/* * QEMU USB EHCI Emulation * * Copyright(c) 2008 Emutex Ltd. (address@hidden) * * EHCI project was started by Mark Burkley, with contributions by * Niels de Vos. David S. Ahern continued working on it. Kevin Wolf, * Jan Kiszka and Vincent Palatin contributed bugfixes. * * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or(at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, see . */ #include "hw.h" #include "qemu-timer.h" #include "usb.h" #include "pci.h" #include "monitor.h" #include "trace.h" #define EHCI_DEBUG 0 #if EHCI_DEBUG #define DPRINTF printf #else #define DPRINTF(...) #endif /* internal processing - reset HC to try and recover */ #define USB_RET_PROCERR (-99) #define MMIO_SIZE 0x1000 /* Capability Registers Base Address - section 2.2 */ #define CAPREGBASE 0x0000 #define CAPLENGTH CAPREGBASE + 0x0000 // 1-byte, 0x0001 reserved #define HCIVERSION CAPREGBASE + 0x0002 // 2-bytes, i/f version # #define HCSPARAMS CAPREGBASE + 0x0004 // 4-bytes, structural params #define HCCPARAMS CAPREGBASE + 0x0008 // 4-bytes, capability params #define EECP HCCPARAMS + 1 #define HCSPPORTROUTE1 CAPREGBASE + 0x000c #define HCSPPORTROUTE2 CAPREGBASE + 0x0010 #define OPREGBASE 0x0020 // Operational Registers Base Address #define USBCMD OPREGBASE + 0x0000 #define USBCMD_RUNSTOP (1 << 0) // run / Stop #define USBCMD_HCRESET (1 << 1) // HC Reset #define USBCMD_FLS (3 << 2) // Frame List Size #define USBCMD_FLS_SH 2 // Frame List Size Shift #define USBCMD_PSE (1 << 4) // Periodic Schedule Enable #define USBCMD_ASE (1 << 5) // Asynch Schedule Enable #define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell #define USBCMD_LHCR (1 << 7) // Light Host Controller Reset #define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count #define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable #define USBCMD_ITC (0x7f << 16) // Int Threshold Control #define USBCMD_ITC_SH 16 // Int Threshold Control Shift #define USBSTS OPREGBASE + 0x0004 #define USBSTS_RO_MASK 0x0000003f #define USBSTS_INT (1 << 0) // USB Interrupt #define USBSTS_ERRINT (1 << 1) // Error Interrupt #define USBSTS_PCD (1 << 2) // Port Change Detect #define USBSTS_FLR (1 << 3) // Frame List Rollover #define USBSTS_HSE (1 << 4) // Host System Error #define USBSTS_IAA (1 << 5) // Interrupt on Async Advance #define USBSTS_HALT (1 << 12) // HC Halted #define USBSTS_REC (1 << 13) // Reclamation #define USBSTS_PSS (1 << 14) // Periodic Schedule Status #define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status /* * Interrupt enable bits correspond to the interrupt active bits in USBSTS * so no need to redefine here. */ #define USBINTR OPREGBASE + 0x0008 #define USBINTR_MASK 0x0000003f #define FRINDEX OPREGBASE + 0x000c #define CTRLDSSEGMENT OPREGBASE + 0x0010 #define PERIODICLISTBASE OPREGBASE + 0x0014 #define ASYNCLISTADDR OPREGBASE + 0x0018 #define ASYNCLISTADDR_MASK 0xffffffe0 #define CONFIGFLAG OPREGBASE + 0x0040 #define PORTSC (OPREGBASE + 0x0044) #define PORTSC_BEGIN PORTSC #define PORTSC_END (PORTSC + 4 * NB_PORTS) /* * Bits that are reserved or are read-only are masked out of values * written to us by software */ #define PORTSC_RO_MASK 0x007001c0 #define PORTSC_RWC_MASK 0x0000002a #define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable #define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable #define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable #define PORTSC_PTC (15 << 16) // Port Test Control #define PORTSC_PTC_SH 16 // Port Test Control shift #define PORTSC_PIC (3 << 14) // Port Indicator Control #define PORTSC_PIC_SH 14 // Port Indicator Control Shift #define PORTSC_POWNER (1 << 13) // Port Owner #define PORTSC_PPOWER (1 << 12) // Port Power #define PORTSC_LINESTAT (3 << 10) // Port Line Status #define PORTSC_LINESTAT_SH 10 // Port Line Status Shift #define PORTSC_PRESET (1 << 8) // Port Reset #define PORTSC_SUSPEND (1 << 7) // Port Suspend #define PORTSC_FPRES (1 << 6) // Force Port Resume #define PORTSC_OCC (1 << 5) // Over Current Change #define PORTSC_OCA (1 << 4) // Over Current Active #define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change #define PORTSC_PED (1 << 2) // Port Enable/Disable #define PORTSC_CSC (1 << 1) // Connect Status Change #define PORTSC_CONNECT (1 << 0) // Current Connect Status #define FRAME_TIMER_FREQ 1000 #define FRAME_TIMER_NS (1000000000 / FRAME_TIMER_FREQ) #define NB_MAXINTRATE 8 // Max rate at which controller issues ints #define NB_PORTS 6 // Number of downstream ports #define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction #define MAX_ITERATIONS 20 // Max number of QH before we break the loop #define MAX_QH 100 // Max allowable queue heads in a chain /* Internal periodic / asynchronous schedule state machine states */ typedef enum { EST_INACTIVE = 1000, EST_ACTIVE, EST_EXECUTING, EST_SLEEPING, /* The following states are internal to the state machine function */ EST_WAITLISTHEAD, EST_FETCHENTRY, EST_FETCHQH, EST_FETCHITD, EST_ADVANCEQUEUE, EST_FETCHQTD, EST_EXECUTE, EST_WRITEBACK, EST_HORIZONTALQH } EHCI_STATES; /* macros for accessing fields within next link pointer entry */ #define NLPTR_GET(x) ((x) & 0xffffffe0) #define NLPTR_TYPE_GET(x) (((x) >> 1) & 3) #define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid /* link pointer types */ #define NLPTR_TYPE_ITD 0 // isoc xfer descriptor #define NLPTR_TYPE_QH 1 // queue head #define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor #define NLPTR_TYPE_FSTN 3 // frame span traversal node /* EHCI spec version 1.0 Section 3.3 */ typedef struct EHCIitd { uint32_t next; uint32_t transact[8]; #define ITD_XACT_ACTIVE (1 << 31) #define ITD_XACT_DBERROR (1 << 30) #define ITD_XACT_BABBLE (1 << 29) #define ITD_XACT_XACTERR (1 << 28) #define ITD_XACT_LENGTH_MASK 0x0fff0000 #define ITD_XACT_LENGTH_SH 16 #define ITD_XACT_IOC (1 << 15) #define ITD_XACT_PGSEL_MASK 0x00007000 #define ITD_XACT_PGSEL_SH 12 #define ITD_XACT_OFFSET_MASK 0x00000fff uint32_t bufptr[7]; #define ITD_BUFPTR_MASK 0xfffff000 #define ITD_BUFPTR_SH 12 #define ITD_BUFPTR_EP_MASK 0x00000f00 #define ITD_BUFPTR_EP_SH 8 #define ITD_BUFPTR_DEVADDR_MASK 0x0000007f #define ITD_BUFPTR_DEVADDR_SH 0 #define ITD_BUFPTR_DIRECTION (1 << 11) #define ITD_BUFPTR_MAXPKT_MASK 0x000007ff #define ITD_BUFPTR_MAXPKT_SH 0 #define ITD_BUFPTR_MULT_MASK 0x00000003 #define ITD_BUFPTR_MULT_SH 0 } EHCIitd; /* EHCI spec version 1.0 Section 3.4 */ typedef struct EHCIsitd { uint32_t next; // Standard next link pointer uint32_t epchar; #define SITD_EPCHAR_IO (1 << 31) #define SITD_EPCHAR_PORTNUM_MASK 0x7f000000 #define SITD_EPCHAR_PORTNUM_SH 24 #define SITD_EPCHAR_HUBADD_MASK 0x007f0000 #define SITD_EPCHAR_HUBADDR_SH 16 #define SITD_EPCHAR_EPNUM_MASK 0x00000f00 #define SITD_EPCHAR_EPNUM_SH 8 #define SITD_EPCHAR_DEVADDR_MASK 0x0000007f uint32_t uframe; #define SITD_UFRAME_CMASK_MASK 