/* * TI TSC2005 emulator. * * Copyright (c) 2006 Andrzej Zaborowski * Copyright (C) 2008 Nokia Corporation * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 or * (at your option) version 3 of the License. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, * MA 02111-1307 USA */ #include "hw.h" #include "qemu-timer.h" #include "console.h" #include "omap.h" #define TSC_DATA_REGISTERS_PAGE 0x0 #define TSC_CONTROL_REGISTERS_PAGE 0x1 #define TSC_AUDIO_REGISTERS_PAGE 0x2 #define TSC_VERBOSE #define TSC_CUT_RESOLUTION(value, p) ((value) >> (16 - (p ? 12 : 10))) struct tsc2005_state_s { qemu_irq pint; /* Combination of the nPENIRQ and DAV signals */ QEMUTimer *timer; uint16_t model; int x, y; int pressure; int state, reg, irq, command; uint16_t data, dav; int busy; int enabled; int host_mode; int function; int nextfunction; int precision; int nextprecision; int filter; int pin_func; int timing[2]; int noise; int reset; int pdst; int pnd0; uint16_t temp_thr[2]; uint16_t aux_thr[2]; int tr[8]; }; enum { TSC_MODE_XYZ_SCAN = 0x0, TSC_MODE_XY_SCAN, TSC_MODE_X, TSC_MODE_Y, TSC_MODE_Z, TSC_MODE_AUX, TSC_MODE_TEMP1, TSC_MODE_TEMP2, TSC_MODE_AUX_SCAN, TSC_MODE_X_TEST, TSC_MODE_Y_TEST, TSC_MODE_TS_TEST, TSC_MODE_RESERVED, TSC_MODE_XX_DRV, TSC_MODE_YY_DRV, TSC_MODE_YX_DRV, }; static const uint16_t mode_regs[16] = { 0xf000, /* X, Y, Z scan */ 0xc000, /* X, Y scan */ 0x8000, /* X */ 0x4000, /* Y */ 0x3000, /* Z */ 0x0800, /* AUX */ 0x0400, /* TEMP1 */ 0x0200, /* TEMP2 */ 0x0800, /* AUX scan */ 0x0040, /* X test */ 0x0020, /* Y test */ 0x0080, /* Short-circuit test */ 0x0000, /* Reserved */ 0x0000, /* X+, X- drivers */ 0x0000, /* Y+, Y- drivers */ 0x0000, /* Y+, X- drivers */ }; #define X_TRANSFORM(s) \ ((s->y * s->tr[0] - s->x * s->tr[1]) / s->tr[2] + s->tr[3]) #define Y_TRANSFORM(s) \ ((s->y * s->tr[4] - s->x * s->tr[5]) / s->tr[6] + s->tr[7]) #define Z1_TRANSFORM(s) \ ((400 - ((s)->x >> 7) + ((s)->pressure << 10)) << 4) #define Z2_TRANSFORM(s) \ ((4000 + ((s)->y >> 7) - ((s)->pressure << 10)) << 4) #define AUX_VAL (700 << 4) /* +/- 3 at 12-bit */ #define TEMP1_VAL (1264 << 4) /* +/- 5 at 12-bit */ #define TEMP2_VAL (1531 << 4) /* +/- 5 at 12-bit */ #define TSC_POWEROFF_DELAY 50 #define TSC_SOFTSTEP_DELAY 50 static uint16_t tsc2005_read(struct tsc2005_state_s *s, int reg) { uint16_t ret; switch (reg) { case 0x0: /* X */ s->dav &= ~mode_regs[TSC_MODE_X]; return TSC_CUT_RESOLUTION(X_TRANSFORM(s), s->precision) + (s->noise & 3); case 0x1: /* Y */ s->dav &= ~mode_regs[TSC_MODE_Y]; s->noise ++; return TSC_CUT_RESOLUTION(Y_TRANSFORM(s), s->precision) ^ (s->noise & 3); case 0x2: /* Z1 */ s->dav &= 0xdfff; return TSC_CUT_RESOLUTION(Z1_TRANSFORM(s), s->precision) - (s->noise & 3); case 0x3: /* Z2 */ s->dav &= 0xefff; return TSC_CUT_RESOLUTION(Z2_TRANSFORM(s), s->precision) | (s->noise & 3); case 0x4: /* AUX */ s->dav &= ~mode_regs[TSC_MODE_AUX]; return TSC_CUT_RESOLUTION(AUX_VAL, s->precision); case 0x5: /* TEMP1 */ s->dav &= ~mode_regs[TSC_MODE_TEMP1]; return TSC_CUT_RESOLUTION(TEMP1_VAL, s->precision) - (s->noise & 5); case 0x6: /* TEMP2 */ s->dav &= 0xdfff; s->dav &= ~mode_regs[TSC_MODE_TEMP2]; return TSC_CUT_RESOLUTION(TEMP2_VAL, s->precision) ^ (s->noise & 3); case 0x7: /* Status */ ret = s->dav | (s->reset << 7) | (s->pdst << 2) | 0x0; s->dav &= ~(mode_regs[TSC_MODE_X_TEST] | mode_regs[TSC_MODE_Y_TEST] | mode_regs[TSC_MODE_TS_TEST]); s->reset = 1; return ret; case 0x8: /* AUX high treshold */ return s->aux_thr[1]; case 0x9: /* AUX low treshold */ return s->aux_thr[0]; case 0xa: /* TEMP high treshold */ return s->temp_thr[1]; case 0xb: /* TEMP low treshold */ return s->temp_thr[0]; case 0xc: /* CFR0 */ return (s->pressure << 15) | ((!s->busy) << 14) | (s->nextprecision << 13) | s->timing[0]; case 0xd: /* CFR1 */ return s->timing[1]; case 0xe: /* CFR2 */ return (s->pin_func << 14) | s->filter; case 0xf: /* Function select status */ return s->function >= 0 ? 1 << s->function : 0; } /* Never gets here */ return 0xffff; } static void tsc2005_write(struct tsc2005_state_s *s, int reg, uint16_t data) { switch (reg) { case 0x8: /* AUX high treshold */ s->aux_thr[1] = data; break; case 0x9: /* AUX low treshold */ s->aux_thr[0] = data; break; case 0xa: /* TEMP high treshold */ s->temp_thr[1] = data; break; case 0xb: /* TEMP low treshold */ s->temp_thr[0] = data; break; case 0xc: /* CFR0 */ s->host_mode = data >> 15; s->enabled = !(data & 0x4000); if (s->busy && !s->enabled) qemu_del_timer(s->timer); s->busy &= s->enabled; s->nextprecision = (data >> 13) & 1; s->timing[0] = data & 0x1fff; if ((s->timing[0] >> 11) == 3) fprintf(stderr, "%s: illegal conversion clock setting\n", __FUNCTION__); break; case 0xd: /* CFR1 */ s->timing[1] = data & 0xf07; break; case 0xe: /* CFR2 */ s->pin_func = (data >> 14) & 3; s->filter = data & 0x3fff; break; default: fprintf(stderr, "%s: write into read-only register %x\n", __FUNCTION__, reg); } } /* This handles most of the chip's logic. */ static void tsc2005_pin_update(struct tsc2005_state_s *s) { int64_t expires; int pin_state; switch (s->pin_func) { case 0: pin_state = !s->pressure && !!s->dav; break; case 1: case 3: default: pin_state = !s->dav; break; case 2: pin_state = !s->pressure; } if (!s->enabled) pin_state = 0; if (pin_state != s->irq) { s->irq = pin_state; qemu_set_irq(s->pint, s->irq); } switch (s->nextfunction) { case TSC_MODE_XYZ_SCAN: case TSC_MODE_XY_SCAN: if (!s->pressure) return; /* Fall through */ case TSC_MODE_AUX_SCAN: break; case TSC_MODE_X: case TSC_MODE_Y: case TSC_MODE_Z: if (!s->pressure) return; /* Fall through */ case TSC_MODE_AUX: case TSC_MODE_TEMP1: case TSC_MODE_TEMP2: case TSC_MODE_X_TEST: case TSC_MODE_Y_TEST: case TSC_MODE_TS_TEST: if (s->dav) s->enabled = 0; break; case TSC_MODE_RESERVED: case TSC_MODE_XX_DRV: case TSC_MODE_YY_DRV: case TSC_MODE_YX_DRV: default: return; } if (!s->enabled || s->busy) return; s->busy = 1; s->precision = s->nextprecision; s->function = s->nextfunction; s->pdst = !s->pnd0; /* Synchronised on internal clock */ expires = qemu_get_clock(vm_clock) + (ticks_per_sec >> 7); qemu_mod_timer(s->timer, expires); } static void tsc2005_reset(struct tsc2005_state_s *s) { s->state = 0; s->pin_func = 0; s->enabled = 0; s->busy = 0; s->nextprecision = 0; s->nextfunction = 0; s->timing[0] = 0; s->timing[1] = 0; s->irq = 0; s->dav = 0; s->reset = 0; s->pdst = 1; s->pnd0 = 0; s->function = -1; s->temp_thr[0] = 0x000; s->temp_thr[1] = 0xfff; s->aux_thr[0] = 0x000; s->aux_thr[1] = 0xfff; tsc2005_pin_update(s); } uint8_t tsc2005_txrx_word(void *opaque, uint8_t value) { struct tsc2005_state_s *s = opaque; uint32_t ret = 0; switch (s->state ++) { case 0: if (value & 0x80) { /* Command */ if (value & (1 << 1)) tsc2005_reset(s); else { s->nextfunction = (value >> 3) & 0xf; s->nextprecision = (value >> 2) & 1; if (s->enabled != !(value & 1)) { s->enabled = !(value & 1); fprintf(stderr, "%s: touchscreen sense %sabled\n", __FUNCTION__, s->enabled ? "en" : "dis"); } tsc2005_pin_update(s); } s->state = 0; } else if (value) { /* Data transfer */ s->reg = (value >> 3) & 0xf; s->pnd0 = (value >> 1) & 1; s->command = value & 1; if (s->command) { /* Read */ s->data = tsc2005_read(s, s->reg); tsc2005_pin_update(s); } else s->data = 0; } else s->state = 0; break; case 1: if (s->command) ret = (s->data >> 8) & 0xff; else s->data |= value << 8; break; case 2: if (s->command) ret = s->data & 0xff; else { s->data |= value; tsc2005_write(s, s->reg, s->data); tsc2005_pin_update(s); } s->state = 0; break; } return ret; } uint32_t tsc2005_txrx(void *opaque, uint32_t value, int len) { uint32_t ret = 0; len &= ~7; while (len > 0) { len -= 8; ret |= tsc2005_txrx_word(opaque, (value >> len) & 0xff) << len; } return ret; } static void tsc2005_timer_tick(void *opaque) { struct tsc2005_state_s *s = opaque; /* Timer ticked -- a set of conversions has been finished. */ if (!s->busy) return; s->busy = 0; s->dav |= mode_regs[s->function]; s->function = -1; tsc2005_pin_update(s); } static void tsc2005_touchscreen_event(void *opaque, int x, int y, int z, int buttons_state) { struct tsc2005_state_s *s = opaque; int p = s->pressure; if (buttons_state) { s->x = x; s->y = y; } s->pressure = !!buttons_state; /* * Note: We would get better responsiveness in the guest by * signaling TS events immediately, but for now we simulate * the first conversion delay for sake of correctness. */ if (p != s->pressure) tsc2005_pin_update(s); } static void tsc2005_save(QEMUFile *f, void *opaque) { struct tsc2005_state_s *s = (struct tsc2005_state_s *) opaque; int i; qemu_put_be16(f, s->x); qemu_put_be16(f, s->y); qemu_put_byte(f, s->pressure); qemu_put_byte(f, s->state); qemu_put_byte(f, s->reg); qemu_put_byte(f, s->command); qemu_put_byte(f, s->irq); qemu_put_be16s(f, &s->dav); qemu_put_be16s(f, &s->data); qemu_put_timer(f, s->timer); qemu_put_byte(f, s->enabled); qemu_put_byte(f, s->host_mode); qemu_put_byte(f, s->function); qemu_put_byte(f, s->nextfunction); qemu_put_byte(f, s->precision); qemu_put_byte(f, s->nextprecision); qemu_put_be16(f, s->filter); qemu_put_byte(f, s->pin_func); qemu_put_be16(f, s->timing[0]); qemu_put_be16(f, s->timing[1]); qemu_put_be16s(f, &s->temp_thr[0]); qemu_put_be16s(f, &s->temp_thr[1]); qemu_put_be16s(f, &s->aux_thr[0]); qemu_put_be16s(f, &s->aux_thr[1]); qemu_put_be32(f, s->noise); qemu_put_byte(f, s->reset); qemu_put_byte(f, s->pdst); qemu_put_byte(f, s->pnd0); for (i = 0; i < 8; i ++) qemu_put_be32(f, s->tr[i]); } static int tsc2005_load(QEMUFile *f, void *opaque, int version_id) { struct tsc2005_state_s *s = (struct tsc2005_state_s *) opaque; int i; s->x = qemu_get_be16(f); s->y = qemu_get_be16(f); s->pressure = qemu_get_byte(f); s->state = qemu_get_byte(f); s->reg = qemu_get_byte(f); s->command = qemu_get_byte(f); s->irq = qemu_get_byte(f); qemu_get_be16s(f, &s->dav); qemu_get_be16s(f, &s->data); qemu_get_timer(f, s->timer); s->enabled = qemu_get_byte(f); s->host_mode = qemu_get_byte(f); s->function = qemu_get_byte(f); s->nextfunction = qemu_get_byte(f); s->precision = qemu_get_byte(f); s->nextprecision = qemu_get_byte(f); s->filter = qemu_get_be16(f); s->pin_func = qemu_get_byte(f); s->timing[0] = qemu_get_be16(f); s->timing[1] = qemu_get_be16(f); qemu_get_be16s(f, &s->temp_thr[0]); qemu_get_be16s(f, &s->temp_thr[1]); qemu_get_be16s(f, &s->aux_thr[0]); qemu_get_be16s(f, &s->aux_thr[1]); s->noise = qemu_get_be32(f); s->reset = qemu_get_byte(f); s->pdst = qemu_get_byte(f); s->pnd0 = qemu_get_byte(f); for (i = 0; i < 8; i ++) s->tr[i] = qemu_get_be32(f); s->busy = qemu_timer_pending(s->timer); tsc2005_pin_update(s); return 0; } static int tsc2005_iid = 0; void *tsc2005_init(qemu_irq pintdav) { struct tsc2005_state_s *s; s = (struct tsc2005_state_s *) qemu_mallocz(sizeof(struct tsc2005_state_s)); s->x = 400; s->y = 240; s->pressure = 0; s->precision = s->nextprecision = 0; s->timer = qemu_new_timer(vm_clock, tsc2005_timer_tick, s); s->pint = pintdav; s->model = 0x2005; s->tr[0] = 0; s->tr[1] = 1; s->tr[2] = 1; s->tr[3] = 0; s->tr[4] = 1; s->tr[5] = 0; s->tr[6] = 1; s->tr[7] = 0; tsc2005_reset(s); qemu_add_mouse_event_handler(tsc2005_touchscreen_event, s, 1, "QEMU TSC2005-driven Touchscreen"); qemu_register_reset((void *) tsc2005_reset, s); register_savevm("tsc2005", tsc2005_iid ++, 0, tsc2005_save, tsc2005_load, s); return s; } /* * Use tslib generated calibration data to generate ADC input values * from the touchscreen. Assuming 12-bit precision was used during * tslib calibration. */ void tsc2005_set_transform(void *opaque, struct mouse_transform_info_s *info) { struct tsc2005_state_s *s = (struct tsc2005_state_s *) opaque; /* This version assumes touchscreen X & Y axis are parallel or * perpendicular to LCD's X & Y axis in some way. */ if (abs(info->a[0]) > abs(info->a[1])) { s->tr[0] = 0; s->tr[1] = -info->a[6] * info->x; s->tr[2] = info->a[0]; s->tr[3] = -info->a[2] / info->a[0]; s->tr[4] = info->a[6] * info->y; s->tr[5] = 0; s->tr[6] = info->a[4]; s->tr[7] = -info->a[5] / info->a[4]; } else { s->tr[0] = info->a[6] * info->y; s->tr[1] = 0; s->tr[2] = info->a[1]; s->tr[3] = -info->a[2] / info->a[1]; s->tr[4] = 0; s->tr[5] = -info->a[6] * info->x; s->tr[6] = info->a[3]; s->tr[7] = -info->a[5] / info->a[3]; } s->tr[0] >>= 11; s->tr[1] >>= 11; s->tr[3] <<= 4; s->tr[4] >>= 11; s->tr[5] >>= 11; s->tr[7] <<= 4; }