/* * QEMU MC146818 RTC emulation * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu-common.h" #include "qemu/cutils.h" #include "qemu/module.h" #include "qemu/bcd.h" #include "hw/hw.h" #include "hw/irq.h" #include "qemu/timer.h" #include "sysemu/sysemu.h" #include "sysemu/replay.h" #include "sysemu/reset.h" #include "hw/timer/mc146818rtc.h" #include "migration/vmstate.h" #include "qapi/error.h" #include "qapi/qapi-commands-misc-target.h" #include "qapi/qapi-events-misc-target.h" #include "qapi/visitor.h" #include "exec/address-spaces.h" #ifdef TARGET_I386 #include "hw/i386/apic.h" #endif //#define DEBUG_CMOS //#define DEBUG_COALESCED #ifdef DEBUG_CMOS # define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__) #else # define CMOS_DPRINTF(format, ...) do { } while (0) #endif #ifdef DEBUG_COALESCED # define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__) #else # define DPRINTF_C(format, ...) do { } while (0) #endif #define SEC_PER_MIN 60 #define MIN_PER_HOUR 60 #define SEC_PER_HOUR 3600 #define HOUR_PER_DAY 24 #define SEC_PER_DAY 86400 #define RTC_REINJECT_ON_ACK_COUNT 20 #define RTC_CLOCK_RATE 32768 #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768) #define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC) typedef struct RTCState { ISADevice parent_obj; MemoryRegion io; MemoryRegion coalesced_io; uint8_t cmos_data[128]; uint8_t cmos_index; int32_t base_year; uint64_t base_rtc; uint64_t last_update; int64_t offset; qemu_irq irq; int it_shift; /* periodic timer */ QEMUTimer *periodic_timer; int64_t next_periodic_time; /* update-ended timer */ QEMUTimer *update_timer; uint64_t next_alarm_time; uint16_t irq_reinject_on_ack_count; uint32_t irq_coalesced; uint32_t period; QEMUTimer *coalesced_timer; Notifier clock_reset_notifier; LostTickPolicy lost_tick_policy; Notifier suspend_notifier; QLIST_ENTRY(RTCState) link; } RTCState; static void rtc_set_time(RTCState *s); static void rtc_update_time(RTCState *s); static void rtc_set_cmos(RTCState *s, const struct tm *tm); static inline int rtc_from_bcd(RTCState *s, int a); static uint64_t get_next_alarm(RTCState *s); static inline bool rtc_running(RTCState *s) { return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) && (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20); } static uint64_t get_guest_rtc_ns(RTCState *s) { uint64_t guest_clock = qemu_clock_get_ns(rtc_clock); return s->base_rtc * NANOSECONDS_PER_SECOND + guest_clock - s->last_update + s->offset; } static void rtc_coalesced_timer_update(RTCState *s) { if (s->irq_coalesced == 0) { timer_del(s->coalesced_timer); } else { /* divide each RTC interval to 2 - 8 smaller intervals */ int c = MIN(s->irq_coalesced, 7) + 1; int64_t next_clock = qemu_clock_get_ns(rtc_clock) + periodic_clock_to_ns(s->period / c); timer_mod(s->coalesced_timer, next_clock); } } static QLIST_HEAD(, RTCState) rtc_devices = QLIST_HEAD_INITIALIZER(rtc_devices); #ifdef TARGET_I386 void qmp_rtc_reset_reinjection(Error **errp) { RTCState *s; QLIST_FOREACH(s, &rtc_devices, link) { s->irq_coalesced = 0; } } static bool rtc_policy_slew_deliver_irq(RTCState *s) { apic_reset_irq_delivered(); qemu_irq_raise(s->irq); return apic_get_irq_delivered(); } static void rtc_coalesced_timer(void *opaque) { RTCState *s = opaque; if (s->irq_coalesced != 0) { s->cmos_data[RTC_REG_C] |= 0xc0; DPRINTF_C("cmos: injecting from timer\n"); if (rtc_policy_slew_deliver_irq(s)) { s->irq_coalesced--; DPRINTF_C("cmos: coalesced irqs decreased to %d\n", s->irq_coalesced); } } rtc_coalesced_timer_update(s); } #else static bool rtc_policy_slew_deliver_irq(RTCState *s) { assert(0); return false; } #endif static uint32_t rtc_periodic_clock_ticks(RTCState *s) { int period_code; if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) { return 0; } period_code = s->cmos_data[RTC_REG_A] & 0x0f; return periodic_period_to_clock(period_code); } /* * handle periodic timer. @old_period indicates the periodic timer update * is just due to period adjustment. */ static void periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period) { uint32_t period; int64_t cur_clock, next_irq_clock, lost_clock = 0; period = rtc_periodic_clock_ticks(s); if (period) { /* compute 32 khz clock */ cur_clock = muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND); /* * if