0x0000ff00 #define SITD_UFRAME_CMASK_SH 8 #define SITD_UFRAME_SMASK_MASK 0x000000ff uint32_t results; #define SITD_RESULTS_IOC (1 << 31) #define SITD_RESULTS_PGSEL (1 << 30) #define SITD_RESULTS_TBYTES_MASK 0x03ff0000 #define SITD_RESULTS_TYBYTES_SH 16 #define SITD_RESULTS_CPROGMASK_MASK 0x0000ff00 #define SITD_RESULTS_CPROGMASK_SH 8 #define SITD_RESULTS_ACTIVE (1 << 7) #define SITD_RESULTS_ERR (1 << 6) #define SITD_RESULTS_DBERR (1 << 5) #define SITD_RESULTS_BABBLE (1 << 4) #define SITD_RESULTS_XACTERR (1 << 3) #define SITD_RESULTS_MISSEDUF (1 << 2) #define SITD_RESULTS_SPLITXSTATE (1 << 1) uint32_t bufptr[2]; #define SITD_BUFPTR_MASK 0xfffff000 #define SITD_BUFPTR_CURROFF_MASK 0x00000fff #define SITD_BUFPTR_TPOS_MASK 0x00000018 #define SITD_BUFPTR_TPOS_SH 3 #define SITD_BUFPTR_TCNT_MASK 0x00000007 uint32_t backptr; // Standard next link pointer } EHCIsitd; /* EHCI spec version 1.0 Section 3.5 */ typedef struct EHCIqtd { uint32_t next; // Standard next link pointer uint32_t altnext; // Standard next link pointer uint32_t token; #define QTD_TOKEN_DTOGGLE (1 << 31) #define QTD_TOKEN_TBYTES_MASK 0x7fff0000 #define QTD_TOKEN_TBYTES_SH 16 #define QTD_TOKEN_IOC (1 << 15) #define QTD_TOKEN_CPAGE_MASK 0x00007000 #define QTD_TOKEN_CPAGE_SH 12 #define QTD_TOKEN_CERR_MASK 0x00000c00 #define QTD_TOKEN_CERR_SH 10 #define QTD_TOKEN_PID_MASK 0x00000300 #define QTD_TOKEN_PID_SH 8 #define QTD_TOKEN_ACTIVE (1 << 7) #define QTD_TOKEN_HALT (1 << 6) #define QTD_TOKEN_DBERR (1 << 5) #define QTD_TOKEN_BABBLE (1 << 4) #define QTD_TOKEN_XACTERR (1 << 3) #define QTD_TOKEN_MISSEDUF (1 << 2) #define QTD_TOKEN_SPLITXSTATE (1 << 1) #define QTD_TOKEN_PING (1 << 0) uint32_t bufptr[5]; // Standard buffer pointer #define QTD_BUFPTR_MASK 0xfffff000 } EHCIqtd; /* EHCI spec version 1.0 Section 3.6 */ typedef struct EHCIqh { uint32_t next; // Standard next link pointer /* endpoint characteristics */ uint32_t epchar; #define QH_EPCHAR_RL_MASK 0xf0000000 #define QH_EPCHAR_RL_SH 28 #define QH_EPCHAR_C (1 << 27) #define QH_EPCHAR_MPLEN_MASK 0x07FF0000 #define QH_EPCHAR_MPLEN_SH 16 #define QH_EPCHAR_H (1 << 15) #define QH_EPCHAR_DTC (1 << 14) #define QH_EPCHAR_EPS_MASK 0x00003000 #define QH_EPCHAR_EPS_SH 12 #define EHCI_QH_EPS_FULL 0 #define EHCI_QH_EPS_LOW 1 #define EHCI_QH_EPS_HIGH 2 #define EHCI_QH_EPS_RESERVED 3 #define QH_EPCHAR_EP_MASK 0x00000f00 #define QH_EPCHAR_EP_SH 8 #define QH_EPCHAR_I (1 << 7) #define QH_EPCHAR_DEVADDR_MASK 0x0000007f #define QH_EPCHAR_DEVADDR_SH 0 /* endpoint capabilities */ uint32_t epcap; #define QH_EPCAP_MULT_MASK 0xc0000000 #define QH_EPCAP_MULT_SH 30 #define QH_EPCAP_PORTNUM_MASK 0x3f800000 #define QH_EPCAP_PORTNUM_SH 23 #define QH_EPCAP_HUBADDR_MASK 0x007f0000 #define QH_EPCAP_HUBADDR_SH 16 #define QH_EPCAP_CMASK_MASK 0x0000ff00 #define QH_EPCAP_CMASK_SH 8 #define QH_EPCAP_SMASK_MASK 0x000000ff #define QH_EPCAP_SMASK_SH 0 uint32_t current_qtd; // Standard next link pointer uint32_t next_qtd; // Standard next link pointer uint32_t altnext_qtd; #define QH_ALTNEXT_NAKCNT_MASK 0x0000001e #define QH_ALTNEXT_NAKCNT_SH 1 uint32_t token; // Same as QTD token uint32_t bufptr[5]; // Standard buffer pointer #define BUFPTR_CPROGMASK_MASK 0x000000ff #define BUFPTR_FRAMETAG_MASK 0x0000001f #define BUFPTR_SBYTES_MASK 0x00000fe0 #define BUFPTR_SBYTES_SH 5 } EHCIqh; /* EHCI spec version 1.0 Section 3.7 */ typedef struct EHCIfstn { uint32_t next; // Standard next link pointer uint32_t backptr; // Standard next link pointer } EHCIfstn; typedef struct EHCIQueue EHCIQueue; typedef struct EHCIState EHCIState; enum async_state { EHCI_ASYNC_NONE = 0, EHCI_ASYNC_INFLIGHT, EHCI_ASYNC_FINISHED, }; struct EHCIQueue { EHCIState *ehci; QTAILQ_ENTRY(EHCIQueue) next; bool async_schedule; uint32_t seen; uint64_t ts; /* cached data from guest - needs to be flushed * when guest removes an entry (doorbell, handshake sequence) */ EHCIqh qh; // copy of current QH (being worked on) uint32_t qhaddr; // address QH read from EHCIqtd qtd; // copy of current QTD (being worked on) uint32_t qtdaddr; // address QTD read from USBPacket packet; uint8_t buffer[BUFF_SIZE]; int pid; uint32_t tbytes; enum async_state async; int usb_status; }; struct EHCIState { PCIDevice dev; USBBus bus; qemu_irq irq; target_phys_addr_t mem_base; int mem; int companion_count; /* properties */ uint32_t freq; uint32_t maxframes; /* * EHCI spec version 1.0 Section 2.3 * Host Controller Operational Registers */ union { uint8_t mmio[MMIO_SIZE]; struct { uint8_t cap[OPREGBASE]; uint32_t usbcmd; uint32_t usbsts; uint32_t usbintr; uint32_t frindex; uint32_t ctrldssegment; uint32_t periodiclistbase; uint32_t asynclistaddr; uint32_t notused[9]; uint32_t configflag; uint32_t portsc[NB_PORTS]; }; }; /* * Internal states, shadow registers, etc */ uint32_t sofv; QEMUTimer *frame_timer; int attach_poll_counter; int astate; // Current state in asynchronous schedule int pstate; // Current state in periodic schedule USBPort ports[NB_PORTS]; USBPort *companion_ports[NB_PORTS]; uint32_t usbsts_pending; QTAILQ_HEAD(, EHCIQueue) queues; uint32_t a_fetch_addr; // which address to look at next uint32_t p_fetch_addr; // which address to look at next USBPacket ipacket; uint8_t ibuffer[BUFF_SIZE]; int isoch_pause; uint64_t last_run_ns; }; #define SET_LAST_RUN_CLOCK(s) \ (s)->last_run_ns = qemu_get_clock_ns(vm_clock); /* nifty macros from Arnon's EHCI version */ #define get_field(data, field) \ (((data) & field##_MASK) >> field##_SH) #define set_field(data, newval, field) do { \ uint32_t val = *data; \ val &= ~ field##_MASK; \ val |= ((newval) << field##_SH) & field##_MASK; \ *data = val; \ } while(0) static const char *ehci_state_names[] = { [ EST_INACTIVE ] = "INACTIVE", [ EST_ACTIVE ] = "ACTIVE", [ EST_EXECUTING ] = "EXECUTING", [ EST_SLEEPING ] = "SLEEPING", [ EST_WAITLISTHEAD ] = "WAITLISTHEAD", [ EST_FETCHENTRY ] = "FETCH ENTRY", [ EST_FETCHQH ] = "FETCH QH", [ EST_FETCHITD ] = "FETCH ITD", [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE", [ EST_FETCHQTD ] = "FETCH QTD", [ EST_EXECUTE ] = "EXECUTE", [ EST_WRITEBACK ] = "WRITEBACK", [ EST_HORIZONTALQH ] = "HORIZONTALQH", }; static const char *ehci_mmio_names[] = { [ CAPLENGTH ] = "CAPLENGTH", [ HCIVERSION ] = "HCIVERSION", [ HCSPARAMS ] = "HCSPARAMS", [ HCCPARAMS ] = "HCCPARAMS", [ USBCMD ] = "USBCMD", [ USBSTS ] = "USBSTS", [ USBINTR ] = "USBINTR", [ FRINDEX ] = "FRINDEX", [ PERIODICLISTBASE ] = "P-LIST BASE", [ ASYNCLISTADDR ] = "A-LIST ADDR", [ PORTSC_BEGIN ] = "PORTSC #0", [ PORTSC_BEGIN + 4] = "PORTSC #1", [ PORTSC_BEGIN + 8] = "PORTSC #2", [ PORTSC_BEGIN + 12] = "PORTSC #3", [ CONFIGFLAG ] = "CONFIGFLAG", }; static const char *nr2str(const char **n, size_t len, uint32_t nr) { if (nr < len && n[nr] != NULL) { return n[nr]; } else { return "unknown"; } } static const char *state2str(uint32_t state) { return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state); } static