/* * ARM CMSDK APB dual-timer emulation * * Copyright (c) 2018 Linaro Limited * Written by Peter Maydell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 or * (at your option) any later version. */ /* * This is a model of the "APB dual-input timer" which is part of the Cortex-M * System Design Kit (CMSDK) and documented in the Cortex-M System * Design Kit Technical Reference Manual (ARM DDI0479C): * https://developer.arm.com/products/system-design/system-design-kits/cortex-m-system-design-kit */ #include "qemu/osdep.h" #include "qemu/log.h" #include "trace.h" #include "qapi/error.h" #include "qemu/module.h" #include "hw/sysbus.h" #include "hw/irq.h" #include "hw/qdev-properties.h" #include "hw/registerfields.h" #include "hw/qdev-clock.h" #include "hw/timer/cmsdk-apb-dualtimer.h" #include "migration/vmstate.h" REG32(TIMER1LOAD, 0x0) REG32(TIMER1VALUE, 0x4) REG32(TIMER1CONTROL, 0x8) FIELD(CONTROL, ONESHOT, 0, 1) FIELD(CONTROL, SIZE, 1, 1) FIELD(CONTROL, PRESCALE, 2, 2) FIELD(CONTROL, INTEN, 5, 1) FIELD(CONTROL, MODE, 6, 1) FIELD(CONTROL, ENABLE, 7, 1) #define R_CONTROL_VALID_MASK (R_CONTROL_ONESHOT_MASK | R_CONTROL_SIZE_MASK | \ R_CONTROL_PRESCALE_MASK | R_CONTROL_INTEN_MASK | \ R_CONTROL_MODE_MASK | R_CONTROL_ENABLE_MASK) REG32(TIMER1INTCLR, 0xc) REG32(TIMER1RIS, 0x10) REG32(TIMER1MIS, 0x14) REG32(TIMER1BGLOAD, 0x18) REG32(TIMER2LOAD, 0x20) REG32(TIMER2VALUE, 0x24) REG32(TIMER2CONTROL, 0x28) REG32(TIMER2INTCLR, 0x2c) REG32(TIMER2RIS, 0x30) REG32(TIMER2MIS, 0x34) REG32(TIMER2BGLOAD, 0x38) REG32(TIMERITCR, 0xf00) FIELD(TIMERITCR, ENABLE, 0, 1) #define R_TIMERITCR_VALID_MASK R_TIMERITCR_ENABLE_MASK REG32(TIMERITOP, 0xf04) FIELD(TIMERITOP, TIMINT1, 0, 1) FIELD(TIMERITOP, TIMINT2, 1, 1) #define R_TIMERITOP_VALID_MASK (R_TIMERITOP_TIMINT1_MASK | \ R_TIMERITOP_TIMINT2_MASK) REG32(PID4, 0xfd0) REG32(PID5, 0xfd4) REG32(PID6, 0xfd8) REG32(PID7, 0xfdc) REG32(PID0, 0xfe0) REG32(PID1, 0xfe4) REG32(PID2, 0xfe8) REG32(PID3, 0xfec) REG32(CID0, 0xff0) REG32(CID1, 0xff4) REG32(CID2, 0xff8) REG32(CID3, 0xffc) /* PID/CID values */ static const int timer_id[] = { 0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */ 0x23, 0xb8, 0x1b, 0x00, /* PID0..PID3 */ 0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */ }; static bool cmsdk_dualtimermod_intstatus(CMSDKAPBDualTimerModule *m) { /* Return masked interrupt status for the timer module */ return m->intstatus && (m->control & R_CONTROL_INTEN_MASK); } static void cmsdk_apb_dualtimer_update(CMSDKAPBDualTimer *s) { bool timint1, timint2, timintc; if (s->timeritcr) { /* Integration test mode: outputs driven directly from TIMERITOP bits */ timint1 = s->timeritop & R_TIMERITOP_TIMINT1_MASK; timint2 = s->timeritop & R_TIMERITOP_TIMINT2_MASK; } else { timint1 = cmsdk_dualtimermod_intstatus(&s->timermod[0]); timint2 = cmsdk_dualtimermod_intstatus(&s->timermod[1]); } timintc = timint1 || timint2; qemu_set_irq(s->timermod[0].timerint, timint1); qemu_set_irq(s->timermod[1].timerint, timint2); qemu_set_irq(s->timerintc, timintc); } static int cmsdk_dualtimermod_divisor(CMSDKAPBDualTimerModule *m) { /* Return the divisor set by the current CONTROL.PRESCALE value */ switch (FIELD_EX32(m->control, CONTROL, PRESCALE)) { case 0: return 1; case 1: return 16; case 2: case 3: /* UNDEFINED, we treat like 2 (and complained when it was set) */ return 256; default: g_assert_not_reached(); } } static void cmsdk_dualtimermod_write_control(CMSDKAPBDualTimerModule *m, uint32_t newctrl) { /* Handle a write to the CONTROL register */ uint32_t changed; ptimer_transaction_begin(m->timer); newctrl &= R_CONTROL_VALID_MASK; changed = m->control ^ newctrl; if (changed & ~newctrl & R_CONTROL_ENABLE_MASK) { /* ENABLE cleared, stop timer before any further changes */ ptimer_stop(m->timer); } if (changed & R_CONTROL_PRESCALE_MASK) { int divisor; switch (FIELD_EX32(newctrl, CONTROL, PRESCALE)) { case 0: divisor = 1; break; case 1: divisor = 16; break; case 2: divisor = 256; break; case 3: /* UNDEFINED; complain, and arbitrarily treat like 2 */ qemu_log_mask(LOG_GUEST_ERROR, "CMSDK APB dual-timer: CONTROL.PRESCALE==0b11" " is undefined behaviour\n"); divisor = 256; break; default: g_assert_not_reached(); } ptimer_set_period_from_clock(m->timer, m->parent->timclk, divisor); } if (changed & R_CONTROL_MODE_MASK) { uint32_t load; if (newctrl & R_CONTROL_MODE_MASK) { /* Periodic: the limit is the LOAD register value */ load = m->load; } else { /* Free-running: counter wraps around */ load = ptimer_get_limit(m->timer); if (!(m->control & R_CONTROL_SIZE_MASK)) { load = deposit32(m->load, 0, 16, load); } m->load = load; load = 0xffffffff; } if (!(m->control & R_CONTROL_SIZE_MASK)) { load &= 0xffff; } ptimer_set_limit(m->timer, load, 0); } if (changed & R_CONTROL_SIZE_MASK) { /* Timer switched between 16 and 32 bit count */ uint32_t value, load; value = ptimer_get_count(m->timer); load = ptimer_get_limit(m->timer); if (newctrl & R_CONTROL_SIZE_MASK) { /* 16 -> 32, top half of VALUE is in struct field */ value = deposit32(m->value, 0, 16, value); } else { /* 32 -> 16: save top half to struct field and truncate */ m->value = value; value &= 0xffff; } if (newctrl & R_CONTROL_MODE_MASK) { /* Periodic, timer limit has LOAD value */ if (newctrl & R_CONTROL_SIZE_MASK) { load = deposit32(m->load, 0, 16, load); } else { m->load = load; load &= 0xffff; } } else { /* Free-running, timer limit is set to give wraparound */ if (newctrl & R_CONTROL_SIZE_MASK) { load = 0xffffffff; } else { load = 0xffff; } } ptimer_set_count(m->timer, value); ptimer_set_limit(m->timer, load, 0); } if (newctrl & R_CONTROL_ENABLE_MASK) { /* * ENABLE is set; start the timer after all other changes. * We start it even if the ENABLE bit didn't actually change, * in case the timer was an expired one-shot timer that has * now been changed into a free-running or periodic timer. */ ptimer_run(m->timer, !!(newctrl & R_CONTROL_ONESHOT_MASK)); } m->control = newctrl; ptimer_transaction_commit(m->timer); } static uint64_t cmsdk_apb_dualtimer_read(void *opaque, hwaddr offset, unsigned size) { CMSDKAPBDualTimer *s = CMSDK_APB_DUALTIMER(opaque); uint64_t r; if (offset >= A_TIMERITCR) { switch (offset) { case A_TIMERITCR: r = s->timeritcr; break; case A_PID4 ... A_CID3: r = timer_id[(offset - A_PID4) / 4]; break; default: bad_offset: qemu_log_mask(LOG_GUEST_ERROR, "CMSDK APB dual-timer read: bad offset %x\n", (int) offset); r = 0; break; } } else { int timer = offset >> 5; CMSDKAPBDualTimerModule *m; if (timer >= ARRAY_SIZE(s->timermod)) { goto bad_offset; } m = &s->timermod[timer]; switch (offset & 0x1F) { case A_TIMER1LOAD: case A_TIMER1BGLOAD: if (m->control & R_CONTROL_MODE_MASK) { /* * Periodic: the ptimer limit is the LOAD register value, (or * just the low 16 bits of it if the timer is in 16-bit mode) */ r = ptimer_get_limit(m->timer); if (!