the periodic timer's update is due to period re-configuration, * we should count the clock since last interrupt. */ if (old_period) { int64_t last_periodic_clock, next_periodic_clock; next_periodic_clock = muldiv64(s->next_periodic_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND); last_periodic_clock = next_periodic_clock - old_period; lost_clock = cur_clock - last_periodic_clock; assert(lost_clock >= 0); } /* * s->irq_coalesced can change for two reasons: * * a) if one or more periodic timer interrupts have been lost, * lost_clock will be more that a period. * * b) when the period may be reconfigured, we expect the OS to * treat delayed tick as the new period. So, when switching * from a shorter to a longer period, scale down the missing, * because the OS will treat past delayed ticks as longer * (leftovers are put back into lost_clock). When switching * to a shorter period, scale up the missing ticks since the * OS handler will treat past delayed ticks as shorter. */ if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { uint32_t old_irq_coalesced = s->irq_coalesced; s->period = period; lost_clock += old_irq_coalesced * old_period; s->irq_coalesced = lost_clock / s->period; lost_clock %= s->period; if (old_irq_coalesced != s->irq_coalesced || old_period != s->period) { DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, " "period scaled from %d to %d\n", old_irq_coalesced, s->irq_coalesced, old_period, s->period); rtc_coalesced_timer_update(s); } } else { /* * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW * is not used, we should make the time progress anyway. */ lost_clock = MIN(lost_clock, period); } assert(lost_clock >= 0 && lost_clock <= period); next_irq_clock = cur_clock + period - lost_clock; s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1; timer_mod(s->periodic_timer, s->next_periodic_time); } else { s->irq_coalesced = 0; timer_del(s->periodic_timer); } } static void rtc_periodic_timer(void *opaque) { RTCState *s = opaque; periodic_timer_update(s, s->next_periodic_time, 0); s->cmos_data[RTC_REG_C] |= REG_C_PF; if (s->cmos_data[RTC_REG_B] & REG_B_PIE) { s->cmos_data[RTC_REG_C] |= REG_C_IRQF; if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT) s->irq_reinject_on_ack_count = 0; if (!rtc_policy_slew_deliver_irq(s)) { s->irq_coalesced++; rtc_coalesced_timer_update(s); DPRINTF_C("cmos: coalesced irqs increased to %d\n", s->irq_coalesced); } } else qemu_irq_raise(s->irq); } } /* handle update-ended timer */ static void check_update_timer(RTCState *s) { uint64_t next_update_time; uint64_t guest_nsec; int next_alarm_sec; /* From the data sheet: "Holding the dividers in reset prevents * interrupts from operating, while setting the SET bit allows" * them to occur. */ if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) { assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0); timer_del(s->update_timer); return; } guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND; next_update_time = qemu_clock_get_ns(rtc_clock) + NANOSECONDS_PER_SECOND - guest_nsec; /* Compute time of next alarm. One second is already accounted * for in next_update_time. */ next_alarm_sec = get_next_alarm(s); s->next_alarm_time = next_update_time + (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND; /* If update_in_progress latched the UIP bit, we must keep the timer * programmed to the next second, so that UIP is cleared. Otherwise, * if UF is already set, we might be able to optimize. */ if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) && (s->cmos_data[RTC_REG_C] & REG_C_UF)) { /* If AF cannot change (i.e. either it is set already, or * SET=1 and then the time is not updated), nothing to do. */ if ((s->cmos_data[RTC_REG_B] & REG_B_SET) || (s->cmos_data[RTC_REG_C] & REG_C_AF)) { timer_del(s->update_timer); return; } /* UF is set, but AF is clear. Program the timer to target * the alarm time. */ next_update_time = s->next_alarm_time; } if (next_update_time != timer_expire_time_ns(s->update_timer)) { timer_mod(s->update_timer, next_update_time); } } static inline uint8_t convert_hour(RTCState *s, uint8_t hour) { if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { hour %= 12; if (s->cmos_data[RTC_HOURS] & 0x80) { hour += 12; } } return hour; } static uint64_t get_next_alarm(RTCState *s) { int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec; int32_t hour, min, sec; rtc_update_time(s); alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]); alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]); alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]); alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour); cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]); cur_hour = convert_hour(s, cur_hour); if (alarm_hour == -1) { alarm_hour = cur_hour; if (alarm_min == -1) { alarm_min = cur_min; if (alarm_sec == -1) { alarm_sec = cur_sec + 1; } else if (cur_sec > alarm_sec) { alarm_min++; } } else if (cur_min == alarm_min) { if (alarm_sec == -1) { alarm_sec = cur_sec + 1; } else { if (cur_sec > alarm_sec) { alarm_hour++; } } if (alarm_sec == SEC_PER_MIN) { /* wrap to next hour, minutes is not in don't care mode */ alarm_sec = 0; alarm_hour++; } } else if (cur_min > alarm_min) { alarm_hour++; } } else if (cur_hour == alarm_hour) { if (alarm_min == -1) { alarm_min = cur_min; if (alarm_sec == -1) { alarm_sec = cur_sec + 1; } else if (cur_sec > alarm_sec) { alarm_min++; } if (alarm_sec == SEC_PER_MIN) { alarm_sec = 0; alarm_min++; } /* wrap to next day, hour is not in don't care mode */ alarm_min %= MIN_PER_HOUR; } else if (cur_min == alarm_min) { if (alarm_sec == -1) { alarm_sec = cur_sec + 1; } /* wrap to next day, hours+minutes not in don't care mode */ alarm_sec %= SEC_PER_MIN; } } /* values that are still don't care fire at the next min/sec */ if (alarm_min == -1) { alarm_min = 0; } if (alarm_sec == -1) { alarm_sec = 0; } /* keep values in range */ if (alarm_sec == SEC_PER_MIN) { alarm_sec = 0; alarm_min++; } if (alarm_min == MIN_PER_HOUR) { alarm_min = 0; alarm_hour++; } alarm_hour %= HOUR_PER_DAY; hour = alarm_hour - cur_hour; min = hour * MIN_PER_HOUR + alarm_min - cur_min; sec = min * SEC_PER_MIN + alarm_sec - cur_sec; return sec <= 0 ? sec + SEC_PER_DAY : sec; } static void rtc_update_timer(void *opaque) { RTCState *s = opaque; int32_t irqs = REG_C_UF; int32_t new_irqs; assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60); /* UIP might have been latched, update time and clear it. */ rtc_update_time(s); s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) { irqs |= REG_C_AF; if (s->cmos_data[RTC_REG_B] & REG_B_AIE) { qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL); } } new_irqs = irqs & ~s->cmos_data[RTC_REG_C]; s->cmos_data[RTC_REG_C] |= irqs; if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) { s->cmos_data[RTC_REG_C] |= REG_C_IRQF; qemu_irq_raise(s->irq); } check_update_timer(s); } static void cmos_ioport_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { RTCState *s = opaque; uint32_t old_period; bool update_periodic_timer; if ((addr & 1) == 0) { s->cmos_index = data & 0x7f; } else { CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n", s->cmos_index, data); switch(s->cmos_index) { case RTC_SECONDS_ALARM: case RTC_MINUTES_ALARM: case RTC_HOURS_ALARM: s->cmos_data[s->cmos_index] = data; check_update_timer(s); break; case RTC_IBM_PS2_CENTURY_BYTE: s->cmos_index = RTC_CENTURY; /* fall through */ case RTC_CENTURY: case RTC_SECONDS: case RTC_MINUTES: case RTC_HOURS: case RTC_DAY_OF_WEEK: case RTC_DAY_OF_MONTH: case RTC_MONTH: case RTC_YEAR: s->cmos_data[s->cmos_index] = data; /* if in set mode, do not update the time */ if (rtc_running(s)) { rtc_set_time(s); check_update_timer(s); } break; case RTC_REG_A: update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f; old_period = rtc_periodic_clock_ticks(s); if ((data & 0x60) == 0x60) { if (rtc_running(s)) { rtc_update_time(s); } /* What happens to UIP when divider reset is enabled is * unclear from the datasheet. Shouldn't matter much * though. */ s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) && (data & 0x70) <= 0x20) { /* when the divider reset is removed, the first update cycle * begins one-half second later*/ if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { s->offset = 500000000; rtc_set_time(s); } s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; } /* UIP bit is read only */ s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) | (s->cmos_data[RTC_REG_A] & REG_A_UIP); if (update_periodic_timer) { periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), old_period); } check_update_timer(s); break; case