const char *addr2str(target_phys_addr_t addr) { return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr); } static void ehci_trace_usbsts(uint32_t mask, int state) { /* interrupts */ if (mask & USBSTS_INT) { trace_usb_ehci_usbsts("INT", state); } if (mask & USBSTS_ERRINT) { trace_usb_ehci_usbsts("ERRINT", state); } if (mask & USBSTS_PCD) { trace_usb_ehci_usbsts("PCD", state); } if (mask & USBSTS_FLR) { trace_usb_ehci_usbsts("FLR", state); } if (mask & USBSTS_HSE) { trace_usb_ehci_usbsts("HSE", state); } if (mask & USBSTS_IAA) { trace_usb_ehci_usbsts("IAA", state); } /* status */ if (mask & USBSTS_HALT) { trace_usb_ehci_usbsts("HALT", state); } if (mask & USBSTS_REC) { trace_usb_ehci_usbsts("REC", state); } if (mask & USBSTS_PSS) { trace_usb_ehci_usbsts("PSS", state); } if (mask & USBSTS_ASS) { trace_usb_ehci_usbsts("ASS", state); } } static inline void ehci_set_usbsts(EHCIState *s, int mask) { if ((s->usbsts & mask) == mask) { return; } ehci_trace_usbsts(mask, 1); s->usbsts |= mask; } static inline void ehci_clear_usbsts(EHCIState *s, int mask) { if ((s->usbsts & mask) == 0) { return; } ehci_trace_usbsts(mask, 0); s->usbsts &= ~mask; } static inline void ehci_set_interrupt(EHCIState *s, int intr) { int level = 0; // TODO honour interrupt threshold requests ehci_set_usbsts(s, intr); if ((s->usbsts & USBINTR_MASK) & s->usbintr) { level = 1; } qemu_set_irq(s->irq, level); } static inline void ehci_record_interrupt(EHCIState *s, int intr) { s->usbsts_pending |= intr; } static inline void ehci_commit_interrupt(EHCIState *s) { if (!s->usbsts_pending) { return; } ehci_set_interrupt(s, s->usbsts_pending); s->usbsts_pending = 0; } static void ehci_set_state(EHCIState *s, int async, int state) { if (async) { trace_usb_ehci_state("async", state2str(state)); s->astate = state; } else { trace_usb_ehci_state("periodic", state2str(state)); s->pstate = state; } } static int ehci_get_state(EHCIState *s, int async) { return async ? s->astate : s->pstate; } static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr) { if (async) { s->a_fetch_addr = addr; } else { s->p_fetch_addr = addr; } } static int ehci_get_fetch_addr(EHCIState *s, int async) { return async ? s->a_fetch_addr : s->p_fetch_addr; } static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh) { /* need three here due to argument count limits */ trace_usb_ehci_qh_ptrs(q, addr, qh->next, qh->current_qtd, qh->next_qtd, qh->altnext_qtd); trace_usb_ehci_qh_fields(addr, get_field(qh->epchar, QH_EPCHAR_RL), get_field(qh->epchar, QH_EPCHAR_MPLEN), get_field(qh->epchar, QH_EPCHAR_EPS), get_field(qh->epchar, QH_EPCHAR_EP), get_field(qh->epchar, QH_EPCHAR_DEVADDR)); trace_usb_ehci_qh_bits(addr, (bool)(qh->epchar & QH_EPCHAR_C), (bool)(qh->epchar & QH_EPCHAR_H), (bool)(qh->epchar & QH_EPCHAR_DTC), (bool)(qh->epchar & QH_EPCHAR_I)); } static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd) { /* need three here due to argument count limits */ trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext); trace_usb_ehci_qtd_fields(addr, get_field(qtd->token, QTD_TOKEN_TBYTES), get_field(qtd->token, QTD_TOKEN_CPAGE), get_field(qtd->token, QTD_TOKEN_CERR), get_field(qtd->token, QTD_TOKEN_PID)); trace_usb_ehci_qtd_bits(addr, (bool)(qtd->token & QTD_TOKEN_IOC), (bool)(qtd->token & QTD_TOKEN_ACTIVE), (bool)(qtd->token & QTD_TOKEN_HALT), (bool)(qtd->token & QTD_TOKEN_BABBLE), (bool)(qtd->token & QTD_TOKEN_XACTERR)); } static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd) { trace_usb_ehci_itd(addr, itd->next, get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT), get_field(itd->bufptr[2], ITD_BUFPTR_MULT), get_field(itd->bufptr[0], ITD_BUFPTR_EP), get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR)); } /* queue management */ static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async) { EHCIQueue *q; q = qemu_mallocz(sizeof(*q)); q->ehci = ehci; q->async_schedule = async; QTAILQ_INSERT_HEAD(&ehci->queues, q, next); trace_usb_ehci_queue_action(q, "alloc"); return q; } static void ehci_free_queue(EHCIQueue *q) { trace_usb_ehci_queue_action(q, "free"); if (q->async == EHCI_ASYNC_INFLIGHT) { usb_cancel_packet(&q->packet); } QTAILQ_REMOVE(&q->ehci->queues, q, next); qemu_free(q); } static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr) { EHCIQueue *q; QTAILQ_FOREACH(q, &ehci->queues, next) { if (addr == q->qhaddr) { return q; } } return NULL; } static void ehci_queues_rip_unused(EHCIState *ehci) { EHCIQueue *q, *tmp; QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) { if (q->seen) { q->seen = 0; q->ts = ehci->last_run_ns; continue; } if (ehci->last_run_ns < q->ts + 250000000) { /* allow 0.25 sec idle */ continue; } ehci_free_queue(q); } } static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev) { EHCIQueue *q, *tmp; QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) { if (q->packet.owner != dev) { continue; } ehci_free_queue(q); } } static void ehci_queues_rip_all(EHCIState *ehci) { EHCIQueue *q, *tmp; QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) { ehci_free_queue(q); } } /* Attach or detach a device on root hub */ static void ehci_attach(USBPort *port) { EHCIState *s = port->opaque; uint32_t *portsc = &s->portsc[port->index]; trace_usb_ehci_port_attach(port->index, port->dev->product_desc); if (*portsc & PORTSC_POWNER) { USBPort *companion = s->companion_ports[port->index]; companion->dev = port->dev; companion->ops->attach(companion); return; } *portsc |= PORTSC_CONNECT; *portsc |= PORTSC_CSC; ehci_set_interrupt(s, USBSTS_PCD); } static void ehci_detach(USBPort *port) { EHCIState *s = port->opaque; uint32_t *portsc = &s->portsc[port->index]; trace_usb_ehci_port_detach(port->index); if (*portsc & PORTSC_POWNER) { USBPort *companion = s->companion_ports[port->index]; companion->ops->detach(companion); companion->dev = NULL; return; } ehci_queues_rip_device(s, port->dev); *portsc &= ~(PORTSC_CONNECT|PORTSC_PED); *portsc |= PORTSC_CSC; ehci_set_interrupt(s, USBSTS_PCD); } static void ehci_child_detach(USBPort *port, USBDevice *child) { EHCIState *s = port->opaque; uint32_t portsc = s->portsc[port->index]; if (portsc & PORTSC_POWNER) { USBPort *companion = s->companion_ports[port->index]; companion->ops->child_detach(companion, child); companion->dev = NULL; return; } ehci_queues_rip_device(s, child); } static void ehci_wakeup(USBPort *port) { EHCIState *s = port->opaque; uint32_t portsc = s->portsc[port->index]; if (portsc & PORTSC_POWNER) { USBPort *companion = s->companion_ports[port->index]; if (companion->ops->wakeup) { companion->ops->wakeup(companion); } } } static int ehci_register_companion(USBBus *bus, USBPort *ports[], uint32_t portcount, uint32_t firstport) { EHCIState *s = container_of(bus, EHCIState, bus); uint32_t i; if (firstport + portcount > NB_PORTS) { qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport", "firstport