr >= OFF_RUNTIME && addr < (OFF_RUNTIME + LEN_RUNTIME)) { return xhci_runtime_read(xhci, addr - OFF_RUNTIME); } else if (addr >= OFF_DOORBELL && addr < (OFF_DOORBELL + LEN_DOORBELL)) { return xhci_doorbell_read(xhci, addr - OFF_DOORBELL); } else { fprintf(stderr, "xhci_mem_read: Bad offset %x\n", (int)addr); return 0; } } static void xhci_mem_write(void *ptr, target_phys_addr_t addr, uint64_t val, unsigned size) { XHCIState *xhci = ptr; /* Only aligned writes are allowed on xHCI */ if (addr & 3) { fprintf(stderr, "xhci_mem_write: Mis-aligned write\n"); return; } if (addr >= OFF_OPER && addr < (OFF_OPER + LEN_OPER)) { xhci_oper_write(xhci, addr - OFF_OPER, val); } else if (addr >= OFF_RUNTIME && addr < (OFF_RUNTIME + LEN_RUNTIME)) { xhci_runtime_write(xhci, addr - OFF_RUNTIME, val); } else if (addr >= OFF_DOORBELL && addr < (OFF_DOORBELL + LEN_DOORBELL)) { xhci_doorbell_write(xhci, addr - OFF_DOORBELL, val); } else { fprintf(stderr, "xhci_mem_write: Bad offset %x\n", (int)addr); } } static const MemoryRegionOps xhci_mem_ops = { .read = xhci_mem_read, .write = xhci_mem_write, .valid.min_access_size = 4, .valid.max_access_size = 4, .endianness = DEVICE_LITTLE_ENDIAN, }; static void xhci_attach(USBPort *usbport) { XHCIState *xhci = usbport->opaque; XHCIPort *port = &xhci->ports[usbport->index]; xhci_update_port(xhci, port, 0); } static void xhci_detach(USBPort *usbport) { XHCIState *xhci = usbport->opaque; XHCIPort *port = &xhci->ports[usbport->index]; xhci_update_port(xhci, port, 1); } static void xhci_complete(USBPort *port, USBPacket *packet) { XHCITransfer *xfer = container_of(packet, XHCITransfer, packet); xhci_complete_packet(xfer, packet->result); xhci_kick_ep(xfer->xhci, xfer->slotid, xfer->epid); } static void xhci_child_detach(USBPort *port, USBDevice *child) { FIXME(); } static USBPortOps xhci_port_ops = { .attach = xhci_attach, .detach = xhci_detach, .complete = xhci_complete, .child_detach = xhci_child_detach, }; static USBBusOps xhci_bus_ops = { }; static void usb_xhci_init(XHCIState *xhci, DeviceState *dev) { int i; xhci->usbsts = USBSTS_HCH; usb_bus_new(&xhci->bus, &xhci_bus_ops, &xhci->pci_dev.qdev); for (i = 0; i < MAXPORTS; i++) { memset(&xhci->ports[i], 0, sizeof(xhci->ports[i])); usb_register_port(&xhci->bus, &xhci->ports[i].port, xhci, i, &xhci_port_ops, USB_SPEED_MASK_HIGH); } for (i = 0; i < MAXSLOTS; i++) { xhci->slots[i].enabled = 0; } qemu_register_reset(xhci_reset, xhci); } static int usb_xhci_initfn(struct PCIDevice *dev) { int ret; XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev, dev); xhci->pci_dev.config[PCI_CLASS_PROG] = 0x30; /* xHCI */ xhci->pci_dev.config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin 1 */ xhci->pci_dev.config[PCI_CACHE_LINE_SIZE] = 0x10; xhci->pci_dev.config[0x60] = 0x30; /* release number */ usb_xhci_init(xhci, &dev->qdev); xhci->irq = xhci->pci_dev.irq[0]; memory_region_init_io(&xhci->mem, &xhci_mem_ops, xhci, "xhci", LEN_REGS); pci_register_bar(&xhci->pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY|PCI_BASE_ADDRESS_MEM_TYPE_64, &xhci->mem); ret = pcie_cap_init(&xhci->pci_dev, 0xa0, PCI_EXP_TYPE_ENDPOINT, 0); assert(ret >= 0); if (xhci->msi) { ret = msi_init(&xhci->pci_dev, 0x70, 1, true, false); assert(ret >= 0); } return 0; } static void xhci_write_config(PCIDevice *dev, uint32_t addr, uint32_t val, int len) { XHCIState *xhci = DO_UPCAST(XHCIState, pci_dev, dev); pci_default_write_config(dev, addr, val, len); if (xhci->msi) { msi_write_config(dev, addr, val, len); } } static const VMStateDescription vmstate_xhci = { .name = "xhci", .unmigratable = 1, }; static Property xhci_properties[] = { DEFINE_PROP_UINT32("msi", XHCIState, msi, 0), DEFINE_PROP_END_OF_LIST(), }; static void xhci_class_init(ObjectClass *klass, void *data) { PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &vmstate_xhci; dc->props = xhci_properties; k->init = usb_xhci_initfn; k->vendor_id = PCI_VENDOR_ID_NEC; k->device_id = PCI_DEVICE_ID_NEC_UPD720200; k->class_id = PCI_CLASS_SERIAL_USB; k->revision = 0x03; k->is_express = 1; k->config_write = xhci_write_config; } static TypeInfo xhci_info = { .name = "nec-usb-xhci", .parent = TYPE_PCI_DEVICE, .instance_size = sizeof(XHCIState), .class_init = xhci_class_init, }; static void xhci_register_types(void) { type_register_static(&xhci_info); } type_init(xhci_register_types)