RTC_REG_B: update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data) & REG_B_PIE; old_period = rtc_periodic_clock_ticks(s); if (data & REG_B_SET) { /* update cmos to when the rtc was stopping */ if (rtc_running(s)) { rtc_update_time(s); } /* set mode: reset UIP mode */ s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; data &= ~REG_B_UIE; } else { /* if disabling set mode, update the time */ if ((s->cmos_data[RTC_REG_B] & REG_B_SET) && (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) { s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND; rtc_set_time(s); } } /* if an interrupt flag is already set when the interrupt * becomes enabled, raise an interrupt immediately. */ if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) { s->cmos_data[RTC_REG_C] |= REG_C_IRQF; qemu_irq_raise(s->irq); } else { s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF; qemu_irq_lower(s->irq); } s->cmos_data[RTC_REG_B] = data; if (update_periodic_timer) { periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), old_period); } check_update_timer(s); break; case RTC_REG_C: case RTC_REG_D: /* cannot write to them */ break; default: s->cmos_data[s->cmos_index] = data; break; } } } static inline int rtc_to_bcd(RTCState *s, int a) { if (s->cmos_data[RTC_REG_B] & REG_B_DM) { return a; } else { return ((a / 10) << 4) | (a % 10); } } static inline int rtc_from_bcd(RTCState *s, int a) { if ((a & 0xc0) == 0xc0) { return -1; } if (s->cmos_data[RTC_REG_B] & REG_B_DM) { return a; } else { return ((a >> 4) * 10) + (a & 0x0f); } } static void rtc_get_time(RTCState *s, struct tm *tm) { tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f); if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) { tm->tm_hour %= 12; if (s->cmos_data[RTC_HOURS] & 0x80) { tm->tm_hour += 12; } } tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1; tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]); tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1; tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year + rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900; } static void rtc_set_time(RTCState *s) { struct tm tm; rtc_get_time(s, &tm); s->base_rtc = mktimegm(&tm); s->last_update = qemu_clock_get_ns(rtc_clock); qapi_event_send_rtc_change(qemu_timedate_diff(&tm)); } static void rtc_set_cmos(RTCState *s, const struct tm *tm) { int year; s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec); s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min); if (s->cmos_data[RTC_REG_B] & REG_B_24H) { /* 24 hour format */ s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour); } else { /* 12 hour format */ int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12; s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h); if (tm->tm_hour >= 12) s->cmos_data[RTC_HOURS] |= 0x80; } s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1); s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday); s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1); year = tm->tm_year + 1900 - s->base_year; s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100); s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100); } static void rtc_update_time(RTCState *s) { struct tm ret; time_t guest_sec; int64_t guest_nsec; guest_nsec = get_guest_rtc_ns(s); guest_sec = guest_nsec / NANOSECONDS_PER_SECOND; gmtime_r(&guest_sec, &ret); /* Is SET flag of Register B disabled? */ if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) { rtc_set_cmos(s, &ret); } } static int update_in_progress(RTCState *s) { int64_t guest_nsec; if (!rtc_running(s)) { return 0; } if (timer_pending(s->update_timer)) { int64_t next_update_time = timer_expire_time_ns(s->update_timer); /* Latch UIP until the timer expires. */ if (qemu_clock_get_ns(rtc_clock) >= (next_update_time - UIP_HOLD_LENGTH)) { s->cmos_data[RTC_REG_A] |= REG_A_UIP; return 1; } } guest_nsec = get_guest_rtc_ns(s); /* UIP bit will be set at last 244us of every second. */ if ((guest_nsec % NANOSECONDS_PER_SECOND) >= (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) { return 1; } return 0; } static uint64_t cmos_ioport_read(void *opaque, hwaddr addr, unsigned size) { RTCState *s = opaque; int ret; if ((addr & 1) == 0) { return 0xff; } else { switch(s->cmos_index) { case