on masterbus"); error_printf_unless_qmp( "firstport value of %u makes companion take ports %u - %u, which " "is outside of the valid range of 0 - %u\n", firstport, firstport, firstport + portcount - 1, NB_PORTS - 1); return -1; } for (i = 0; i < portcount; i++) { if (s->companion_ports[firstport + i]) { qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus", "an USB masterbus"); error_printf_unless_qmp( "port %u on masterbus %s already has a companion assigned\n", firstport + i, bus->qbus.name); return -1; } } for (i = 0; i < portcount; i++) { s->companion_ports[firstport + i] = ports[i]; s->ports[firstport + i].speedmask |= USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL; /* Ensure devs attached before the initial reset go to the companion */ s->portsc[firstport + i] = PORTSC_POWNER; } s->companion_count++; s->mmio[0x05] = (s->companion_count << 4) | portcount; return 0; } /* 4.1 host controller initialization */ static void ehci_reset(void *opaque) { EHCIState *s = opaque; int i; USBDevice *devs[NB_PORTS]; trace_usb_ehci_reset(); /* * Do the detach before touching portsc, so that it correctly gets send to * us or to our companion based on PORTSC_POWNER before the reset. */ for(i = 0; i < NB_PORTS; i++) { devs[i] = s->ports[i].dev; if (devs[i]) { usb_attach(&s->ports[i], NULL); } } memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE); s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH; s->usbsts = USBSTS_HALT; s->astate = EST_INACTIVE; s->pstate = EST_INACTIVE; s->isoch_pause = -1; s->attach_poll_counter = 0; for(i = 0; i < NB_PORTS; i++) { if (s->companion_ports[i]) { s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER; } else { s->portsc[i] = PORTSC_PPOWER; } if (devs[i]) { usb_attach(&s->ports[i], devs[i]); } } ehci_queues_rip_all(s); } static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr) { EHCIState *s = ptr; uint32_t val; val = s->mmio[addr]; return val; } static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr) { EHCIState *s = ptr; uint32_t val; val = s->mmio[addr] | (s->mmio[addr+1] << 8); return val; } static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr) { EHCIState *s = ptr; uint32_t val; val = s->mmio[addr] | (s->mmio[addr+1] << 8) | (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24); trace_usb_ehci_mmio_readl(addr, addr2str(addr), val); return val; } static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val) { fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n"); exit(1); } static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val) { fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n"); exit(1); } static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner) { USBDevice *dev = s->ports[port].dev; uint32_t *portsc = &s->portsc[port]; uint32_t orig; if (s->companion_ports[port] == NULL) return; owner = owner & PORTSC_POWNER; orig = *portsc & PORTSC_POWNER; if (!(owner ^ orig)) { return; } if (dev) { usb_attach(&s->ports[port], NULL); } *portsc &= ~PORTSC_POWNER; *portsc |= owner; if (dev) { usb_attach(&s->ports[port], dev); } } static void handle_port_status_write(EHCIState *s, int port, uint32_t val) { uint32_t *portsc = &s->portsc[port]; USBDevice *dev = s->ports[port].dev; /* Clear rwc bits */ *portsc &= ~(val & PORTSC_RWC_MASK); /* The guest may clear, but not set the PED bit */ *portsc &= val | ~PORTSC_PED; /* POWNER is masked out by RO_MASK as it is RO when we've no companion */ handle_port_owner_write(s, port, val); /* And finally apply RO_MASK */ val &= PORTSC_RO_MASK; if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) { trace_usb_ehci_port_reset(port, 1); } if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) { trace_usb_ehci_port_reset(port, 0); if (dev) { usb_attach(&s->ports[port], dev); usb_send_msg(dev, USB_MSG_RESET); *portsc &= ~PORTSC_CSC; } /* * Table 2.16 Set the enable bit(and enable bit change) to indicate * to SW that this port has a high speed device attached */ if (dev && (dev->speedmask & USB_SPEED_MASK_HIGH)) { val |= PORTSC_PED; } } *portsc &= ~PORTSC_RO_MASK; *portsc |= val; } static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val) { EHCIState *s = ptr; uint32_t *mmio = (uint32_t *)(&s->mmio[addr]); uint32_t old = *mmio; int i; trace_usb_ehci_mmio_writel(addr, addr2str(addr), val); /* Only aligned reads are allowed on OHCI */ if (addr & 3) { fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x" TARGET_FMT_plx "\n", addr); return; } if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) { handle_port_status_write(s, (addr-PORTSC)/4, val); trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old); return; } if (addr < OPREGBASE) { fprintf(stderr, "usb-ehci: write attempt to read-only register" TARGET_FMT_plx "\n", addr); return; } /* Do any register specific pre-write processing here. */ switch(addr) { case USBCMD: if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) { qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock)); SET_LAST_RUN_CLOCK(s); ehci_clear_usbsts(s, USBSTS_HALT); } if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) { qemu_del_timer(s->frame_timer); // TODO - should finish out some stuff before setting halt ehci_set_usbsts(s, USBSTS_HALT); } if (val & USBCMD_HCRESET) { ehci_reset(s); val &= ~USBCMD_HCRESET; } /* not supporting dynamic frame list size at the moment */ if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) { fprintf(stderr, "attempt to set frame list size -- value %d\n", val & USBCMD_FLS); val &= ~USBCMD_FLS; } break; case USBSTS: val &= USBSTS_RO_MASK; // bits 6 thru 31 are RO ehci_clear_usbsts(s, val); // bits 0 thru 5 are R/WC val = s->usbsts; ehci_set_interrupt(s, 0); break; case USBINTR: val &= USBINTR_MASK; break; case FRINDEX: s->sofv = val >> 3; break; case CONFIGFLAG: val &= 0x1; if (val) { for(i = 0; i < NB_PORTS; i++) handle_port_owner_write(s, i, 0); } break; case PERIODICLISTBASE: if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) { fprintf(stderr, "ehci: PERIODIC list base register set while periodic schedule\n" " is enabled and HC is enabled\n"); } break; case ASYNCLISTADDR: if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) { fprintf(stderr, "ehci: ASYNC list address register set while async schedule\n" " is enabled and HC is enabled\n"); } break; } *mmio = val; trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old); } // TODO : Put in common header file, duplication from usb-ohci.c /* Get an array of dwords from main memory */ static inline int get_dwords(uint32_t addr, uint32_t *buf, int num) { int i; for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) { cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0); *buf = le32_to_cpu(*buf); } return 1; } /* Put an array of dwords in to main memory */ static inline int put_dwords(uint32_t addr, uint32_t *buf, int num) { int i; for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) { uint32_t tmp = cpu_to_le32(*buf); cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1); } return 1; } // 4.10.2 static int ehci_qh_do_overlay(EHCIQueue *q) { int i; int dtoggle; int ping; int eps; int reload; // remember values in fields to preserve in qh after overlay dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE; ping = q->qh.token & QTD_TOKEN_PING; q->qh.current_qtd = q->qtdaddr; q->qh.next_qtd = q->qtd.next; q->qh.altnext_qtd = q->qtd.altnext; q->qh.token = q->qtd.token; eps = get_field(q->qh.epchar, QH_EPCHAR_EPS); if (eps == EHCI_QH_EPS_HIGH) { q->qh.token &= ~QTD_TOKEN_PING; q->qh.token |= ping; } reload = get_field(q->qh.epchar, QH_EPCHAR_RL); set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT); for (i = 0; i < 5; i++) { q->qh.bufptr[i] = q->qtd.bufptr[i]; } if (!