/* * Samsung exynos4210 Multi Core timer * * Copyright (c) 2000 - 2011 Samsung Electronics Co., Ltd. * All rights reserved. * * Evgeny Voevodin * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see . */ /* * Global Timer: * * Consists of two timers. First represents Free Running Counter and second * is used to measure interval from FRC to nearest comparator. * * 0 UINT64_MAX * | timer0 | * | <-------------------------------------------------------------- | * | --------------------------------------------frc---------------> | * |______________________________________________|__________________| * CMP0 CMP1 CMP2 | CMP3 * __| |_ * | timer1 | * | -------------> | * frc CMPx * * Problem: when implementing global timer as is, overflow arises. * next_time = cur_time + period * count; * period and count are 64 bits width. * Lets arm timer for MCT_GT_COUNTER_STEP count and update internal G_CNT * register during each event. * * Problem: both timers need to be implemented using MCT_XT_COUNTER_STEP because * local timer contains two counters: TCNT and ICNT. TCNT == 0 -> ICNT--. * IRQ is generated when ICNT riches zero. Implementation where TCNT == 0 * generates IRQs suffers from too frequently events. Better to have one * uint64_t counter equal to TCNT*ICNT and arm ptimer.c for a minimum(TCNT*ICNT, * MCT_GT_COUNTER_STEP); (yes, if target tunes ICNT * TCNT to be too low values, * there is no way to avoid frequently events). */ #include "qemu/osdep.h" #include "qemu/log.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "qemu/timer.h" #include "qemu/main-loop.h" #include "qemu/module.h" #include "hw/ptimer.h" #include "hw/arm/exynos4210.h" #include "hw/hw.h" #include "hw/irq.h" //#define DEBUG_MCT #ifdef DEBUG_MCT #define DPRINTF(fmt, ...) \ do { fprintf(stdout, "MCT: [%24s:%5d] " fmt, __func__, __LINE__, \ ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) do {} while (0) #endif #define MCT_CFG 0x000 #define G_CNT_L 0x100 #define G_CNT_U 0x104 #define G_CNT_WSTAT 0x110 #define G_COMP0_L 0x200 #define G_COMP0_U 0x204 #define G_COMP0_ADD_INCR 0x208 #define G_COMP1_L 0x210 #define G_COMP1_U 0x214 #define G_COMP1_ADD_INCR 0x218 #define G_COMP2_L 0x220 #define G_COMP2_U 0x224 #define G_COMP2_ADD_INCR 0x228 #define G_COMP3_L 0x230 #define G_COMP3_U 0x234 #define G_COMP3_ADD_INCR 0x238 #define G_TCON 0x240 #define G_INT_CSTAT 0x244 #define G_INT_ENB 0x248 #define G_WSTAT 0x24C #define L0_TCNTB 0x300 #define L0_TCNTO 0x304 #define L0_ICNTB 0x308 #define L0_ICNTO 0x30C #define L0_FRCNTB 0x310 #define L0_FRCNTO 0x314 #define L0_TCON 0x320 #define L0_INT_CSTAT 0x330 #define L0_INT_ENB 0x334 #define L0_WSTAT 0x340 #define L1_TCNTB 0x400 #define L1_TCNTO 0x404 #define L1_ICNTB 0x408 #define L1_ICNTO 0x40C #define L1_FRCNTB 0x410 #define L1_FRCNTO 0x414 #define L1_TCON 0x420 #define L1_INT_CSTAT 0x430 #define L1_INT_ENB 0x434 #define L1_WSTAT 0x440 #define MCT_CFG_GET_PRESCALER(x) ((x) & 0xFF) #define MCT_CFG_GET_DIVIDER(x) (1 << ((x) >> 8 & 7)) #define GET_G_COMP_IDX(offset) (((offset) - G_COMP0_L) / 0x10) #define GET_G_COMP_ADD_INCR_IDX(offset) (((offset) - G_COMP0_ADD_INCR) / 0x10) #define G_COMP_L(x) (G_COMP0_L + (x) * 0x10) #define G_COMP_U(x) (G_COMP0_U + (x) * 0x10) #define G_COMP_ADD_INCR(x) (G_COMP0_ADD_INCR + (x) * 0x10) /* MCT bits */ #define G_TCON_COMP_ENABLE(x) (1 << 2 * (x)) #define G_TCON_AUTO_ICREMENT(x) (1 << (2 * (x) + 1)) #define G_TCON_TIMER_ENABLE (1 << 8) #define G_INT_ENABLE(x) (1 << (x)) #define G_INT_CSTAT_COMP(x) (1 << (x)) #define G_CNT_WSTAT_L 1 #define G_CNT_WSTAT_U 2 #define G_WSTAT_COMP_L(x) (1 << 4 * (x)) #define G_WSTAT_COMP_U(x) (1 << ((4 * (x)) + 1)) #define G_WSTAT_COMP_ADDINCR(x) (1 << ((4 * (x)) + 2)) #define G_WSTAT_TCON_WRITE (1 << 16) #define GET_L_TIMER_IDX(offset) ((((offset) & 0xF00) - L0_TCNTB) / 0x100) #define GET_L_TIMER_CNT_REG_IDX(offset, lt_i) \ (((offset) - (L0_TCNTB + 0x100 * (lt_i))) >> 2) #define L_ICNTB_MANUAL_UPDATE (1 << 31) #define L_TCON_TICK_START (1) #define L_TCON_INT_START (1 << 1) #define L_TCON_INTERVAL_MODE (1 << 2) #define L_TCON_FRC_START (1 << 3) #define L_INT_CSTAT_INTCNT (1 << 0) #define L_INT_CSTAT_FRCCNT (1 << 1) #define L_INT_INTENB_ICNTEIE (1 << 0) #define L_INT_INTENB_FRCEIE (1 << 1) #define L_WSTAT_TCNTB_WRITE (1 << 