/* * ARM AMBA PrimeCell PL031 RTC * * Copyright (c) 2007 CodeSourcery * * This file is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Contributions after 2012-01-13 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. */ #include "qemu/osdep.h" #include "qemu-common.h" #include "hw/timer/pl031.h" #include "hw/sysbus.h" #include "qemu/timer.h" #include "sysemu/sysemu.h" #include "qemu/cutils.h" #include "qemu/log.h" #include "qemu/module.h" #include "trace.h" #define RTC_DR 0x00 /* Data read register */ #define RTC_MR 0x04 /* Match register */ #define RTC_LR 0x08 /* Data load register */ #define RTC_CR 0x0c /* Control register */ #define RTC_IMSC 0x10 /* Interrupt mask and set register */ #define RTC_RIS 0x14 /* Raw interrupt status register */ #define RTC_MIS 0x18 /* Masked interrupt status register */ #define RTC_ICR 0x1c /* Interrupt clear register */ static const unsigned char pl031_id[] = { 0x31, 0x10, 0x14, 0x00, /* Device ID */ 0x0d, 0xf0, 0x05, 0xb1 /* Cell ID */ }; static void pl031_update(PL031State *s) { uint32_t flags = s->is & s->im; trace_pl031_irq_state(flags); qemu_set_irq(s->irq, flags); } static void pl031_interrupt(void * opaque) { PL031State *s = (PL031State *)opaque; s->is = 1; trace_pl031_alarm_raised(); pl031_update(s); } static uint32_t pl031_get_count(PL031State *s) { int64_t now = qemu_clock_get_ns(rtc_clock); return s->tick_offset + now / NANOSECONDS_PER_SECOND; } static void pl031_set_alarm(PL031State *s) { uint32_t ticks; /* The timer wraps around. This subtraction also wraps in the same way, and gives correct results when alarm < now_ticks. */ ticks = s->mr - pl031_get_count(s); trace_pl031_set_alarm(ticks); if (ticks == 0) { timer_del(s->timer); pl031_interrupt(s); } else { int64_t now = qemu_clock_get_ns(rtc_clock); timer_mod(s->timer, now + (int64_t)ticks * NANOSECONDS_PER_SECOND); } } static uint64_t pl031_read(void *opaque, hwaddr offset, unsigned size) { PL031State *s = (PL031State *)opaque; uint64_t r; switch (offset) { case RTC_DR: r = pl031_get_count(s); break; case RTC_MR: r = s->mr; break; case RTC_IMSC: r = s->im; break; case RTC_RIS: r = s->is; break; case RTC_LR: r = s->lr; break; case RTC_CR: /* RTC is permanently enabled. */ r = 1; break; case RTC_MIS: r = s->is & s->im; break; case 0xfe0 ... 0xfff: r = pl031_id[(offset - 0xfe0) >> 2]; break; case RTC_ICR: qemu_log_mask(LOG_GUEST_ERROR, "pl031: read of write-only register at offset 0x%x\n", (int)offset); r = 0; break; default: qemu_log_mask(LOG_GUEST_ERROR, "pl031_read: Bad offset 0x%x\n", (int)offset); r = 0; break; } trace_pl031_read(offset, r); return r; } static void pl031_write(void * opaque, hwaddr offset, uint64_t value, unsigned size) { PL031State *s = (PL031State *)opaque; trace_pl031_write(offset, value); switch (offset) { case RTC_LR: s->tick_offset += value - pl031_get_count(s); pl031_set_alarm(s); break; case RTC_MR: s->mr = value; pl031_set_alarm(s); break; case RTC_IMSC: s->im = value & 1; pl031_update(s); break; case RTC_ICR: /* The PL031 documentation (DDI0224B) states that the interrupt is cleared when bit 0 of the written value is set. However the arm926e documentation (DDI0287B) states that the interrupt is cleared when any value is written. */ s->is = 0; pl031_update(s); break; case RTC_CR: /* Written value is ignored. */ break; case RTC_DR: case RTC_MIS: case RTC_RIS: qemu_log_mask(LOG_GUEST_ERROR, "pl031: write to read-only register at offset 0x%x\n", (int)offset); break; default: qemu_log_mask(LOG_GUEST_ERROR, "pl031_write: Bad offset 0x%x\n", (int)offset); break; } } static const MemoryRegionOps pl031_ops = { .read = pl031_read, .write = pl031_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void pl031_init(Object *obj) { PL031State *s = PL031(obj); SysBusDevice *dev = SYS_BUS_DEVICE(obj); struct tm tm; memory_region_init_io(&s->iomem, obj, &pl031_ops, s, "pl031", 0x1000); sysbus_init_mmio(dev, &s->iomem); sysbus_init_irq(dev, &s->irq); qemu_get_timedate(&tm, 0); s->tick_offset = mktimegm(&tm) - qemu_clock_get_ns(rtc_clock) / NANOSECONDS_PER_SECOND; s->timer = timer_new_ns(rtc_clock, pl031_interrupt, s); } static int pl031_pre_save(void *opaque) { PL031State *s = opaque; /* * The PL031 device model code uses the tick_offset field, which is * the offset between what the guest RTC should read and what the * QEMU rtc_clock reads: * guest_rtc = rtc_clock + tick_offset * and so * tick_offset = guest_rtc - rtc_clock * * We want to migrate this offset, which sounds straightforward. * Unfortunately older versions of QEMU migrated a conversion of this * offset into an offset from the vm_clock. (This was in turn an * attempt to be compatible with even older QEMU versions, but it * has incorrect behaviour if the rtc_clock is not the same as the * vm_clock.) So we put the actual tick_offset into a migration * subsection, and the backwards-compatible time-relative-to-vm_clock * in the main migration state. * * Calculate base time relative to QEMU_CLOCK_VIRTUAL: */ int64_t delta = qemu_clock_get_ns(rtc_clock) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); s->tick_offset_vmstate = s->tick_offset + delta / NANOSECONDS_PER_SECOND; return 0; } static int pl031_pre_load(void *opaque) { PL031State *s = opaque; s->tick_offset_migrated = false; return 0; } static int pl031_post_load(void *opaque, int version_id) { PL031State *s = opaque; /* * If we got the tick_offset subsection, then we can just use * the value in that. Otherwise the source is an older QEMU and * has given us the offset from the vm_clock; convert it back to * an offset from the rtc_clock. This will cause time to incorrectly * go backwards compared to the host RTC, but this is unavoidable. */ if (!s->tick_offset_migrated) { int64_t delta = qemu_clock_get_ns(rtc_clock) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); s->tick_offset = s->tick_offset_vmstate - delta / NANOSECONDS_PER_SECOND; } pl031_set_alarm(s); return 0; } static int pl031_tick_offset_post_load(void *opaque, int version_id) { PL031State *s = opaque; s->tick_offset_migrated = true; return 0; } static bool pl031_tick_offset_needed(void *opaque) { PL031State *s = opaque; return s->migrate_tick_offset; } static const VMStateDescription vmstate_pl031_tick_offset = { .name = "pl031/tick-offset", .version_id = 1, .minimum_version_id = 1, .needed = pl031_tick_offset_needed, .post_load = pl031_tick_offset_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32(tick_offset, PL031State), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_pl031 = { .name = "pl031", .version_id = 1, .minimum_version_id = 1, .pre_save = pl031_pre_save, .pre_load = pl031_pre_load, .post_load = pl031_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32(tick_offset_vmstate, PL031State), VMSTATE_UINT32(mr, PL031State), VMSTATE_UINT32(lr, PL031State), VMSTATE_UINT32(cr, PL031State), VMSTATE_UINT32(im, PL031State), VMSTATE_UINT32(is, PL031State), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_pl031_tick_offset, NULL } }; static Property pl031_properties[] = { /* * True to correctly migrate the tick offset of the RTC. False to * obtain backward migration compatibility with older QEMU versions, * at the expense of the guest RTC going backwards compared with the * host RTC when the VM is saved/restored if using -rtc host. * (Even if set to 'true' older QEMU can migrate forward to newer QEMU; * 'false' also permits newer QEMU to migrate to older QEMU.) */ DEFINE_PROP_BOOL("migrate-tick-offset", PL031State, migrate_tick_offset, true), DEFINE_PROP_END_OF_LIST() }; static void pl031_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->vmsd = &vmstate_pl031; dc->props = pl031_properties; } static const TypeInfo pl031_info = { .name = TYPE_PL031, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(PL031State), .instance_init = pl031_init, .class_init = pl031_class_init, }; static void pl031_register_types(void) { type_register_static(&pl031_info); } type_init(pl031_register_types)