(q->qh.epchar & QH_EPCHAR_DTC)) { // preserve QH DT bit q->qh.token &= ~QTD_TOKEN_DTOGGLE; q->qh.token |= dtoggle; } q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK; q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK; put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2); return 0; } static int ehci_buffer_rw(EHCIQueue *q, int bytes, int rw) { int bufpos = 0; int cpage, offset; uint32_t head; uint32_t tail; if (!bytes) { return 0; } cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE); if (cpage > 4) { fprintf(stderr, "cpage out of range (%d)\n", cpage); return USB_RET_PROCERR; } offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK; do { /* start and end of this page */ head = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK; tail = head + ~QTD_BUFPTR_MASK + 1; /* add offset into page */ head |= offset; if (bytes <= (tail - head)) { tail = head + bytes; } trace_usb_ehci_data(rw, cpage, offset, head, tail-head, bufpos); cpu_physical_memory_rw(head, q->buffer + bufpos, tail - head, rw); bufpos += (tail - head); offset += (tail - head); bytes -= (tail - head); if (bytes > 0) { cpage++; offset = 0; } } while (bytes > 0); /* save cpage */ set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE); /* save offset into cpage */ q->qh.bufptr[0] &= QTD_BUFPTR_MASK; q->qh.bufptr[0] |= offset; return 0; } static void ehci_async_complete_packet(USBPort *port, USBPacket *packet) { EHCIQueue *q; EHCIState *s = port->opaque; uint32_t portsc = s->portsc[port->index]; if (portsc & PORTSC_POWNER) { USBPort *companion = s->companion_ports[port->index]; companion->ops->complete(companion, packet); return; } q = container_of(packet, EHCIQueue, packet); trace_usb_ehci_queue_action(q, "wakeup"); assert(q->async == EHCI_ASYNC_INFLIGHT); q->async = EHCI_ASYNC_FINISHED; q->usb_status = packet->len; } static void ehci_execute_complete(EHCIQueue *q) { int c_err, reload; assert(q->async != EHCI_ASYNC_INFLIGHT); q->async = EHCI_ASYNC_NONE; DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n", q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status); if (q->usb_status < 0) { err: /* TO-DO: put this is in a function that can be invoked below as well */ c_err = get_field(q->qh.token, QTD_TOKEN_CERR); c_err--; set_field(&q->qh.token, c_err, QTD_TOKEN_CERR); switch(q->usb_status) { case USB_RET_NODEV: q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR); ehci_record_interrupt(q->ehci, USBSTS_ERRINT); break; case USB_RET_STALL: q->qh.token |= QTD_TOKEN_HALT; ehci_record_interrupt(q->ehci, USBSTS_ERRINT); break; case USB_RET_NAK: /* 4.10.3 */ reload = get_field(q->qh.epchar, QH_EPCHAR_RL); if ((q->pid == USB_TOKEN_IN) && reload) { int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT); nakcnt--; set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT); } else if (!reload) { return; } break; case USB_RET_BABBLE: q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE); ehci_record_interrupt(q->ehci, USBSTS_ERRINT); break; default: /* should not be triggerable */ fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status); assert(0); break; } } else { // DPRINTF("Short packet condition\n"); // TODO check 4.12 for splits if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) { q->usb_status = USB_RET_BABBLE; goto err; } if (q->tbytes && q->pid == USB_TOKEN_IN) { if (ehci_buffer_rw(q, q->usb_status, 1) != 0) { q->usb_status = USB_RET_PROCERR; return; } q->tbytes -= q->usb_status; } else { q->tbytes = 0; } DPRINTF("updating tbytes to %d\n", q->tbytes); set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES); } q->qh.token ^= QTD_TOKEN_DTOGGLE; q->qh.token &= ~QTD_TOKEN_ACTIVE; if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) { ehci_record_interrupt(q->ehci, USBSTS_INT); } } // 4.10.3 static int ehci_execute(EHCIQueue *q) { USBPort *port; USBDevice *dev; int ret; int i; int endp; int devadr; if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) { fprintf(stderr, "Attempting to execute inactive QH\n"); return USB_RET_PROCERR; } q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH; if (q->tbytes > BUFF_SIZE) { fprintf(stderr, "Request for more bytes than allowed\n"); return USB_RET_PROCERR; } q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH; switch(q->pid) { case 0: q->pid = USB_TOKEN_OUT; break; case 1: q->pid = USB_TOKEN_IN; break; case 2: q->pid = USB_TOKEN_SETUP; break; default: fprintf(stderr, "bad token\n"); break; } if ((q->tbytes && q->pid != USB_TOKEN_IN) && (ehci_buffer_rw(q, q->tbytes, 0) != 0)) { return USB_RET_PROCERR; } endp = get_field(q->qh.epchar, QH_EPCHAR_EP); devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR); ret = USB_RET_NODEV; // TO-DO: associating device with ehci port for(i = 0; i < NB_PORTS; i++) { port = &q->ehci->ports[i]; dev = port->dev; if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) { DPRINTF("Port %d, no exec, not connected(%08X)\n", i, q->ehci->portsc[i]); continue; } q->packet.pid = q->pid; q->packet.devaddr = devadr; q->packet.devep = endp; q->packet.data = q->buffer; q->packet.len = q->tbytes; ret = usb_handle_packet(dev, &q->packet); DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n", q->qhaddr, q->qh.next, q->qtdaddr, q->pid, q->packet.len, q->tbytes, endp, ret); if (ret != USB_RET_NODEV) { break; } } if (ret > BUFF_SIZE) { fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n"); return USB_RET_PROCERR; } return ret; } /* 4.7.2 */ static int ehci_process_itd(EHCIState *ehci, EHCIitd *itd) { USBPort *port; USBDevice *dev; int ret; uint32_t i, j, len, len1, len2, pid, dir, devaddr, endp; uint32_t pg, off, ptr1, ptr2, max, mult; dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION); devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR); endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP); max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT); mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT); for(i = 0; i < 8; i++) { if (itd->transact[i] & ITD_XACT_ACTIVE) { pg = get_field(itd->transact[i], ITD_XACT_PGSEL); off = itd->transact[i] & ITD_XACT_OFFSET_MASK; ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK); ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK); len = get_field(itd->transact[i], ITD_XACT_LENGTH); if (len > max * mult) { len = max * mult; } if (len > BUFF_SIZE) { return USB_RET_PROCERR; } if (off + len > 4096) { /* transfer crosses page border */ len2 = off + len - 4096; len1 = len - len2; } else { len1 = len; len2 = 0; } if (!dir) { pid = USB_TOKEN_OUT; trace_usb_ehci_data(0, pg, off, ptr1 + off, len1, 0); cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 0); if (len2) { trace_usb_ehci_data(0, pg+1, 0, ptr2, len2, len1); cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 0); } } else { pid = USB_TOKEN_IN; } ret = USB_RET_NODEV; for (j = 0; j < NB_PORTS; j++) { port = &ehci->ports[j]; dev = port->dev; if (!