0) #define L_WSTAT_ICNTB_WRITE (1 << 1) #define L_WSTAT_FRCCNTB_WRITE (1 << 2) #define L_WSTAT_TCON_WRITE (1 << 3) enum LocalTimerRegCntIndexes { L_REG_CNT_TCNTB, L_REG_CNT_TCNTO, L_REG_CNT_ICNTB, L_REG_CNT_ICNTO, L_REG_CNT_FRCCNTB, L_REG_CNT_FRCCNTO, L_REG_CNT_AMOUNT }; #define MCT_SFR_SIZE 0x444 #define MCT_GT_CMP_NUM 4 #define MCT_GT_COUNTER_STEP 0x100000000ULL #define MCT_LT_COUNTER_STEP 0x100000000ULL #define MCT_LT_CNT_LOW_LIMIT 0x100 /* global timer */ typedef struct { qemu_irq irq[MCT_GT_CMP_NUM]; struct gregs { uint64_t cnt; uint32_t cnt_wstat; uint32_t tcon; uint32_t int_cstat; uint32_t int_enb; uint32_t wstat; uint64_t comp[MCT_GT_CMP_NUM]; uint32_t comp_add_incr[MCT_GT_CMP_NUM]; } reg; uint64_t count; /* Value FRC was armed with */ int32_t curr_comp; /* Current comparator FRC is running to */ ptimer_state *ptimer_frc; /* FRC timer */ } Exynos4210MCTGT; /* local timer */ typedef struct { int id; /* timer id */ qemu_irq irq; /* local timer irq */ struct tick_timer { uint32_t cnt_run; /* cnt timer is running */ uint32_t int_run; /* int timer is running */ uint32_t last_icnto; uint32_t last_tcnto; uint32_t tcntb; /* initial value for TCNTB */ uint32_t icntb; /* initial value for ICNTB */ /* for step mode */ uint64_t distance; /* distance to count to the next event */ uint64_t progress; /* progress when counting by steps */ uint64_t count; /* count to arm timer with */ ptimer_state *ptimer_tick; /* timer for tick counter */ } tick_timer; /* use ptimer.c to represent count down timer */ ptimer_state *ptimer_frc; /* timer for free running counter */ /* registers */ struct lregs { uint32_t cnt[L_REG_CNT_AMOUNT]; uint32_t tcon; uint32_t int_cstat; uint32_t int_enb; uint32_t wstat; } reg; } Exynos4210MCTLT; #define TYPE_EXYNOS4210_MCT "exynos4210.mct" #define EXYNOS4210_MCT(obj) \ OBJECT_CHECK(Exynos4210MCTState, (obj), TYPE_EXYNOS4210_MCT) typedef struct Exynos4210MCTState { SysBusDevice parent_obj; MemoryRegion iomem; /* Registers */ uint32_t reg_mct_cfg; Exynos4210MCTLT l_timer[2]; Exynos4210MCTGT g_timer; uint32_t freq; /* all timers tick frequency, TCLK */ } Exynos4210MCTState; /*** VMState ***/ static const VMStateDescription vmstate_tick_timer = { .name = "exynos4210.mct.tick_timer", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(cnt_run, struct tick_timer), VMSTATE_UINT32(int_run, struct tick_timer), VMSTATE_UINT32(last_icnto, struct tick_timer), VMSTATE_UINT32(last_tcnto, struct tick_timer), VMSTATE_UINT32(tcntb, struct tick_timer), VMSTATE_UINT32(icntb, struct tick_timer), VMSTATE_UINT64(distance, struct tick_timer), VMSTATE_UINT64(progress, struct tick_timer), VMSTATE_UINT64(count, struct tick_timer), VMSTATE_PTIMER(ptimer_tick, struct tick_timer), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_lregs = { .name = "exynos4210.mct.lregs", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(cnt, struct lregs, L_REG_CNT_AMOUNT), VMSTATE_UINT32(tcon, struct lregs), VMSTATE_UINT32(int_cstat, struct lregs), VMSTATE_UINT32(int_enb, struct lregs), VMSTATE_UINT32(wstat, struct lregs), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_exynos4210_mct_lt = { .name = "exynos4210.mct.lt", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_INT32(id, Exynos4210MCTLT), VMSTATE_STRUCT(tick_timer, Exynos4210MCTLT, 0, vmstate_tick_timer, struct tick_timer), VMSTATE_PTIMER(ptimer_frc, Exynos4210MCTLT), VMSTATE_STRUCT(reg, Exynos4210MCTLT, 0, vmstate_lregs, struct lregs), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_gregs = { .name = "exynos4210.mct.lregs", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT64(cnt, struct gregs), VMSTATE_UINT32(cnt_wstat, struct gregs), VMSTATE_UINT32(tcon, struct gregs), VMSTATE_UINT32(int_cstat, struct gregs), VMSTATE_UINT32(int_enb, struct gregs), VMSTATE_UINT32(wstat, struct gregs), VMSTATE_UINT64_ARRAY(comp, struct gregs, MCT_GT_CMP_NUM), VMSTATE_UINT32_ARRAY(comp_add_incr, struct gregs, MCT_GT_CMP_NUM), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_exynos4210_mct_gt = { .name = "exynos4210.mct.lt", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_STRUCT(reg, Exynos4210MCTGT, 0, vmstate_gregs, struct gregs), VMSTATE_UINT64(count, Exynos4210MCTGT), VMSTATE_INT32(curr_comp, Exynos4210MCTGT), VMSTATE_PTIMER(ptimer_frc, Exynos4210MCTGT), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_exynos4210_mct_state = { .name = "exynos4210.mct", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(reg_mct_cfg, Exynos4210MCTState), VMSTATE_STRUCT_ARRAY(l_timer, Exynos4210MCTState, 2, 0, vmstate_exynos4210_mct_lt, Exynos4210MCTLT), VMSTATE_STRUCT(g_timer, Exynos4210MCTState, 0, vmstate_exynos4210_mct_gt, Exynos4210MCTGT), VMSTATE_UINT32(freq, Exynos4210MCTState), VMSTATE_END_OF_LIST() } }; static void exynos4210_mct_update_freq(Exynos4210MCTState *s); /* * Set counter of FRC global timer. */ static void exynos4210_gfrc_set_count(Exynos4210MCTGT *s, uint64_t count) { s->count = count; DPRINTF("global timer frc set count 0x%llx\n", count); ptimer_set_count(s->ptimer_frc, count); } /* * Get counter of FRC global timer. */ static uint64_t exynos4210_gfrc_get_count(Exynos4210MCTGT *s) { uint64_t count = 0; count = ptimer_get_count(s->ptimer_frc); count = s->count - count; return s->reg.cnt + count; } /* * Stop global FRC timer */ static void exynos4210_gfrc_stop(Exynos4210MCTGT *s) { DPRINTF("global timer frc stop\n"); ptimer_stop(s->ptimer_frc); } /* * Start global FRC timer */ static void exynos4210_gfrc_start(Exynos4210MCTGT *s) { DPRINTF("global timer frc start\n"); ptimer_run(s->ptimer_frc, 1); } /* * Find next nearest Comparator. If current Comparator value equals to other * Comparator value, skip them both */ static int32_t exynos4210_gcomp_find(Exynos4210MCTState *s) { int res; int i; int enabled; uint64_t min; int min_comp_i; uint64_t gfrc; uint64_t distance; uint64_t distance_min; int comp_i; /* get gfrc count */ gfrc = exynos4210_gfrc_get_count(&s->g_timer); min = UINT64_MAX; distance_min = UINT64_MAX; comp_i = MCT_GT_CMP_NUM; min_comp_i = MCT_GT_CMP_NUM; enabled = 0; /* lookup for nearest comparator */ for (i = 0; i < MCT_GT_CMP_NUM; i++) { if (s->g_timer.reg.tcon & G_TCON_COMP_ENABLE(i)) { enabled = 1; if (s->g_timer.reg.comp[i] > gfrc) { /* Comparator is upper then FRC */ distance = s->g_timer.reg.comp[i] - gfrc; if (distance <= distance_min) { distance_min = distance; comp_i = i; } } else { /* Comparator is below FRC, find the smallest */ if (s->g_timer.reg.comp[i] <= min) { min = s->g_timer.reg.comp[i]; min_comp_i = i; } } } } if (!enabled) { /* All Comparators disabled */ res = -1; } else if (comp_i < MCT_GT_CMP_NUM) { /* Found upper Comparator */ res = comp_i; } else { /* All Comparators are below or equal to FRC */ res = min_comp_i; } DPRINTF("found comparator %d: comp 0x%llx distance 0x%llx, gfrc 0x%llx\n", res, s->g_timer.reg.comp[res], distance_min, gfrc); return res; } /* * Get distance to nearest Comparator */ static uint64_t exynos4210_gcomp_get_distance(Exynos4210MCTState *s, int32_t id) { if (id == -1) { /* no enabled Comparators, choose max distance */ return MCT_GT_COUNTER_STEP; } if (s->g_timer.reg.comp[id] - s->g_timer.reg.cnt < MCT_GT_COUNTER_STEP) { return s->g_timer.reg.comp[id] - s->g_timer.reg.cnt; } else { return MCT_GT_COUNTER_STEP; } } /* * Restart global FRC timer */ static void exynos4210_gfrc_restart(Exynos4210MCTState *s) { uint64_t distance; exynos4210_gfrc_stop(&s->g_timer); s->g_timer.curr_comp = exynos4210_gcomp_find(s); distance = exynos4210_gcomp_get_distance(s, s->g_timer.curr_comp); if (distance > MCT_GT_COUNTER_STEP || !distance) { distance = MCT_GT_COUNTER_STEP; } exynos4210_gfrc_set_count(&s->g_timer, distance); exynos4210_gfrc_start(&s->g_timer); } /* * Raise global timer CMP IRQ */ static void exynos4210_gcomp_raise_irq(void *opaque, uint32_t id) { Exynos4210MCTGT *s = opaque; /* If CSTAT is pending and IRQ is enabled */ if ((s->reg.int_cstat & G_INT_CSTAT_COMP(id)) && (s->reg.int_enb & G_INT_ENABLE(id))) { DPRINTF("gcmp timer[%d] IRQ\n", id); qemu_irq_raise(s->irq[id]); } } /* * Lower global timer CMP IRQ */ static void exynos4210_gcomp_lower_irq(void *opaque, uint32_t id) { Exynos4210MCTGT *s = opaque; qemu_irq_lower(s->irq[id]); } /* * Global timer FRC event handler. * Each event occurs when internal counter reaches counter + MCT_GT_COUNTER_STEP * Every time we arm global FRC timer to count for MCT_GT_COUNTER_STEP value */ static void exynos4210_gfrc_event(void *opaque) { Exynos4210MCTState *s = (Exynos4210MCTState *)opaque; int i; uint64_t