/* * USB UHCI controller emulation * * Copyright (c) 2005 Fabrice Bellard * * Copyright (c) 2008 Max Krasnyansky * Magor rewrite of the UHCI data structures parser and frame processor * Support for fully async operation and multiple outstanding transactions * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "usb.h" #include "pci.h" #include "qemu-timer.h" //#define DEBUG //#define DEBUG_DUMP_DATA #define UHCI_CMD_FGR (1 << 4) #define UHCI_CMD_EGSM (1 << 3) #define UHCI_CMD_GRESET (1 << 2) #define UHCI_CMD_HCRESET (1 << 1) #define UHCI_CMD_RS (1 << 0) #define UHCI_STS_HCHALTED (1 << 5) #define UHCI_STS_HCPERR (1 << 4) #define UHCI_STS_HSERR (1 << 3) #define UHCI_STS_RD (1 << 2) #define UHCI_STS_USBERR (1 << 1) #define UHCI_STS_USBINT (1 << 0) #define TD_CTRL_SPD (1 << 29) #define TD_CTRL_ERROR_SHIFT 27 #define TD_CTRL_IOS (1 << 25) #define TD_CTRL_IOC (1 << 24) #define TD_CTRL_ACTIVE (1 << 23) #define TD_CTRL_STALL (1 << 22) #define TD_CTRL_BABBLE (1 << 20) #define TD_CTRL_NAK (1 << 19) #define TD_CTRL_TIMEOUT (1 << 18) #define UHCI_PORT_RESET (1 << 9) #define UHCI_PORT_LSDA (1 << 8) #define UHCI_PORT_ENC (1 << 3) #define UHCI_PORT_EN (1 << 2) #define UHCI_PORT_CSC (1 << 1) #define UHCI_PORT_CCS (1 << 0) #define FRAME_TIMER_FREQ 1000 #define FRAME_MAX_LOOPS 100 #define NB_PORTS 2 #ifdef DEBUG #define dprintf printf const char *pid2str(int pid) { switch (pid) { case USB_TOKEN_SETUP: return "SETUP"; case USB_TOKEN_IN: return "IN"; case USB_TOKEN_OUT: return "OUT"; } return "?"; } #else #define dprintf(...) #endif #ifdef DEBUG_DUMP_DATA static void dump_data(const uint8_t *data, int len) { int i; printf("uhci: data: "); for(i = 0; i < len; i++) printf(" %02x", data[i]); printf("\n"); } #else static void dump_data(const uint8_t *data, int len) {} #endif /* * Pending async transaction. * 'packet' must be the first field because completion * handler does "(UHCIAsync *) pkt" cast. */ typedef struct UHCIAsync { USBPacket packet; struct UHCIAsync *next; uint32_t td; uint32_t token; int8_t valid; uint8_t done; uint8_t buffer[2048]; } UHCIAsync; typedef struct UHCIPort { USBPort port; uint16_t ctrl; } UHCIPort; typedef struct UHCIState { PCIDevice dev; uint16_t cmd; /* cmd register */ uint16_t status; uint16_t intr; /* interrupt enable register */ uint16_t frnum; /* frame number */ uint32_t fl_base_addr; /* frame list base address */ uint8_t sof_timing; uint8_t status2; /* bit 0 and 1 are used to generate UHCI_STS_USBINT */ QEMUTimer *frame_timer; UHCIPort ports[NB_PORTS]; /* Interrupts that should be raised at the end of the current frame. */ uint32_t pending_int_mask; /* Active packets */ UHCIAsync *async_pending; UHCIAsync *async_pool; } UHCIState; typedef struct UHCI_TD { uint32_t link; uint32_t ctrl; /* see TD_CTRL_xxx */ uint32_t token; uint32_t buffer; } UHCI_TD; typedef struct UHCI_QH { uint32_t link; uint32_t el_link; } UHCI_QH; static UHCIAsync *uhci_async_alloc(UHCIState *s) { UHCIAsync *async = qemu_malloc(sizeof(UHCIAsync)); memset(&async->packet, 0, sizeof(async->packet)); async->valid = 0; async->td = 0; async->token = 0; async->done = 0; async->next = NULL; return async; } static void uhci_async_free(UHCIState *s, UHCIAsync *async) { qemu_free(async); } static void uhci_async_link(UHCIState *s, UHCIAsync *async) { async->next = s->async_pending; s->async_pending = async; } static void uhci_async_unlink(UHCIState *s, UHCIAsync *async) { UHCIAsync *curr = s->async_pending; UHCIAsync **prev = &s->async_pending; while (curr) { if (curr == async) { *prev = curr->next; return; } prev = &curr->next; curr = curr->next; } } static void uhci_async_cancel(UHCIState *s, UHCIAsync *async) { dprintf("uhci: cancel td 0x%x token 0x%x done %u\n", async->td, async->token, async->done); if (!async->done) usb_cancel_packet(&async->packet); uhci_async_free(s, async); } /* * Mark all outstanding async packets as invalid. * This is used for canceling them when TDs are removed by the HCD. */ static UHCIAsync *uhci_async_validate_begin(UHCIState *s) { UHCIAsync *async = s->async_pending; while (async) { async->valid--; async = async->next; } return NULL; } /* * Cancel async packets that are no longer valid */ static void uhci_async_validate_end(UHCIState *s) { UHCIAsync *curr = s->async_pending; UHCIAsync **prev = &s->async_pending; UHCIAsync *next; while (curr) { if (curr->valid > 0) { prev = &curr->next; curr = curr->next; continue; } next = curr->next; /* Unlink */ *prev = next; uhci_async_cancel(s, curr); curr = next; } } static void uhci_async_cancel_all(UHCIState *s) { UHCIAsync *curr = s->async_pending; UHCIAsync *next; while (curr) { next = curr->next; uhci_async_cancel(s, curr); curr = next; } s->async_pending = NULL; } static UHCIAsync *uhci_async_find_td(UHCIState *s, uint32_t addr, uint32_t token) { UHCIAsync *async = s->async_pending; UHCIAsync *match = NULL; int count = 0; /* * We're looking for the best match here. ie both td addr and token. * Otherwise we return last good match. ie just token. * It's ok to match just token because it identifies the transaction * rather well, token includes: device addr, endpoint, size, etc. * * Also since we queue async transactions in reverse order by returning * last good match we restores the order. * * It's expected that we wont have a ton of outstanding transactions. * If we ever do we'd want to optimize this algorithm. */ while (async) { if (async->token == token) { /* Good match */ match = async; if (async->td == addr) { /* Best match */ break; } } async = async->next; count++; } if (count > 64) fprintf(stderr, "uhci: warning lots of async transactions\n"); return match; } static void uhci_attach(USBPort *port1, USBDevice *dev); static void uhci_update_irq(UHCIState *s) { int level; if (((s->status2 & 1) && (s->intr & (1 << 2))) || ((s->status2 & 2) && (s->intr & (1 << 3))) || ((s->status & UHCI_STS_USBERR) && (s->intr & (1 << 0))) || ((s->status & UHCI_STS_RD) && (s->intr & (1 << 1))) || (s->status & UHCI_STS_HSERR) || (s->status & UHCI_STS_HCPERR)) { level = 1; } else { level = 0; } qemu_set_irq(s->dev.irq[3], level); } static void uhci_reset(UHCIState *s) { uint8_t *pci_conf; int i; UHCIPort *port; dprintf("uhci: full reset\n"); pci_conf = s->dev.config; pci_conf[0x6a] = 0x01; /* usb clock */ pci_conf[0x6b] = 0x00; s->cmd = 0; s->status = 0; s->status2 = 0; s->intr = 0; s->fl_base_addr = 0; s->sof_timing = 64; for(i = 0; i < NB_PORTS; i++) { port = &s->ports[i]; port->ctrl = 0x0080; if (port->port.dev) uhci_attach(&port->port, port->port.dev); } uhci_async_cancel_all(s); } static void uhci_save(QEMUFile *f, void *opaque) { UHCIState *s = opaque; uint8_t num_ports = NB_PORTS; int i; uhci_async_cancel_all(s); pci_device_save(&s->dev, f); qemu_put_8s(f, &num_ports); for (i = 0; i < num_ports; ++i) qemu_put_be16s(f, &s->ports[i].ctrl); qemu_put_be16s(f, &s->cmd); qemu_put_be16s(f, &s->status); qemu_put_be16s(f, &s->intr); qemu_put_be16s(f, &s->frnum); qemu_put_be32s(f, &s->fl_base_addr); qemu_put_8s(f, &s->sof_timing); qemu_put_8s(f, &s->status2); qemu_put_timer(f, s->frame_timer); } static int uhci_load(QEMUFile *f, void *opaque, int version_id) { UHCIState *s = opaque; uint8_t num_ports; int i, ret; if (version_id > 1) return -EINVAL; ret = pci_device_load(&s->dev, f); if (ret < 0) return ret; qemu_get_8s(f, &num_ports); if (num_ports != NB_PORTS) return -EINVAL; for (i = 0; i < num_ports; ++i) qemu_get_be16s(f, &s->ports[i].ctrl); qemu_get_be16s(f, &s->cmd); qemu_get_be16s(f, &s->status); qemu_get_be16s(f, &s->intr); qemu_get_be16s(f, &s->frnum); qemu_get_be32s(f, &s->fl_base_addr); qemu_get_8s(f, &s->sof_timing); qemu_get_8s(f, &s->status2); qemu_get_timer(f, s->frame_timer); return 0; } static void uhci_ioport_writeb(void *opaque, uint32_t addr, uint32_t val) { UHCIState *s = opaque; addr &= 0x1f; switch(addr) { case 0x0c: s->sof_timing = val; break; } } static uint32_t uhci_ioport_readb(void *opaque, uint32_t addr) { UHCIState *s = opaque; uint32_t val; addr &= 0x1f; switch(addr) { case 0x0c: val = s->sof_timing; break; default: val = 0xff; break; } return val; } static void uhci_ioport_writew(void *opaque, uint32_t addr, uint32_t val) { UHCIState *s = opaque; addr &= 0x1f; dprintf("uhci: writew port=0x%04x val=0x%04x\n", addr, val); switch(addr) { case 0x00: if ((val & UHCI_CMD_RS) && !(s->cmd & UHCI_CMD_RS)) { /* start frame processing */ qemu_mod_timer(s->frame_timer, qemu_get_clock(vm_clock)); s->status &= ~UHCI_STS_HCHALTED; } else if (!(val & UHCI_CMD_RS)) { s->status |= UHCI_STS_HCHALTED; } if (val & UHCI_CMD_GRESET) { UHCIPort *port; USBDevice *dev; int i; /* send reset on the USB bus */ for(i = 0; i < NB_PORTS; i++) { port = &s->ports[i]; dev = port->port.dev; if (dev) { usb_send_msg(dev, USB_MSG_RESET); } } uhci_reset(s); return; } if (val & UHCI_CMD_HCRESET) { uhci_reset(s); return; } s->cmd = val; break; case 0x02: s->status &= ~val; /* XXX: the chip spec is not coherent, so we add a hidden register to distinguish between IOC and SPD */ if (val & UHCI_STS_USBINT) s->status2 = 0; uhci_update_irq(s); break; case 0x04: s->intr = val; uhci_update_irq(s); break; case 0x06: if (s->status & UHCI_STS_HCHALTED) s->frnum = val & 0x7ff; break; case 0x10 ... 0x1f: { UHCIPort *port; USBDevice *dev; int n; n = (addr >> 1) & 7; if (n >= NB_PORTS) return; port = &s->ports[n]; dev = port->port.dev; if (dev) { /* port reset */ if ( (val & UHCI_PORT_RESET) && !