(m->control & R_CONTROL_SIZE_MASK)) { r = deposit32(m->load, 0, 16, r); } } else { /* Free-running: LOAD register value is just in m->load */ r = m->load; } break; case A_TIMER1VALUE: r = ptimer_get_count(m->timer); if (!(m->control & R_CONTROL_SIZE_MASK)) { r = deposit32(m->value, 0, 16, r); } break; case A_TIMER1CONTROL: r = m->control; break; case A_TIMER1RIS: r = m->intstatus; break; case A_TIMER1MIS: r = cmsdk_dualtimermod_intstatus(m); break; default: goto bad_offset; } } trace_cmsdk_apb_dualtimer_read(offset, r, size); return r; } static void cmsdk_apb_dualtimer_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { CMSDKAPBDualTimer *s = CMSDK_APB_DUALTIMER(opaque); trace_cmsdk_apb_dualtimer_write(offset, value, size); if (offset >= A_TIMERITCR) { switch (offset) { case A_TIMERITCR: s->timeritcr = value & R_TIMERITCR_VALID_MASK; cmsdk_apb_dualtimer_update(s); break; case A_TIMERITOP: s->timeritop = value & R_TIMERITOP_VALID_MASK; cmsdk_apb_dualtimer_update(s); break; default: bad_offset: qemu_log_mask(LOG_GUEST_ERROR, "CMSDK APB dual-timer write: bad offset %x\n", (int) offset); break; } } else { int timer = offset >> 5; CMSDKAPBDualTimerModule *m; if (timer >= ARRAY_SIZE(s->timermod)) { goto bad_offset; } m = &s->timermod[timer]; switch (offset & 0x1F) { case A_TIMER1LOAD: /* Set the limit, and immediately reload the count from it */ m->load = value; m->value = value; if (!(m->control & R_CONTROL_SIZE_MASK)) { value &= 0xffff; } ptimer_transaction_begin(m->timer); if (!(m->control & R_CONTROL_MODE_MASK)) { /* * In free-running mode this won't set the limit but will * still change the current count value. */ ptimer_set_count(m->timer, value); } else { if (!value) { ptimer_stop(m->timer); } ptimer_set_limit(m->timer, value, 1); if (value && (m->control & R_CONTROL_ENABLE_MASK)) { /* Force possibly-expired oneshot timer to restart */ ptimer_run(m->timer, 1); } } ptimer_transaction_commit(m->timer); break; case A_TIMER1BGLOAD: /* Set the limit, but not the current count */ m->load = value; if (!(m->control & R_CONTROL_MODE_MASK)) { /* In free-running mode there is no limit */ break; } if (!(m->control & R_CONTROL_SIZE_MASK)) { value &= 0xffff; } ptimer_transaction_begin(m->timer); ptimer_set_limit(m->timer, value, 0); ptimer_transaction_commit(m->timer); break; case A_TIMER1CONTROL: cmsdk_dualtimermod_write_control(m, value); cmsdk_apb_dualtimer_update(s); break; case A_TIMER1INTCLR: m->intstatus = 0; cmsdk_apb_dualtimer_update(s); break; default: goto bad_offset; } } } static const MemoryRegionOps cmsdk_apb_dualtimer_ops = { .read = cmsdk_apb_dualtimer_read, .write = cmsdk_apb_dualtimer_write, .endianness = DEVICE_LITTLE_ENDIAN, /* byte/halfword accesses are just zero-padded on reads and writes */ .impl.min_access_size = 4, .impl.max_access_size = 4, .valid.min_access_size = 1, .valid.max_access_size = 4, }; static void cmsdk_dualtimermod_tick(void *opaque) { CMSDKAPBDualTimerModule *m = opaque; m->intstatus = 1; cmsdk_apb_dualtimer_update(m->parent); } static void cmsdk_dualtimermod_reset(CMSDKAPBDualTimerModule *m) { m->control = R_CONTROL_INTEN_MASK; m->intstatus = 0; m->load = 0; m->value = 0xffffffff; ptimer_transaction_begin(m->timer); ptimer_stop(m->timer); /* * We start in free-running mode, with VALUE at 0xffffffff, and * in 16-bit counter mode. This means that the ptimer count and * limit must both be set to 0xffff, so we wrap at 16 bits. */ ptimer_set_limit(m->timer, 0xffff, 