distance; DPRINTF("\n"); s->g_timer.reg.cnt += s->g_timer.count; /* Process all comparators */ for (i = 0; i < MCT_GT_CMP_NUM; i++) { if (s->g_timer.reg.cnt == s->g_timer.reg.comp[i]) { /* reached nearest comparator */ s->g_timer.reg.int_cstat |= G_INT_CSTAT_COMP(i); /* Auto increment */ if (s->g_timer.reg.tcon & G_TCON_AUTO_ICREMENT(i)) { s->g_timer.reg.comp[i] += s->g_timer.reg.comp_add_incr[i]; } /* IRQ */ exynos4210_gcomp_raise_irq(&s->g_timer, i); } } /* Reload FRC to reach nearest comparator */ s->g_timer.curr_comp = exynos4210_gcomp_find(s); distance = exynos4210_gcomp_get_distance(s, s->g_timer.curr_comp); if (distance > MCT_GT_COUNTER_STEP || !distance) { distance = MCT_GT_COUNTER_STEP; } exynos4210_gfrc_set_count(&s->g_timer, distance); exynos4210_gfrc_start(&s->g_timer); } /* * Get counter of FRC local timer. */ static uint64_t exynos4210_lfrc_get_count(Exynos4210MCTLT *s) { return ptimer_get_count(s->ptimer_frc); } /* * Set counter of FRC local timer. */ static void exynos4210_lfrc_update_count(Exynos4210MCTLT *s) { if (!s->reg.cnt[L_REG_CNT_FRCCNTB]) { ptimer_set_count(s->ptimer_frc, MCT_LT_COUNTER_STEP); } else { ptimer_set_count(s->ptimer_frc, s->reg.cnt[L_REG_CNT_FRCCNTB]); } } /* * Start local FRC timer */ static void exynos4210_lfrc_start(Exynos4210MCTLT *s) { ptimer_run(s->ptimer_frc, 1); } /* * Stop local FRC timer */ static void exynos4210_lfrc_stop(Exynos4210MCTLT *s) { ptimer_stop(s->ptimer_frc); } /* * Local timer free running counter tick handler */ static void exynos4210_lfrc_event(void *opaque) { Exynos4210MCTLT * s = (Exynos4210MCTLT *)opaque; /* local frc expired */ DPRINTF("\n"); s->reg.int_cstat |= L_INT_CSTAT_FRCCNT; /* update frc counter */ exynos4210_lfrc_update_count(s); /* raise irq */ if (s->reg.int_enb & L_INT_INTENB_FRCEIE) { qemu_irq_raise(s->irq); } /* we reached here, this means that timer is enabled */ exynos4210_lfrc_start(s); } static uint32_t exynos4210_ltick_int_get_cnto(struct tick_timer *s); static uint32_t exynos4210_ltick_cnt_get_cnto(struct tick_timer *s); static void exynos4210_ltick_recalc_count(struct tick_timer *s); /* * Action on enabling local tick int timer */ static void exynos4210_ltick_int_start(struct tick_timer *s) { if (!s->int_run) { s->int_run = 1; } } /* * Action on disabling local tick int timer */ static void exynos4210_ltick_int_stop(struct tick_timer *s) { if (s->int_run) { s->last_icnto = exynos4210_ltick_int_get_cnto(s); s->int_run = 0; } } /* * Get count for INT timer */ static uint32_t exynos4210_ltick_int_get_cnto(struct tick_timer *s) { uint32_t icnto; uint64_t remain; uint64_t count; uint64_t counted; uint64_t cur_progress; count = ptimer_get_count(s->ptimer_tick); if (count) { /* timer is still counting, called not from event */ counted = s->count - ptimer_get_count(s->ptimer_tick); cur_progress = s->progress + counted; } else { /* timer expired earlier */ cur_progress = s->progress; } remain = s->distance - cur_progress; if (!s->int_run) { /* INT is stopped. */ icnto = s->last_icnto; } else { /* Both are counting */ icnto = remain / s->tcntb; } return icnto; } /* * Start local tick cnt timer. */ static void exynos4210_ltick_cnt_start(struct tick_timer *s) { if (!s->cnt_run) { exynos4210_ltick_recalc_count(s); ptimer_set_count(s->ptimer_tick, s->count); ptimer_run(s->ptimer_tick, 1); s->cnt_run = 1; } } /* * Stop local tick cnt timer. */ static void exynos4210_ltick_cnt_stop(struct tick_timer *s) { if (s->cnt_run) { s->last_tcnto = exynos4210_ltick_cnt_get_cnto(s); if (s->int_run) { exynos4210_ltick_int_stop(s); } ptimer_stop(s->ptimer_tick); s->cnt_run = 0; } } /* * Get counter for CNT timer */ static uint32_t exynos4210_ltick_cnt_get_cnto(struct tick_timer *s) { uint32_t tcnto; uint32_t icnto; uint64_t remain; uint64_t counted; uint64_t count; uint64_t cur_progress; count = ptimer_get_count(s->ptimer_tick); if (count) { /* timer is still counting, called not from event */ counted = s->count - ptimer_get_count(s->ptimer_tick); cur_progress = s->progress + counted; } else { /* timer expired earlier */ cur_progress = s->progress; } remain = s->distance - cur_progress; if (!s->cnt_run) { /* Both are stopped. */ tcnto = s->last_tcnto; } else if (!s->int_run) { /* INT counter is stopped, progress is by CNT timer */ tcnto = remain % s->tcntb; } else { /* Both are counting */ icnto = remain / s->tcntb; if (icnto) { tcnto = remain % (icnto * s->tcntb); } else { tcnto = remain % s->tcntb; } } return tcnto; } /* * Set new values of counters for CNT and INT timers */ static void exynos4210_ltick_set_cntb(struct tick_timer *s, uint32_t new_cnt, uint32_t new_int) { uint32_t cnt_stopped = 0; uint32_t int_stopped = 0; if (s->cnt_run) { exynos4210_ltick_cnt_stop(s); cnt_stopped = 1; } if (s->int_run) { exynos4210_ltick_int_stop(s); int_stopped = 1; } s->tcntb = new_cnt + 1; s->icntb = new_int + 1; if (cnt_stopped) { exynos4210_ltick_cnt_start(s); } if (int_stopped) { exynos4210_ltick_int_start(s); } } /* * Calculate new counter value for tick timer */ static void exynos4210_ltick_recalc_count(struct tick_timer *s) { uint64_t to_count; if ((s->cnt_run && s->last_tcnto) || (s->int_run && s->last_icnto)) { /* * one or both timers run and not counted to the end; * distance is not passed, recalculate with last_tcnto * last_icnto */ if (s->last_tcnto) { to_count = (uint64_t)s->last_tcnto * s->last_icnto; } else { to_count = s->last_icnto; } } else { /* distance is passed, recalculate with tcnto * icnto */ if (s->icntb) { s->distance = (uint64_t)s->tcntb * s->icntb; } else { s->distance = s->tcntb; } to_count = s->distance; s->progress = 0; } if (to_count > MCT_LT_COUNTER_STEP) { /* count by step */ s->count = MCT_LT_COUNTER_STEP; } else { s->count = to_count; } } /* * Initialize tick_timer */ static void exynos4210_ltick_timer_init(struct tick_timer *s) { exynos4210_ltick_int_stop(s); exynos4210_ltick_cnt_stop(s); s->count = 0; s->distance = 0; s->progress = 0; s->icntb = 0; s->tcntb = 0; } /* * tick_timer event. * Raises when abstract tick_timer expires. */ static void exynos4210_ltick_timer_event(struct tick_timer *s) { s->progress += s->count; } /* * Local timer tick counter handler. * Don't use reloaded timers. If timer counter = zero * then handler called but after handler finished no * timer reload occurs. */ static void exynos4210_ltick_event(void *opaque) { Exynos4210MCTLT * s = (Exynos4210MCTLT *)opaque; uint32_t tcnto; uint32_t icnto; #ifdef DEBUG_MCT static uint64_t time1[2] = {0}; static uint64_t time2[2] = {0}; #endif /* Call tick_timer event handler, it will update its tcntb and icntb. */ exynos4210_ltick_timer_event(&s->tick_timer); /* get tick_timer cnt */ tcnto = exynos4210_ltick_cnt_get_cnto(&s->tick_timer); /* get tick_timer int */ icnto = exynos4210_ltick_int_get_cnto(&s->tick_timer); /* raise IRQ if needed */ if (!icnto && s->reg.tcon & L_TCON_INT_START) { /* INT counter enabled and expired */ s->reg.int_cstat |= L_INT_CSTAT_INTCNT; /* raise interrupt if enabled */ if (s->reg.int_enb & L_INT_INTENB_ICNTEIE) { #ifdef DEBUG_MCT time2[s->id] = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); DPRINTF("local timer[%d] IRQ: %llx\n", s->id, time2[s->id] - time1[s->id]); time1[s->id] = time2[s->id]; #endif qemu_irq_raise(s->irq); } /* reload ICNTB */ if (s->reg.tcon & L_TCON_INTERVAL_MODE) { exynos4210_ltick_set_cntb(&s->tick_timer, s->reg.cnt[L_REG_CNT_TCNTB], s->reg.cnt[L_REG_CNT_ICNTB]); } } else { /* reload TCNTB */ if (!tcnto) { exynos4210_ltick_set_cntb(&s->tick_timer, s->reg.cnt[L_REG_CNT_TCNTB], icnto); } } /* start tick_timer cnt */ exynos4210_ltick_cnt_start(&s->tick_timer); /* start tick_timer int */ exynos4210_ltick_int_start(&s->tick_timer); } /* update timer frequency */ static void exynos4210_mct_update_freq(Exynos4210MCTState *s) { uint32_t freq = s->freq; s->freq = 24000000 / ((MCT_CFG_GET_PRESCALER(s->reg_mct_cfg) + 1) * MCT_CFG_GET_DIVIDER(s->reg_mct_cfg)); if (freq != s->freq) { DPRINTF("freq=%dHz\n", s->freq); /* global timer */ ptimer_set_freq(s->g_timer.ptimer_frc, s->freq); /* local timer */ ptimer_set_freq(s->l_timer[0].tick_timer.ptimer_tick, s->freq); ptimer_set_freq(s->l_timer[0].ptimer_frc, s->freq); ptimer_set_freq(s->l_timer[1].tick_timer.ptimer_tick, s->freq); ptimer_set_freq(s->l_timer[1].ptimer_frc, s->freq); } } /* set defaul_timer values for all fields */ static void exynos4210_mct_reset(DeviceState *d) { Exynos4210MCTState *s = EXYNOS4210_MCT(d); uint32_t i; s->reg_mct_cfg = 0; /* global timer */ memset(&s->g_timer.reg, 