(port->ctrl & UHCI_PORT_RESET) ) { usb_send_msg(dev, USB_MSG_RESET); } } port->ctrl = (port->ctrl & 0x01fb) | (val & ~0x01fb); /* some bits are reset when a '1' is written to them */ port->ctrl &= ~(val & 0x000a); } break; } } static uint32_t uhci_ioport_readw(void *opaque, uint32_t addr) { UHCIState *s = opaque; uint32_t val; addr &= 0x1f; switch(addr) { case 0x00: val = s->cmd; break; case 0x02: val = s->status; break; case 0x04: val = s->intr; break; case 0x06: val = s->frnum; break; case 0x10 ... 0x1f: { UHCIPort *port; int n; n = (addr >> 1) & 7; if (n >= NB_PORTS) goto read_default; port = &s->ports[n]; val = port->ctrl; } break; default: read_default: val = 0xff7f; /* disabled port */ break; } dprintf("uhci: readw port=0x%04x val=0x%04x\n", addr, val); return val; } static void uhci_ioport_writel(void *opaque, uint32_t addr, uint32_t val) { UHCIState *s = opaque; addr &= 0x1f; dprintf("uhci: writel port=0x%04x val=0x%08x\n", addr, val); switch(addr) { case 0x08: s->fl_base_addr = val & ~0xfff; break; } } static uint32_t uhci_ioport_readl(void *opaque, uint32_t addr) { UHCIState *s = opaque; uint32_t val; addr &= 0x1f; switch(addr) { case 0x08: val = s->fl_base_addr; break; default: val = 0xffffffff; break; } return val; } /* signal resume if controller suspended */ static void uhci_resume (void *opaque) { UHCIState *s = (UHCIState *)opaque; if (!s) return; if (s->cmd & UHCI_CMD_EGSM) { s->cmd |= UHCI_CMD_FGR; s->status |= UHCI_STS_RD; uhci_update_irq(s); } } static void uhci_attach(USBPort *port1, USBDevice *dev) { UHCIState *s = port1->opaque; UHCIPort *port = &s->ports[port1->index]; if (dev) { if (port->port.dev) { usb_attach(port1, NULL); } /* set connect status */ port->ctrl |= UHCI_PORT_CCS | UHCI_PORT_CSC; /* update speed */ if (dev->speed == USB_SPEED_LOW) port->ctrl |= UHCI_PORT_LSDA; else port->ctrl &= ~UHCI_PORT_LSDA; uhci_resume(s); port->port.dev = dev; /* send the attach message */ usb_send_msg(dev, USB_MSG_ATTACH); } else { /* set connect status */ if (port->ctrl & UHCI_PORT_CCS) { port->ctrl &= ~UHCI_PORT_CCS; port->ctrl |= UHCI_PORT_CSC; } /* disable port */ if (port->ctrl & UHCI_PORT_EN) { port->ctrl &= ~UHCI_PORT_EN; port->ctrl |= UHCI_PORT_ENC; } uhci_resume(s); dev = port->port.dev; if (dev) { /* send the detach message */ usb_send_msg(dev, USB_MSG_DETACH); } port->port.dev = NULL; } } static int uhci_broadcast_packet(UHCIState *s, USBPacket *p) { int i, ret; dprintf("uhci: packet enter. pid %s addr 0x%02x ep %d len %d\n", pid2str(p->pid), p->devaddr, p->devep, p->len); if (p->pid == USB_TOKEN_OUT || p->pid == USB_TOKEN_SETUP) dump_data(p->data, p->len); ret = USB_RET_NODEV; for (i = 0; i < NB_PORTS && ret == USB_RET_NODEV; i++) { UHCIPort *port = &s->ports[i]; USBDevice *dev = port->port.dev; if (dev && (port->ctrl & UHCI_PORT_EN)) ret = dev->handle_packet(dev, p); } dprintf("uhci: packet exit. ret %d len %d\n", ret, p->len); if (p->pid == USB_TOKEN_IN && ret > 0) dump_data(p->data, ret); return ret; } static void uhci_async_complete(USBPacket * packet, void *opaque); static void uhci_process_frame(UHCIState *s); /* return -1 if fatal error (frame must be stopped) 0 if TD successful 1 if TD unsuccessful or inactive */ static int uhci_complete_td(UHCIState *s, UHCI_TD *td, UHCIAsync *async, uint32_t *int_mask) { int len = 0, max_len, err, ret; uint8_t pid; max_len = ((td->token >> 21) + 1) & 0x7ff; pid = td->token & 0xff; ret = async->packet.len; if (td->ctrl & TD_CTRL_IOC) *int_mask |= 0x01; if (td->ctrl & TD_CTRL_IOS) td->ctrl &= ~TD_CTRL_ACTIVE; if (ret < 0) goto out; len = async->packet.len; td->ctrl = (td->ctrl & ~0x7ff) | ((len - 1) & 0x7ff); /* The NAK bit may have been set by a previous frame, so clear it here. The docs are somewhat unclear, but win2k relies on this behavior. */ td->ctrl &= ~(TD_CTRL_ACTIVE | TD_CTRL_NAK); if (pid == USB_TOKEN_IN) { if (len > max_len) { len = max_len; ret = USB_RET_BABBLE; goto out; } if (len > 0) { /* write the data back */ cpu_physical_memory_write(td->buffer, async->buffer, len); } if ((td->ctrl & TD_CTRL_SPD) && len < max_len) { *int_mask |= 0x02; /* short packet: do not update QH */ dprintf("uhci: short packet. td 0x%x token 0x%x\n", async->td, async->token); return 1; } } /* success */ return 0; out: switch(ret) { case USB_RET_STALL: td->ctrl |= TD_CTRL_STALL; td->ctrl &= ~TD_CTRL_ACTIVE; return 1; case USB_RET_BABBLE: td->ctrl |= TD_CTRL_BABBLE | TD_CTRL_STALL; td->ctrl &= ~TD_CTRL_ACTIVE; /* frame interrupted */ return -1; case USB_RET_NAK: td->ctrl |= TD_CTRL_NAK; if (pid == USB_TOKEN_SETUP) break; return 1; case USB_RET_NODEV: default: break; } /* Retry the TD if error count is not zero */ td->ctrl |= TD_CTRL_TIMEOUT; err = (td->ctrl >> TD_CTRL_ERROR_SHIFT) & 3; if (err != 0) { err--; if (err == 0) { td->ctrl &= ~TD_CTRL_ACTIVE; s->status |= UHCI_STS_USBERR; uhci_update_irq(s); } } td->ctrl = (td->ctrl & ~(3 << TD_CTRL_ERROR_SHIFT)) | (err << TD_CTRL_ERROR_SHIFT); return 1; } static int uhci_handle_td(UHCIState *s, uint32_t addr, UHCI_TD *td, uint32_t *int_mask) { UHCIAsync *async; int len = 0, max_len; uint8_t pid; /* Is active ? */ if (!(td->ctrl & TD_CTRL_ACTIVE)) return 1; async = uhci_async_find_td(s, addr, td->token); if (async) { /* Already submitted */ async->valid = 32; if (!async->done) return 1; uhci_async_unlink(s, async); goto done; } /* Allocate new packet */ async = uhci_async_alloc(s); if (!async) return 1; async->valid = 10; async->td = addr; async->token = td->token; max_len = ((td->token >> 21) + 1) & 0x7ff; pid = td->token & 0xff; async->packet.pid = pid; async->packet.devaddr = (td->token >> 8) & 0x7f; async->packet.devep = (td->token >> 15) & 0xf; async->packet.data = async->buffer; async->packet.len = max_len; async->packet.complete_cb = uhci_async_complete; async->packet.complete_opaque = s; switch(pid) { case USB_TOKEN_OUT: case USB_TOKEN_SETUP: cpu_physical_memory_read(td->buffer, async->buffer, max_len); len = uhci_broadcast_packet(s, &async->packet); if (len >= 0) len = max_len; break; case USB_TOKEN_IN: len = uhci_broadcast_packet(s, &async->packet); break; default: /* invalid pid : frame interrupted */ uhci_async_free(s, async); s->status |= UHCI_STS_HCPERR; uhci_update_irq(s); return -1; } if (len == USB_RET_ASYNC) { uhci_async_link(s, async); return 2; } async->packet.len = len; done: len = uhci_complete_td(s, td, async, int_mask); uhci_async_free(s, async); return len; } static void uhci_async_complete(USBPacket *packet, void *opaque) { UHCIState *s = opaque; UHCIAsync *async = (UHCIAsync *) packet; dprintf("uhci: async complete. td 0x%x token 0x%x\n", async->td, async->token); async->done = 