(ehci->portsc[j] &(PORTSC_CONNECT))) { continue; } ehci->ipacket.pid = pid; ehci->ipacket.devaddr = devaddr; ehci->ipacket.devep = endp; ehci->ipacket.data = ehci->ibuffer; ehci->ipacket.len = len; ret = usb_handle_packet(dev, &ehci->ipacket); if (ret != USB_RET_NODEV) { break; } } #if 0 /* In isoch, there is no facility to indicate a NAK so let's * instead just complete a zero-byte transaction. Setting * DBERR seems too draconian. */ if (ret == USB_RET_NAK) { if (ehci->isoch_pause > 0) { DPRINTF("ISOCH: received a NAK but paused so returning\n"); ehci->isoch_pause--; return 0; } else if (ehci->isoch_pause == -1) { DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n"); // Pause frindex for up to 50 msec waiting for data from // remote ehci->isoch_pause = 50; return 0; } else { DPRINTF("ISOCH: isoch pause timeout! return 0\n"); ret = 0; } } else { DPRINTF("ISOCH: received ACK, clearing pause\n"); ehci->isoch_pause = -1; } #else if (ret == USB_RET_NAK) { ret = 0; } #endif if (ret >= 0) { if (!dir) { /* OUT */ set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH); } else { /* IN */ if (len1 > ret) { len1 = ret; } if (len2 > ret - len1) { len2 = ret - len1; } if (len1) { trace_usb_ehci_data(1, pg, off, ptr1 + off, len1, 0); cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 1); } if (len2) { trace_usb_ehci_data(1, pg+1, 0, ptr2, len2, len1); cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 1); } set_field(&itd->transact[i], ret, ITD_XACT_LENGTH); } if (itd->transact[i] & ITD_XACT_IOC) { ehci_record_interrupt(ehci, USBSTS_INT); } } itd->transact[i] &= ~ITD_XACT_ACTIVE; } } return 0; } /* This state is the entry point for asynchronous schedule * processing. Entry here consitutes a EHCI start event state (4.8.5) */ static int ehci_state_waitlisthead(EHCIState *ehci, int async) { EHCIqh qh; int i = 0; int again = 0; uint32_t entry = ehci->asynclistaddr; /* set reclamation flag at start event (4.8.6) */ if (async) { ehci_set_usbsts(ehci, USBSTS_REC); } ehci_queues_rip_unused(ehci); /* Find the head of the list (4.9.1.1) */ for(i = 0; i < MAX_QH; i++) { get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2); ehci_trace_qh(NULL, NLPTR_GET(entry), &qh); if (qh.epchar & QH_EPCHAR_H) { if (async) { entry |= (NLPTR_TYPE_QH << 1); } ehci_set_fetch_addr(ehci, async, entry); ehci_set_state(ehci, async, EST_FETCHENTRY); again = 1; goto out; } entry = qh.next; if (entry == ehci->asynclistaddr) { break; } } /* no head found for list. */ ehci_set_state(ehci, async, EST_ACTIVE); out: return again; } /* This state is the entry point for periodic schedule processing as * well as being a continuation state for async processing. */ static int ehci_state_fetchentry(EHCIState *ehci, int async) { int again = 0; uint32_t entry = ehci_get_fetch_addr(ehci, async); if (entry < 0x1000) { DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry); ehci_set_state(ehci, async, EST_ACTIVE); goto out; } /* section 4.8, only QH in async schedule */ if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) { fprintf(stderr, "non queue head request in async schedule\n"); return -1; } switch (NLPTR_TYPE_GET(entry)) { case NLPTR_TYPE_QH: ehci_set_state(ehci, async, EST_FETCHQH); again = 1; break; case NLPTR_TYPE_ITD: ehci_set_state(ehci, async, EST_FETCHITD); again = 1; break; default: // TODO: handle siTD and FSTN types fprintf(stderr, "FETCHENTRY: entry at %X is of type %d " "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry)); return -1; } out: return again; } static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async) { uint32_t entry; EHCIQueue *q; int reload; entry = ehci_get_fetch_addr(ehci, async); q = ehci_find_queue_by_qh(ehci, entry); if (NULL == q) { q = ehci_alloc_queue(ehci, async); } q->qhaddr = entry; q->seen++; if (q->seen > 1) { /* we are going in circles -- stop processing */ ehci_set_state(ehci, async, EST_ACTIVE); q = NULL; goto out; } get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2); ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh); if (q->async == EHCI_ASYNC_INFLIGHT) { /* I/O still in progress -- skip queue */ ehci_set_state(ehci, async, EST_HORIZONTALQH); goto out; } if (q->async == EHCI_ASYNC_FINISHED) { /* I/O finished -- continue processing queue */ trace_usb_ehci_queue_action(q, "resume"); ehci_set_state(ehci, async, EST_EXECUTING); goto out; } if (async && (q->qh.epchar & QH_EPCHAR_H)) { /* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */ if (ehci->usbsts & USBSTS_REC) { ehci_clear_usbsts(ehci, USBSTS_REC); } else { DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset" " - done processing\n", q->qhaddr); ehci_set_state(ehci, async, EST_ACTIVE); q = NULL; goto out; } } #if EHCI_DEBUG if (q->qhaddr != q->qh.next) { DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n", q->qhaddr, q->qh.epchar & QH_EPCHAR_H, q->qh.token & QTD_TOKEN_HALT, q->qh.token & QTD_TOKEN_ACTIVE, q->qh.next); } #endif reload = get_field(q->qh.epchar, QH_EPCHAR_RL); if (reload) { set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT); } if (q->qh.token & QTD_TOKEN_HALT) { ehci_set_state(ehci, async, EST_HORIZONTALQH); } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) { q->qtdaddr = q->qh.current_qtd; ehci_set_state(ehci, async, EST_FETCHQTD); } else { /* EHCI spec version 1.0 Section 4.10.2 */ ehci_set_state(ehci, async, EST_ADVANCEQUEUE); } out: return q; } static int ehci_state_fetchitd(EHCIState *ehci, int async) { uint32_t entry; EHCIitd itd; assert(!async); entry = ehci_get_fetch_addr(ehci, async); get_dwords(NLPTR_GET(entry),(uint32_t *) &itd, sizeof(EHCIitd) >> 2); ehci_trace_itd(ehci, entry, &itd); if (ehci_process_itd(ehci, &itd) != 0) { return -1; } put_dwords(NLPTR_GET(entry), (uint32_t *) &itd, sizeof(EHCIitd) >> 2); ehci_set_fetch_addr(ehci, async, itd.next); ehci_set_state(ehci, async, EST_FETCHENTRY); return 1; } /* Section 4.10.2 - paragraph 3 */ static int ehci_state_advqueue(EHCIQueue *q, int async) { #if 0 /* TO-DO: 4.10.2 - paragraph 2 * if I-bit is set to 1 and QH is not active * go to horizontal QH */ if (I-bit set) { ehci_set_state(ehci, async, EST_HORIZONTALQH); goto out; } #endif /* * want data and alt-next qTD is valid */ if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) && (q->qh.altnext_qtd > 0x1000) && (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) { q->qtdaddr = q->qh.altnext_qtd; ehci_set_state(q->ehci, async, EST_FETCHQTD); /* * next qTD is valid */ } else if ((q->qh.next_qtd > 0x1000) && (NLPTR_TBIT(q->qh.next_qtd) == 0)) { q->qtdaddr = q->qh.next_qtd; ehci_set_state(q->ehci, async, EST_FETCHQTD); /* * no valid qTD, try next QH */ } else { ehci_set_state(q->ehci, async, EST_HORIZONTALQH); } return 1; } /* Section 4.10.2 - paragraph 4 */ static int ehci_state_fetchqtd(EHCIQueue *q, int async) { int again = 0; get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2); ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd); if (q->qtd.token & QTD_TOKEN_ACTIVE) { ehci_set_state(q->ehci, async, EST_EXECUTE); again = 1; } else { ehci_set_state(q->ehci, async, EST_HORIZONTALQH); again = 1; } return again; } static int ehci_state_horizqh(EHCIQueue *q, int async) { int again = 0; if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) { ehci_set_fetch_addr(q->ehci, async, q->qh.next); ehci_set_state(q->ehci, async, EST_FETCHENTRY); again = 1; } else { ehci_set_state(q->ehci, async, EST_ACTIVE); } return again; } /* * Write the qh back to guest physical memory. This step isn't * in the EHCI spec but we need to do it since we don't share * physical memory with our guest VM. * * The first three dwords are read-only for the EHCI, so skip them * when writing back the qh. */ static void ehci_flush_qh(EHCIQueue *q) { uint32_t *qh = (uint32_t *) &q->qh; uint32_t dwords = sizeof(EHCIqh) >> 2; uint32_t addr = NLPTR_GET(q->qhaddr); put_dwords(addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3); } static int ehci_state_execute(EHCIQueue *q, int async) { int again = 0; int reload, nakcnt; int smask; if (ehci_qh_do_overlay(q) != 0) { return -1; } smask = get_field(q->qh.epcap, QH_EPCAP_SMASK); if (!smask) { reload = get_field(q->qh.epchar, QH_EPCHAR_RL); nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT); if (reload && !nakcnt) { ehci_set_state(q->ehci, async, EST_HORIZONTALQH); again = 1; goto out; } } // TODO verify enough time remains in the uframe as in 4.4.1.1 // TODO write back ptr to async list when done or out of time // TODO Windows does not seem to ever set the MULT field if (!async) { int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT); if (!transactCtr) { ehci_set_state(q->ehci, async, EST_HORIZONTALQH); again = 1; goto out; } } if (async) { ehci_set_usbsts(q->ehci, USBSTS_REC); } q->usb_status = ehci_execute(q); if (q->usb_status == USB_RET_PROCERR) { again = -1; goto out; } if (q->usb_status == USB_RET_ASYNC) { ehci_flush_qh(q); trace_usb_ehci_queue_action(q, "suspend"); q->async = EHCI_ASYNC_INFLIGHT; ehci_set_state(q->ehci, async, EST_HORIZONTALQH); again = 1; goto out; } ehci_set_state(q->ehci, async, EST_EXECUTING); again = 1; out: return again; } static int ehci_state_executing(EHCIQueue *q, int async) { int again = 0; int reload, nakcnt; ehci_execute_complete(q); if (q->usb_status == USB_RET_ASYNC) { goto out; } if (q->usb_status == USB_RET_PROCERR) { again = -1; goto out; } // 4.10.3 if (!async) { int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT); transactCtr--; set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT); // 4.10.3, bottom of page 82, should exit this state when transaction // counter decrements to 0 } reload = get_field(q->qh.epchar, QH_EPCHAR_RL); if (reload) { nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT); if (q->usb_status == USB_RET_NAK) { if (nakcnt) { nakcnt--; } } else { nakcnt = reload; } set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT); } /* 4.10.5 */ if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) { ehci_set_state(q->ehci, async, EST_HORIZONTALQH); } else { ehci_set_state(q->ehci, async, EST_WRITEBACK); } again = 1; out: ehci_flush_qh(q); return again; } static int ehci_state_writeback(EHCIQueue *q, int async) { int again = 0; /* Write back the QTD from the QH area */ ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd); put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd, sizeof(EHCIqtd) >> 2); /* * EHCI specs say go horizontal here. * * We can also advance the queue here for performance reasons. We * need to take care to only take that shortcut in case we've * processed the qtd just written back without errors, i.e. halt * bit is clear. */ if (q->qh.token & QTD_TOKEN_HALT) { ehci_set_state(q->ehci, async, EST_HORIZONTALQH); again = 1; } else { ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE); again = 1; } return again; } /* * This is the state machine that is common to both async and periodic */ static void ehci_advance_state(EHCIState *ehci, int async) { EHCIQueue *q = NULL; int again; int iter = 0; do { if (ehci_get_state(ehci, async) == EST_FETCHQH) { iter++; /* if we are roaming a lot of QH without executing a qTD * something is wrong with the linked list. TO-DO: why is * this hack needed? */ assert(iter < MAX_ITERATIONS); #if 0 if (iter > MAX_ITERATIONS) { DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n"); ehci_set_state(ehci, async, EST_ACTIVE); break; } #endif } switch(ehci_get_state(ehci, async)) { case EST_WAITLISTHEAD: again = ehci_state_waitlisthead(ehci, async); break; case EST_FETCHENTRY: again = ehci_state_fetchentry(ehci, async); break; case EST_FETCHQH: q = ehci_state_fetchqh(ehci, async); again = q ? 1 : 0; break; case EST_FETCHITD: again = ehci_state_fetchitd(ehci, async); break; case EST_ADVANCEQUEUE: again = ehci_state_advqueue(q, async); break; case EST_FETCHQTD: again = ehci_state_fetchqtd(q, async); break; case EST_HORIZONTALQH: again = ehci_state_horizqh(q, async); break; case EST_EXECUTE: iter = 0; again = ehci_state_execute(q, async); break; case EST_EXECUTING: assert(q != NULL); again = ehci_state_executing(q, async); break; case EST_WRITEBACK: again = ehci_state_writeback(q, async); break; default: fprintf(stderr, "Bad state!\n"); again = -1; assert(0); break; } if (again < 0) { fprintf(stderr, "processing error - resetting ehci HC\n"); ehci_reset(ehci); again = 0; assert(0); } } while (again); ehci_commit_interrupt(ehci); } static void ehci_advance_async_state(EHCIState *ehci) { int async = 1; switch(ehci_get_state(ehci, async)) { case EST_INACTIVE: if (!(ehci->usbcmd & USBCMD_ASE)) { break; } ehci_set_usbsts(ehci, USBSTS_ASS); ehci_set_state(ehci, async, EST_ACTIVE); // No break, fall through to ACTIVE case EST_ACTIVE: if ( !