0, sizeof(s->g_timer.reg)); exynos4210_gfrc_stop(&s->g_timer); /* local timer */ memset(s->l_timer[0].reg.cnt, 0, sizeof(s->l_timer[0].reg.cnt)); memset(s->l_timer[1].reg.cnt, 0, sizeof(s->l_timer[1].reg.cnt)); for (i = 0; i < 2; i++) { s->l_timer[i].reg.int_cstat = 0; s->l_timer[i].reg.int_enb = 0; s->l_timer[i].reg.tcon = 0; s->l_timer[i].reg.wstat = 0; s->l_timer[i].tick_timer.count = 0; s->l_timer[i].tick_timer.distance = 0; s->l_timer[i].tick_timer.progress = 0; ptimer_stop(s->l_timer[i].ptimer_frc); exynos4210_ltick_timer_init(&s->l_timer[i].tick_timer); } exynos4210_mct_update_freq(s); } /* Multi Core Timer read */ static uint64_t exynos4210_mct_read(void *opaque, hwaddr offset, unsigned size) { Exynos4210MCTState *s = (Exynos4210MCTState *)opaque; int index; int shift; uint64_t count; uint32_t value; int lt_i; switch (offset) { case MCT_CFG: value = s->reg_mct_cfg; break; case G_CNT_L: case G_CNT_U: shift = 8 * (offset & 0x4); count = exynos4210_gfrc_get_count(&s->g_timer); value = UINT32_MAX & (count >> shift); DPRINTF("read FRC=0x%llx\n", count); break; case G_CNT_WSTAT: value = s->g_timer.reg.cnt_wstat; break; case G_COMP_L(0): case G_COMP_L(1): case G_COMP_L(2): case G_COMP_L(3): case G_COMP_U(0): case G_COMP_U(1): case G_COMP_U(2): case G_COMP_U(3): index = GET_G_COMP_IDX(offset); shift = 8 * (offset & 0x4); value = UINT32_MAX & (s->g_timer.reg.comp[index] >> shift); break; case G_TCON: value = s->g_timer.reg.tcon; break; case G_INT_CSTAT: value = s->g_timer.reg.int_cstat; break; case G_INT_ENB: value = s->g_timer.reg.int_enb; break; case G_WSTAT: value = s->g_timer.reg.wstat; break; case G_COMP0_ADD_INCR: case G_COMP1_ADD_INCR: case G_COMP2_ADD_INCR: case G_COMP3_ADD_INCR: value = s->g_timer.reg.comp_add_incr[GET_G_COMP_ADD_INCR_IDX(offset)]; break; /* Local timers */ case L0_TCNTB: case L0_ICNTB: case L0_FRCNTB: case L1_TCNTB: case L1_ICNTB: case L1_FRCNTB: lt_i = GET_L_TIMER_IDX(offset); index = GET_L_TIMER_CNT_REG_IDX(offset, lt_i); value = s->l_timer[lt_i].reg.cnt[index]; break; case L0_TCNTO: case L1_TCNTO: lt_i = GET_L_TIMER_IDX(offset); value = exynos4210_ltick_cnt_get_cnto(&s->l_timer[lt_i].tick_timer); DPRINTF("local timer[%d] read TCNTO %x\n", lt_i, value); break; case L0_ICNTO: case L1_ICNTO: lt_i = GET_L_TIMER_IDX(offset); value = exynos4210_ltick_int_get_cnto(&s->l_timer[lt_i].tick_timer); DPRINTF("local timer[%d] read ICNTO %x\n", lt_i, value); break; case L0_FRCNTO: case L1_FRCNTO: lt_i = GET_L_TIMER_IDX(offset); value = exynos4210_lfrc_get_count(&s->l_timer[lt_i]); break; case L0_TCON: case L1_TCON: lt_i = ((offset & 0xF00) - L0_TCNTB) / 0x100; value = s->l_timer[lt_i].reg.tcon; break; case L0_INT_CSTAT: case L1_INT_CSTAT: lt_i = ((offset & 0xF00) - L0_TCNTB) / 0x100; value = s->l_timer[lt_i].reg.int_cstat; break; case L0_INT_ENB: case L1_INT_ENB: lt_i = ((offset & 0xF00) - L0_TCNTB) / 0x100; value = s->l_timer[lt_i].reg.int_enb; break; case L0_WSTAT: case L1_WSTAT: lt_i = ((offset & 0xF00) - L0_TCNTB) / 0x100; value = s->l_timer[lt_i].reg.wstat; break; default: hw_error("exynos4210.mct: bad read offset " TARGET_FMT_plx "\n", offset); break; } return value; } /* MCT write */ static void exynos4210_mct_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { Exynos4210MCTState *s = (Exynos4210MCTState *)opaque; int index; /* index in buffer which represents register set */ int shift; int lt_i; uint64_t new_frc; uint32_t i; uint32_t old_val; #ifdef DEBUG_MCT static uint32_t icntb_max[2] = {0}; static uint32_t icntb_min[2] = {UINT32_MAX, UINT32_MAX}; static uint32_t tcntb_max[2] = {0}; static uint32_t tcntb_min[2] = {UINT32_MAX, UINT32_MAX}; #endif new_frc = s->g_timer.reg.cnt; switch (offset) { case MCT_CFG: s->reg_mct_cfg = value; exynos4210_mct_update_freq(s); break; case G_CNT_L: case G_CNT_U: if (offset == G_CNT_L) { DPRINTF("global timer write to reg.cntl %llx\n", value); new_frc = (s->g_timer.reg.cnt & (uint64_t)UINT32_MAX << 32) + value; s->g_timer.reg.cnt_wstat |= G_CNT_WSTAT_L; } if (offset == G_CNT_U) { DPRINTF("global timer write to reg.cntu %llx\n", value); new_frc = (s->g_timer.reg.cnt & UINT32_MAX) + ((uint64_t)value << 32); s->g_timer.reg.cnt_wstat |= G_CNT_WSTAT_U; } s->g_timer.reg.cnt = new_frc; exynos4210_gfrc_restart(s); break; case G_CNT_WSTAT: s->g_timer.reg.cnt_wstat &= ~(value); break; case G_COMP_L(0): case G_COMP_L(1): case G_COMP_L(2): case G_COMP_L(3): case G_COMP_U(0): case G_COMP_U(1): case G_COMP_U(2): case G_COMP_U(3): index = GET_G_COMP_IDX(offset); shift = 8 * (offset & 0x4); s->g_timer.reg.comp[index] = (s->g_timer.reg.comp[index] & (((uint64_t)UINT32_MAX << 32) >> shift)) + (value << shift); DPRINTF("comparator %d write 0x%llx val << %d\n", index, value, shift); if (offset & 0x4) { s->g_timer.reg.wstat |= G_WSTAT_COMP_U(index); } else { s->g_timer.reg.wstat |= G_WSTAT_COMP_L(index); } exynos4210_gfrc_restart(s); break; case G_TCON: old_val = s->g_timer.reg.tcon; s->g_timer.reg.tcon = value; s->g_timer.reg.wstat |= G_WSTAT_TCON_WRITE; DPRINTF("global timer write to reg.g_tcon %llx\n", value); /* Start FRC if transition from disabled to enabled */ if ((value & G_TCON_TIMER_ENABLE) > (old_val & G_TCON_TIMER_ENABLE)) { exynos4210_gfrc_start(&s->g_timer); } if ((value & G_TCON_TIMER_ENABLE) < (old_val & G_TCON_TIMER_ENABLE)) { exynos4210_gfrc_stop(&s->g_timer); } /* Start CMP if transition from disabled to enabled */ for (i = 0; i < MCT_GT_CMP_NUM; i++) { if ((value & G_TCON_COMP_ENABLE(i)) != (old_val & G_TCON_COMP_ENABLE(i))) { exynos4210_gfrc_restart(s); } } break; case G_INT_CSTAT: s->g_timer.reg.int_cstat &= ~(value); for (i = 0; i < MCT_GT_CMP_NUM; i++) { if (value & G_INT_CSTAT_COMP(i)) { exynos4210_gcomp_lower_irq(&s->g_timer, i); } } break; case G_INT_ENB: /* Raise IRQ if transition from disabled to enabled and CSTAT pending */ for (i = 0; i < MCT_GT_CMP_NUM; i++) { if ((value & G_INT_ENABLE(i)) > (s->g_timer.reg.tcon & G_INT_ENABLE(i))) { if (s->g_timer.reg.int_cstat & G_INT_CSTAT_COMP(i)) { exynos4210_gcomp_raise_irq(&s->g_timer, i); } } if ((value & G_INT_ENABLE(i)) < (s->g_timer.reg.tcon & G_INT_ENABLE(i))) { exynos4210_gcomp_lower_irq(&s->g_timer, i); } } DPRINTF("global timer INT enable %llx\n", value); s->g_timer.reg.int_enb = value; break; case G_WSTAT: s->g_timer.reg.wstat &= ~(value); break; case G_COMP0_ADD_INCR: case G_COMP1_ADD_INCR: case G_COMP2_ADD_INCR: case G_COMP3_ADD_INCR: index = GET_G_COMP_ADD_INCR_IDX(offset); s->g_timer.reg.comp_add_incr[index] = value; s->g_timer.reg.wstat |= G_WSTAT_COMP_ADDINCR(index); break; /* Local timers */ case L0_TCON: case L1_TCON: lt_i = GET_L_TIMER_IDX(offset); old_val = s->l_timer[lt_i].reg.tcon; s->l_timer[lt_i].reg.wstat |= L_WSTAT_TCON_WRITE; s->l_timer[lt_i].reg.tcon = value; /* Stop local CNT */ if ((value & L_TCON_TICK_START) < (old_val & L_TCON_TICK_START)) { DPRINTF("local timer[%d] stop cnt\n", lt_i); exynos4210_ltick_cnt_stop(&s->l_timer[lt_i].tick_timer); } /* Stop local INT */ if ((value & L_TCON_INT_START) < (old_val & L_TCON_INT_START)) { DPRINTF("local timer[%d] stop int\n", lt_i); exynos4210_ltick_int_stop(&s->l_timer[lt_i].tick_timer); } /* Start local CNT */ if ((value & L_TCON_TICK_START) > (old_val & L_TCON_TICK_START)) { DPRINTF("local timer[%d] start cnt\n", lt_i); exynos4210_ltick_cnt_start(&s->l_timer[lt_i].tick_timer); } /* Start local INT */ if ((value & L_TCON_INT_START) > (old_val & L_TCON_INT_START)) { DPRINTF("local timer[%d] start int\n", lt_i); exynos4210_ltick_int_start(&s->l_timer[lt_i].tick_timer); } /* Start or Stop local FRC if TCON changed */ if ((value & L_TCON_FRC_START) > (s->l_timer[lt_i].reg.tcon & L_TCON_FRC_START)) { DPRINTF("local timer[%d] start frc\n", lt_i); exynos4210_lfrc_start(&s->l_timer[lt_i]); } if ((value & L_TCON_FRC_START) < (s->l_timer[lt_i].reg.tcon & L_TCON_FRC_START)) { DPRINTF("local timer[%d] stop frc\n", lt_i); exynos4210_lfrc_stop(&s->l_timer[lt_i]); } break; case L0_TCNTB: case L1_TCNTB: lt_i = GET_L_TIMER_IDX(offset); index = GET_L_TIMER_CNT_REG_IDX(offset, lt_i); /* * TCNTB is updated to internal register only after CNT expired. * Due to this we should reload timer to nearest moment when CNT is * expired and then in event handler update tcntb to new TCNTB value. */ exynos4210_ltick_set_cntb(&s->l_timer[lt_i].tick_timer, value, s->l_timer[lt_i].tick_timer.icntb); s->l_timer[lt_i].reg.wstat |= L_WSTAT_TCNTB_WRITE; s->l_timer[lt_i].reg.cnt[L_REG_CNT_TCNTB] = value; #ifdef DEBUG_MCT if (tcntb_min[lt_i] > value) { tcntb_min[lt_i] = value; } if (tcntb_max[lt_i] < value) { tcntb_max[lt_i] = value; } DPRINTF("local