1); ptimer_set_period_from_clock(m->timer, m->parent->timclk, cmsdk_dualtimermod_divisor(m)); ptimer_transaction_commit(m->timer); } static void cmsdk_apb_dualtimer_reset(DeviceState *dev) { CMSDKAPBDualTimer *s = CMSDK_APB_DUALTIMER(dev); int i; trace_cmsdk_apb_dualtimer_reset(); for (i = 0; i < ARRAY_SIZE(s->timermod); i++) { cmsdk_dualtimermod_reset(&s->timermod[i]); } s->timeritcr = 0; s->timeritop = 0; } static void cmsdk_apb_dualtimer_clk_update(void *opaque, ClockEvent event) { CMSDKAPBDualTimer *s = CMSDK_APB_DUALTIMER(opaque); int i; for (i = 0; i < ARRAY_SIZE(s->timermod); i++) { CMSDKAPBDualTimerModule *m = &s->timermod[i]; ptimer_transaction_begin(m->timer); ptimer_set_period_from_clock(m->timer, m->parent->timclk, cmsdk_dualtimermod_divisor(m)); ptimer_transaction_commit(m->timer); } } static void cmsdk_apb_dualtimer_init(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); CMSDKAPBDualTimer *s = CMSDK_APB_DUALTIMER(obj); int i; memory_region_init_io(&s->iomem, obj, &cmsdk_apb_dualtimer_ops, s, "cmsdk-apb-dualtimer", 0x1000); sysbus_init_mmio(sbd, &s->iomem); sysbus_init_irq(sbd, &s->timerintc); for (i = 0; i < ARRAY_SIZE(s->timermod); i++) { sysbus_init_irq(sbd, &s->timermod[i].timerint); } s->timclk = qdev_init_clock_in(DEVICE(s), "TIMCLK", cmsdk_apb_dualtimer_clk_update, s, ClockUpdate); } static void cmsdk_apb_dualtimer_realize(DeviceState *dev, Error **errp) { CMSDKAPBDualTimer *s = CMSDK_APB_DUALTIMER(dev); int i; if (!clock_has_source(s->timclk)) { error_setg(errp, "CMSDK APB dualtimer: TIMCLK clock must be connected"); return; } for (i = 0; i < ARRAY_SIZE(s->timermod); i++) { CMSDKAPBDualTimerModule *m = &s->timermod[i]; m->parent = s; m->timer = ptimer_init(cmsdk_dualtimermod_tick, m, PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD | PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT | PTIMER_POLICY_NO_IMMEDIATE_RELOAD | PTIMER_POLICY_NO_COUNTER_ROUND_DOWN); } } static const VMStateDescription cmsdk_dualtimermod_vmstate = { .name = "cmsdk-apb-dualtimer-module", .version_id = 1, .minimum_version_id = 1, .fields = (const VMStateField[]) { VMSTATE_PTIMER(timer, CMSDKAPBDualTimerModule), VMSTATE_UINT32(load, CMSDKAPBDualTimerModule), VMSTATE_UINT32(value, CMSDKAPBDualTimerModule), VMSTATE_UINT32(control, CMSDKAPBDualTimerModule), VMSTATE_UINT32(intstatus, CMSDKAPBDualTimerModule), VMSTATE_END_OF_LIST() } }; static const VMStateDescription cmsdk_apb_dualtimer_vmstate = { .name = "cmsdk-apb-dualtimer", .version_id = 2, .minimum_version_id = 2, .fields = (const VMStateField[]) { VMSTATE_CLOCK(timclk, CMSDKAPBDualTimer), VMSTATE_STRUCT_ARRAY(timermod, CMSDKAPBDualTimer, CMSDK_APB_DUALTIMER_NUM_MODULES, 1, cmsdk_dualtimermod_vmstate, CMSDKAPBDualTimerModule), VMSTATE_UINT32(timeritcr, CMSDKAPBDualTimer), VMSTATE_UINT32(timeritop, CMSDKAPBDualTimer), VMSTATE_END_OF_LIST() } }; static void cmsdk_apb_dualtimer_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = cmsdk_apb_dualtimer_realize; dc->vmsd = &cmsdk_apb_dualtimer_vmstate; device_class_set_legacy_reset(dc, cmsdk_apb_dualtimer_reset); } static const TypeInfo cmsdk_apb_dualtimer_info = { .name = TYPE_CMSDK_APB_DUALTIMER, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(CMSDKAPBDualTimer), .instance_init = cmsdk_apb_dualtimer_init, .class_init = cmsdk_apb_dualtimer_class_init, }; static void cmsdk_apb_dualtimer_register_types(void) { type_register_static(&cmsdk_apb_dualtimer_info); } type_init(cmsdk_apb_dualtimer_register_types);