RTC_IBM_PS2_CENTURY_BYTE: s->cmos_index = RTC_CENTURY; /* fall through */ case RTC_CENTURY: case RTC_SECONDS: case RTC_MINUTES: case RTC_HOURS: case RTC_DAY_OF_WEEK: case RTC_DAY_OF_MONTH: case RTC_MONTH: case RTC_YEAR: /* if not in set mode, calibrate cmos before * reading*/ if (rtc_running(s)) { rtc_update_time(s); } ret = s->cmos_data[s->cmos_index]; break; case RTC_REG_A: ret = s->cmos_data[s->cmos_index]; if (update_in_progress(s)) { ret |= REG_A_UIP; } break; case RTC_REG_C: ret = s->cmos_data[s->cmos_index]; qemu_irq_lower(s->irq); s->cmos_data[RTC_REG_C] = 0x00; if (ret & (REG_C_UF | REG_C_AF)) { check_update_timer(s); } if(s->irq_coalesced && (s->cmos_data[RTC_REG_B] & REG_B_PIE) && s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) { s->irq_reinject_on_ack_count++; s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF; DPRINTF_C("cmos: injecting on ack\n"); if (rtc_policy_slew_deliver_irq(s)) { s->irq_coalesced--; DPRINTF_C("cmos: coalesced irqs decreased to %d\n", s->irq_coalesced); } } break; default: ret = s->cmos_data[s->cmos_index]; break; } CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n", s->cmos_index, ret); return ret; } } void rtc_set_memory(ISADevice *dev, int addr, int val) { RTCState *s = MC146818_RTC(dev); if (addr >= 0 && addr <= 127) s->cmos_data[addr] = val; } int rtc_get_memory(ISADevice *dev, int addr) { RTCState *s = MC146818_RTC(dev); assert(addr >= 0 && addr <= 127); return s->cmos_data[addr]; } static void rtc_set_date_from_host(ISADevice *dev) { RTCState *s = MC146818_RTC(dev); struct tm tm; qemu_get_timedate(&tm, 0); s->base_rtc = mktimegm(&tm); s->last_update = qemu_clock_get_ns(rtc_clock); s->offset = 0; /* set the CMOS date */ rtc_set_cmos(s, &tm); } static int rtc_pre_save(void *opaque) { RTCState *s = opaque; rtc_update_time(s); return 0; } static int rtc_post_load(void *opaque, int version_id) { RTCState *s = opaque; if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) { rtc_set_time(s); s->offset = 0; check_update_timer(s); } /* The periodic timer is deterministic in record/replay mode, * so there is no need to update it after loading the vmstate. * Reading RTC here would misalign record and replay. */ if (replay_mode == REPLAY_MODE_NONE) { uint64_t now = qemu_clock_get_ns(rtc_clock); if (now < s->next_periodic_time || now > (s->next_periodic_time + get_max_clock_jump())) { periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), 0); } } if (version_id >= 2) { if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { rtc_coalesced_timer_update(s); } } return 0; } static bool rtc_irq_reinject_on_ack_count_needed(void *opaque) { RTCState *s = (RTCState *)opaque; return s->irq_reinject_on_ack_count != 0; } static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = { .name = "mc146818rtc/irq_reinject_on_ack_count", .version_id = 1, .minimum_version_id = 1, .needed = rtc_irq_reinject_on_ack_count_needed, .fields = (VMStateField[]) { VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_rtc = { .name = "mc146818rtc", .version_id = 3, .minimum_version_id = 1, .pre_save = rtc_pre_save, .post_load = rtc_post_load, .fields = (VMStateField[]) { VMSTATE_BUFFER(cmos_data, RTCState), VMSTATE_UINT8(cmos_index, RTCState), VMSTATE_UNUSED(7*4), VMSTATE_TIMER_PTR(periodic_timer, RTCState), VMSTATE_INT64(next_periodic_time, RTCState), VMSTATE_UNUSED(3*8), VMSTATE_UINT32_V(irq_coalesced, RTCState, 2), VMSTATE_UINT32_V(period, RTCState, 2), VMSTATE_UINT64_V(base_rtc, RTCState, 3), VMSTATE_UINT64_V(last_update, RTCState, 3), VMSTATE_INT64_V(offset, RTCState, 3), VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3), VMSTATE_UINT64_V(next_alarm_time, RTCState, 3), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_rtc_irq_reinject_on_ack_count, NULL } }; static void rtc_notify_clock_reset(Notifier *notifier, void *data) { RTCState *s = container_of(notifier, RTCState, clock_reset_notifier); int64_t now = *(int64_t *)data; rtc_set_date_from_host(ISA_DEVICE(s)); periodic_timer_update(s, now, 0); check_update_timer(s); if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { rtc_coalesced_timer_update(s); } } /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE) BIOS will read it and start S3 resume at POST Entry */ static void rtc_notify_suspend(Notifier *notifier, void *data) { RTCState *s = container_of(notifier, RTCState, suspend_notifier); rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE); } static void rtc_reset(void *opaque) { RTCState *s = opaque; s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE); s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF); check_update_timer(s); qemu_irq_lower(s->irq); if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) { s->irq_coalesced = 0; s->irq_reinject_on_ack_count = 0; } } static const MemoryRegionOps cmos_ops = { .read = cmos_ioport_read, .write = cmos_ioport_write, .impl = { .min_access_size = 1, .max_access_size = 1, }, .endianness = DEVICE_LITTLE_ENDIAN, }; static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp) { RTCState *s = MC146818_RTC(obj); rtc_update_time(s); rtc_get_time(s, current_tm); } static void rtc_realizefn(DeviceState *dev, Error **errp) { ISADevice *isadev = ISA_DEVICE(dev); RTCState *s = MC146818_RTC(dev); int base = 0x70; s->cmos_data[RTC_REG_A] = 0x26; s->cmos_data[RTC_REG_B] = 0x02; s->cmos_data[RTC_REG_C] = 0x00; s->cmos_data[RTC_REG_D] = 0x80; /* This is for historical reasons. The default base year qdev property * was set to 2000 for most machine types before the century byte was * implemented. * * This if statement means that the century byte will be always 0 * (at least until 2079...) for base_year = 1980, but will be set * correctly for base_year = 2000. */ if (s->base_year == 2000) { s->base_year = 0; } rtc_set_date_from_host(isadev); switch (s->lost_tick_policy) { #ifdef TARGET_I386 case LOST_TICK_POLICY_SLEW: s->coalesced_timer = timer_new_ns(rtc_clock, rtc_coalesced_timer, s); break; #endif case LOST_TICK_POLICY_DISCARD: break; default: error_setg(errp, "Invalid lost tick policy."); return; } s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s); s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s); check_update_timer(s); s->clock_reset_notifier.notify = rtc_notify_clock_reset; qemu_clock_register_reset_notifier(rtc_clock, &s->clock_reset_notifier); s->suspend_notifier.notify = rtc_notify_suspend; qemu_register_suspend_notifier(&s->suspend_notifier); memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2); isa_register_ioport(isadev, &s->io, base); /* register rtc 0x70 port for coalesced_pio */ memory_region_set_flush_coalesced(&s->io); memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops, s, "rtc-index", 1); memory_region_add_subregion(&s->io, 0, &s->coalesced_io); memory_region_add_coalescing(&s->coalesced_io, 0, 1); qdev_set_legacy_instance_id(dev, base, 3); qemu_register_reset(rtc_reset, s); object_property_add_tm(OBJECT(s), "date", rtc_get_date, NULL); qdev_init_gpio_out(dev, &s->irq, 1); } ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq) { DeviceState *dev; ISADevice *isadev; RTCState *s; isadev = isa_create(bus, TYPE_MC146818_RTC); dev = DEVICE(isadev); s = MC146818_RTC(isadev); qdev_prop_set_int32(dev, "base_year", base_year); qdev_init_nofail(dev); if (intercept_irq) { qdev_connect_gpio_out(dev, 0, intercept_irq); } else { isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ); } QLIST_INSERT_HEAD(&rtc_devices, s, link); object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(s), "date", NULL); return isadev; } static Property mc146818rtc_properties[] = { DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980), DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState, lost_tick_policy, LOST_TICK_POLICY_DISCARD), DEFINE_PROP_END_OF_LIST(), }; static void rtc_resetdev(DeviceState *d) { RTCState *s = MC146818_RTC(d); /* Reason: VM do suspend self will set 0xfe * Reset any values other than 0xfe(Guest suspend case) */ if (s->cmos_data[0x0f] != 0xfe) { s->cmos_data[0x0f] = 0x00; } } static void rtc_class_initfn(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = rtc_realizefn; dc->reset = rtc_resetdev; dc->vmsd = &vmstate_rtc; dc->props = mc146818rtc_properties; /* Reason: needs to be wired up by rtc_init() */ dc->user_creatable = false; } static const TypeInfo mc146818rtc_info = { .name = TYPE_MC146818_RTC, .parent = TYPE_ISA_DEVICE, .instance_size = sizeof(RTCState), .class_init = rtc_class_initfn, }; static void mc146818rtc_register_types(void) { type_register_static(&mc146818rtc_info); } type_init(mc146818rtc_register_types)