timer[%d] TCNTB write %llx; max=%x, min=%x\n", lt_i, value, tcntb_max[lt_i], tcntb_min[lt_i]); #endif break; case L0_ICNTB: case L1_ICNTB: lt_i = GET_L_TIMER_IDX(offset); index = GET_L_TIMER_CNT_REG_IDX(offset, lt_i); s->l_timer[lt_i].reg.wstat |= L_WSTAT_ICNTB_WRITE; s->l_timer[lt_i].reg.cnt[L_REG_CNT_ICNTB] = value & ~L_ICNTB_MANUAL_UPDATE; /* * We need to avoid too small values for TCNTB*ICNTB. If not, IRQ event * could raise too fast disallowing QEMU to execute target code. */ if (s->l_timer[lt_i].reg.cnt[L_REG_CNT_ICNTB] * s->l_timer[lt_i].reg.cnt[L_REG_CNT_TCNTB] < MCT_LT_CNT_LOW_LIMIT) { if (!s->l_timer[lt_i].reg.cnt[L_REG_CNT_TCNTB]) { s->l_timer[lt_i].reg.cnt[L_REG_CNT_ICNTB] = MCT_LT_CNT_LOW_LIMIT; } else { s->l_timer[lt_i].reg.cnt[L_REG_CNT_ICNTB] = MCT_LT_CNT_LOW_LIMIT / s->l_timer[lt_i].reg.cnt[L_REG_CNT_TCNTB]; } } if (value & L_ICNTB_MANUAL_UPDATE) { exynos4210_ltick_set_cntb(&s->l_timer[lt_i].tick_timer, s->l_timer[lt_i].tick_timer.tcntb, s->l_timer[lt_i].reg.cnt[L_REG_CNT_ICNTB]); } #ifdef DEBUG_MCT if (icntb_min[lt_i] > value) { icntb_min[lt_i] = value; } if (icntb_max[lt_i] < value) { icntb_max[lt_i] = value; } DPRINTF("local timer[%d] ICNTB write %llx; max=%x, min=%x\n\n", lt_i, value, icntb_max[lt_i], icntb_min[lt_i]); #endif break; case L0_FRCNTB: case L1_FRCNTB: lt_i = GET_L_TIMER_IDX(offset); index = GET_L_TIMER_CNT_REG_IDX(offset, lt_i); DPRINTF("local timer[%d] FRCNTB write %llx\n", lt_i, value); s->l_timer[lt_i].reg.wstat |= L_WSTAT_FRCCNTB_WRITE; s->l_timer[lt_i].reg.cnt[L_REG_CNT_FRCCNTB] = value; break; case L0_TCNTO: case L1_TCNTO: case L0_ICNTO: case L1_ICNTO: case L0_FRCNTO: case L1_FRCNTO: qemu_log_mask(LOG_GUEST_ERROR, "exynos4210.mct: write to RO register " TARGET_FMT_plx, offset); break; case L0_INT_CSTAT: case L1_INT_CSTAT: lt_i = GET_L_TIMER_IDX(offset); DPRINTF("local timer[%d] CSTAT write %llx\n", lt_i, value); s->l_timer[lt_i].reg.int_cstat &= ~value; if (!s->l_timer[lt_i].reg.int_cstat) { qemu_irq_lower(s->l_timer[lt_i].irq); } break; case L0_INT_ENB: case L1_INT_ENB: lt_i = GET_L_TIMER_IDX(offset); old_val = s->l_timer[lt_i].reg.int_enb; /* Raise Local timer IRQ if cstat is pending */ if ((value & L_INT_INTENB_ICNTEIE) > (old_val & L_INT_INTENB_ICNTEIE)) { if (s->l_timer[lt_i].reg.int_cstat & L_INT_CSTAT_INTCNT) { qemu_irq_raise(s->l_timer[lt_i].irq); } } s->l_timer[lt_i].reg.int_enb = value; break; case L0_WSTAT: case L1_WSTAT: lt_i = GET_L_TIMER_IDX(offset); s->l_timer[lt_i].reg.wstat &= ~value; break; default: hw_error("exynos4210.mct: bad write offset " TARGET_FMT_plx "\n", offset); break; } } static const MemoryRegionOps exynos4210_mct_ops = { .read = exynos4210_mct_read, .write = exynos4210_mct_write, .endianness = DEVICE_NATIVE_ENDIAN, }; /* MCT init */ static void exynos4210_mct_init(Object *obj) { int i; Exynos4210MCTState *s = EXYNOS4210_MCT(obj); SysBusDevice *dev = SYS_BUS_DEVICE(obj); QEMUBH *bh[2]; /* Global timer */ bh[0] = qemu_bh_new(exynos4210_gfrc_event, s); s->g_timer.ptimer_frc = ptimer_init(bh[0], PTIMER_POLICY_DEFAULT); memset(&s->g_timer.reg, 0, sizeof(struct gregs)); /* Local timers */ for (i = 0; i < 2; i++) { bh[0] = qemu_bh_new(exynos4210_ltick_event, &s->l_timer[i]); bh[1] = qemu_bh_new(exynos4210_lfrc_event, &s->l_timer[i]); s->l_timer[i].tick_timer.ptimer_tick = ptimer_init(bh[0], PTIMER_POLICY_DEFAULT); s->l_timer[i].ptimer_frc = ptimer_init(bh[1], PTIMER_POLICY_DEFAULT); s->l_timer[i].id = i; } /* IRQs */ for (i = 0; i < MCT_GT_CMP_NUM; i++) { sysbus_init_irq(dev, &s->g_timer.irq[i]); } for (i = 0; i < 2; i++) { sysbus_init_irq(dev, &s->l_timer[i].irq); } memory_region_init_io(&s->iomem, obj, &exynos4210_mct_ops, s, "exynos4210-mct", MCT_SFR_SIZE); sysbus_init_mmio(dev, &s->iomem); } static void exynos4210_mct_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->reset = exynos4210_mct_reset; dc->vmsd = &vmstate_exynos4210_mct_state; } static const TypeInfo exynos4210_mct_info = { .name = TYPE_EXYNOS4210_MCT, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(Exynos4210MCTState), .instance_init = exynos4210_mct_init, .class_init = exynos4210_mct_class_init, }; static void exynos4210_mct_register_types(void) { type_register_static(&exynos4210_mct_info); } type_init(exynos4210_mct_register_types)