1; uhci_process_frame(s); } static int is_valid(uint32_t link) { return (link & 1) == 0; } static int is_qh(uint32_t link) { return (link & 2) != 0; } static int depth_first(uint32_t link) { return (link & 4) != 0; } /* QH DB used for detecting QH loops */ #define UHCI_MAX_QUEUES 128 typedef struct { uint32_t addr[UHCI_MAX_QUEUES]; int count; } QhDb; static void qhdb_reset(QhDb *db) { db->count = 0; } /* Add QH to DB. Returns 1 if already present or DB is full. */ static int qhdb_insert(QhDb *db, uint32_t addr) { int i; for (i = 0; i < db->count; i++) if (db->addr[i] == addr) return 1; if (db->count >= UHCI_MAX_QUEUES) return 1; db->addr[db->count++] = addr; return 0; } static void uhci_process_frame(UHCIState *s) { uint32_t frame_addr, link, old_td_ctrl, val, int_mask; uint32_t curr_qh; int cnt, ret; UHCI_TD td; UHCI_QH qh; QhDb qhdb; frame_addr = s->fl_base_addr + ((s->frnum & 0x3ff) << 2); dprintf("uhci: processing frame %d addr 0x%x\n" , s->frnum, frame_addr); cpu_physical_memory_read(frame_addr, (uint8_t *)&link, 4); le32_to_cpus(&link); int_mask = 0; curr_qh = 0; qhdb_reset(&qhdb); for (cnt = FRAME_MAX_LOOPS; is_valid(link) && cnt; cnt--) { if (is_qh(link)) { /* QH */ if (qhdb_insert(&qhdb, link)) { /* * We're going in circles. Which is not a bug because * HCD is allowed to do that as part of the BW management. * In our case though it makes no sense to spin here. Sync transations * are already done, and async completion handler will re-process * the frame when something is ready. */ dprintf("uhci: detected loop. qh 0x%x\n", link); break; } cpu_physical_memory_read(link & ~0xf, (uint8_t *) &qh, sizeof(qh)); le32_to_cpus(&qh.link); le32_to_cpus(&qh.el_link); dprintf("uhci: QH 0x%x load. link 0x%x elink 0x%x\n", link, qh.link, qh.el_link); if (!is_valid(qh.el_link)) { /* QH w/o elements */ curr_qh = 0; link = qh.link; } else { /* QH with elements */ curr_qh = link; link = qh.el_link; } continue; } /* TD */ cpu_physical_memory_read(link & ~0xf, (uint8_t *) &td, sizeof(td)); le32_to_cpus(&td.link); le32_to_cpus(&td.ctrl); le32_to_cpus(&td.token); le32_to_cpus(&td.buffer); dprintf("uhci: TD 0x%x load. link 0x%x ctrl 0x%x token 0x%x qh 0x%x\n", link, td.link, td.ctrl, td.token, curr_qh); old_td_ctrl = td.ctrl; ret = uhci_handle_td(s, link, &td, &int_mask); if (old_td_ctrl != td.ctrl) { /* update the status bits of the TD */ val = cpu_to_le32(td.ctrl); cpu_physical_memory_write((link & ~0xf) + 4, (const uint8_t *)&val, sizeof(val)); } if (ret < 0) { /* interrupted frame */ break; } if (ret == 2 || ret == 1) { dprintf("uhci: TD 0x%x %s. link 0x%x ctrl 0x%x token 0x%x qh 0x%x\n", link, ret == 2 ? "pend" : "skip", td.link, td.ctrl, td.token, curr_qh); link = curr_qh ? qh.link : td.link; continue; } /* completed TD */ dprintf("uhci: TD 0x%x done. link 0x%x ctrl 0x%x token 0x%x qh 0x%x\n", link, td.link, td.ctrl, td.token, curr_qh); link = td.link; if (curr_qh) { /* update QH element link */ qh.el_link = link; val = cpu_to_le32(qh.el_link); cpu_physical_memory_write((curr_qh & ~0xf) + 4, (const uint8_t *)&val, sizeof(val)); if (!depth_first(link)) { /* done with this QH */ dprintf("uhci: QH 0x%x done. link 0x%x elink 0x%x\n", curr_qh, qh.link, qh.el_link); curr_qh = 0; link = qh.link; } } /* go to the next entry */ } s->pending_int_mask = int_mask; } static void uhci_frame_timer(void *opaque) { UHCIState *s = opaque; int64_t expire_time; if (!