(ehci->usbcmd & USBCMD_ASE)) { ehci_clear_usbsts(ehci, USBSTS_ASS); ehci_set_state(ehci, async, EST_INACTIVE); break; } /* If the doorbell is set, the guest wants to make a change to the * schedule. The host controller needs to release cached data. * (section 4.8.2) */ if (ehci->usbcmd & USBCMD_IAAD) { DPRINTF("ASYNC: doorbell request acknowledged\n"); ehci->usbcmd &= ~USBCMD_IAAD; ehci_set_interrupt(ehci, USBSTS_IAA); break; } /* make sure guest has acknowledged */ /* TO-DO: is this really needed? */ if (ehci->usbsts & USBSTS_IAA) { DPRINTF("IAA status bit still set.\n"); break; } /* check that address register has been set */ if (ehci->asynclistaddr == 0) { break; } ehci_set_state(ehci, async, EST_WAITLISTHEAD); ehci_advance_state(ehci, async); break; default: /* this should only be due to a developer mistake */ fprintf(stderr, "ehci: Bad asynchronous state %d. " "Resetting to active\n", ehci->astate); assert(0); } } static void ehci_advance_periodic_state(EHCIState *ehci) { uint32_t entry; uint32_t list; int async = 0; // 4.6 switch(ehci_get_state(ehci, async)) { case EST_INACTIVE: if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) { ehci_set_usbsts(ehci, USBSTS_PSS); ehci_set_state(ehci, async, EST_ACTIVE); // No break, fall through to ACTIVE } else break; case EST_ACTIVE: if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) { ehci_clear_usbsts(ehci, USBSTS_PSS); ehci_set_state(ehci, async, EST_INACTIVE); break; } list = ehci->periodiclistbase & 0xfffff000; /* check that register has been set */ if (list == 0) { break; } list |= ((ehci->frindex & 0x1ff8) >> 1); cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0); entry = le32_to_cpu(entry); DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n", ehci->frindex / 8, list, entry); ehci_set_fetch_addr(ehci, async,entry); ehci_set_state(ehci, async, EST_FETCHENTRY); ehci_advance_state(ehci, async); break; default: /* this should only be due to a developer mistake */ fprintf(stderr, "ehci: Bad periodic state %d. " "Resetting to active\n", ehci->pstate); assert(0); } } static void ehci_frame_timer(void *opaque) { EHCIState *ehci = opaque; int64_t expire_time, t_now; uint64_t ns_elapsed; int frames; int i; int skipped_frames = 0; t_now = qemu_get_clock_ns(vm_clock); expire_time = t_now + (get_ticks_per_sec() / ehci->freq); ns_elapsed = t_now - ehci->last_run_ns; frames = ns_elapsed / FRAME_TIMER_NS; for (i = 0; i < frames; i++) { if ( !(ehci->usbsts & USBSTS_HALT)) { if (ehci->isoch_pause <= 0) { ehci->frindex += 8; } if (ehci->frindex > 0x00001fff) { ehci->frindex = 0; ehci_set_interrupt(ehci, USBSTS_FLR); } ehci->sofv = (ehci->frindex - 1) >> 3; ehci->sofv &= 0x000003ff; } if (frames - i > ehci->maxframes) { skipped_frames++; } else { ehci_advance_periodic_state(ehci); } ehci->last_run_ns += FRAME_TIMER_NS; } #if 0 if (skipped_frames) { DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames); } #endif /* Async is not inside loop since it executes everything it can once * called */ ehci_advance_async_state(ehci); qemu_mod_timer(ehci->frame_timer, expire_time); } static CPUReadMemoryFunc *ehci_readfn[3]={ ehci_mem_readb, ehci_mem_readw, ehci_mem_readl }; static CPUWriteMemoryFunc *ehci_writefn[3]={ ehci_mem_writeb, ehci_mem_writew, ehci_mem_writel }; static void ehci_map(PCIDevice *pci_dev, int region_num, pcibus_t addr, pcibus_t size, int type) { EHCIState *s =(EHCIState *)pci_dev; DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n", region_num, addr, size, s->mem); s->mem_base = addr; cpu_register_physical_memory(addr, size, s->mem); } static int usb_ehci_initfn(PCIDevice *dev); static USBPortOps ehci_port_ops = { .attach = ehci_attach, .detach = ehci_detach, .child_detach = ehci_child_detach, .wakeup = ehci_wakeup, .complete = ehci_async_complete_packet, }; static USBBusOps ehci_bus_ops = { .register_companion = ehci_register_companion, }; static const VMStateDescription vmstate_ehci = { .name = "ehci", .unmigratable = 1, }; static Property ehci_properties[] = { DEFINE_PROP_UINT32("freq", EHCIState, freq, FRAME_TIMER_FREQ), DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128), DEFINE_PROP_END_OF_LIST(), }; static PCIDeviceInfo ehci_info[] = { { .qdev.name = "usb-ehci", .qdev.size = sizeof(EHCIState), .qdev.vmsd = &vmstate_ehci, .init = usb_ehci_initfn, .vendor_id = PCI_VENDOR_ID_INTEL, .device_id = PCI_DEVICE_ID_INTEL_82801D, /* ich4 */ .revision = 0x10, .class_id = PCI_CLASS_SERIAL_USB, .qdev.props = ehci_properties, },{ .qdev.name = "ich9-usb-ehci1", .qdev.size = sizeof(EHCIState), .qdev.vmsd = &vmstate_ehci, .init = usb_ehci_initfn, .vendor_id = PCI_VENDOR_ID_INTEL, .device_id = PCI_DEVICE_ID_INTEL_82801I_EHCI1, .revision = 0x03, .class_id = PCI_CLASS_SERIAL_USB, .qdev.props = ehci_properties, },{ /* end of list */ } }; static int usb_ehci_initfn(PCIDevice *dev) { EHCIState *s = DO_UPCAST(EHCIState, dev, dev); uint8_t *pci_conf = s->dev.config; int i; pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20); /* capabilities pointer */ pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00); //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50); pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3 pci_set_byte(&pci_conf[PCI_MIN_GNT], 0); pci_set_byte(&pci_conf[PCI_MAX_LAT], 0); // pci_conf[0x50] = 0x01; // power management caps pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4) pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5) pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6) pci_conf[0x64] = 0x00; pci_conf[0x65] = 0x00; pci_conf[0x66] = 0x00; pci_conf[0x67] = 0x00; pci_conf[0x68] = 0x01; pci_conf[0x69] = 0x00; pci_conf[0x6a] = 0x00; pci_conf[0x6b] = 0x00; // USBLEGSUP pci_conf[0x6c] = 0x00; pci_conf[0x6d] = 0x00; pci_conf[0x6e] = 0x00; pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS // 2.2 host controller interface version s->mmio[0x00] = (uint8_t) OPREGBASE; s->mmio[0x01] = 0x00; s->mmio[0x02] = 0x00; s->mmio[0x03] = 0x01; // HC version s->mmio[0x04] = NB_PORTS; // Number of downstream ports s->mmio[0x05] = 0x00; // No companion ports at present s->mmio[0x06] = 0x00; s->mmio[0x07] = 0x00; s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable s->mmio[0x09] = 0x68; // EECP s->mmio[0x0a] = 0x00; s->mmio[0x0b] = 0x00; s->irq = s->dev.irq[3]; usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev); for(i = 0; i < NB_PORTS; i++) { usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops, USB_SPEED_MASK_HIGH); s->ports[i].dev = 0; } s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s); QTAILQ_INIT(&s->queues); qemu_register_reset(ehci_reset, s); s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s, DEVICE_LITTLE_ENDIAN); pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY, ehci_map); fprintf(stderr, "*** EHCI support is under development ***\n"); return 0; } static void ehci_register(void) { pci_qdev_register_many(ehci_info); } device_init(ehci_register); /* * vim: expandtab ts=4 */