(s->cmd & UHCI_CMD_RS)) { /* Full stop */ qemu_del_timer(s->frame_timer); /* set hchalted bit in status - UHCI11D 2.1.2 */ s->status |= UHCI_STS_HCHALTED; dprintf("uhci: halted\n"); return; } /* Complete the previous frame */ if (s->pending_int_mask) { s->status2 |= s->pending_int_mask; s->status |= UHCI_STS_USBINT; uhci_update_irq(s); } /* Start new frame */ s->frnum = (s->frnum + 1) & 0x7ff; dprintf("uhci: new frame #%u\n" , s->frnum); uhci_async_validate_begin(s); uhci_process_frame(s); uhci_async_validate_end(s); /* prepare the timer for the next frame */ expire_time = qemu_get_clock(vm_clock) + (ticks_per_sec / FRAME_TIMER_FREQ); qemu_mod_timer(s->frame_timer, expire_time); } static void uhci_map(PCIDevice *pci_dev, int region_num, uint32_t addr, uint32_t size, int type) { UHCIState *s = (UHCIState *)pci_dev; register_ioport_write(addr, 32, 2, uhci_ioport_writew, s); register_ioport_read(addr, 32, 2, uhci_ioport_readw, s); register_ioport_write(addr, 32, 4, uhci_ioport_writel, s); register_ioport_read(addr, 32, 4, uhci_ioport_readl, s); register_ioport_write(addr, 32, 1, uhci_ioport_writeb, s); register_ioport_read(addr, 32, 1, uhci_ioport_readb, s); } void usb_uhci_piix3_init(PCIBus *bus, int devfn) { UHCIState *s; uint8_t *pci_conf; int i; s = (UHCIState *)pci_register_device(bus, "USB-UHCI", sizeof(UHCIState), devfn, NULL, NULL); pci_conf = s->dev.config; pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82371SB_2); pci_conf[0x08] = 0x01; // revision number pci_conf[0x09] = 0x00; pci_config_set_class(pci_conf, PCI_CLASS_SERIAL_USB); pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type pci_conf[0x3d] = 4; // interrupt pin 3 pci_conf[0x60] = 0x10; // release number for(i = 0; i < NB_PORTS; i++) { qemu_register_usb_port(&s->ports[i].port, s, i, uhci_attach); } s->frame_timer = qemu_new_timer(vm_clock, uhci_frame_timer, s); uhci_reset(s); /* Use region 4 for consistency with real hardware. BSD guests seem to rely on this. */ pci_register_bar(&s->dev, 4, 0x20, PCI_ADDRESS_SPACE_IO, uhci_map); register_savevm("uhci", 0, 1, uhci_save, uhci_load, s); } void usb_uhci_piix4_init(PCIBus *bus, int devfn) { UHCIState *s; uint8_t *pci_conf; int i; s = (UHCIState *)pci_register_device(bus, "USB-UHCI", sizeof(UHCIState), devfn, NULL, NULL); pci_conf = s->dev.config; pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82371AB_2); pci_conf[0x08] = 0x01; // revision number pci_conf[0x09] = 0x00; pci_config_set_class(pci_conf, PCI_CLASS_SERIAL_USB); pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type pci_conf[0x3d] = 4; // interrupt pin 3 pci_conf[0x60] = 0x10; // release number for(i = 0; i < NB_PORTS; i++) { qemu_register_usb_port(&s->ports[i].port, s, i, uhci_attach); } s->frame_timer = qemu_new_timer(vm_clock, uhci_frame_timer, s); uhci_reset(s); /* Use region 4 for consistency with real hardware. BSD guests seem to rely on this. */ pci_register_bar(&s->dev, 4, 0x20, PCI_ADDRESS_SPACE_IO, uhci_map); register_savevm("uhci", 0, 1, uhci_save, uhci_load, s); }