/* * ARM PrimeCell Timer modules. * * Copyright (c) 2005-2006 CodeSourcery. * Written by Paul Brook * * This code is licensed under the GPL. */ #include "qemu/osdep.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "qemu/timer.h" #include "hw/irq.h" #include "hw/ptimer.h" #include "hw/qdev-properties.h" #include "qemu/main-loop.h" #include "qemu/module.h" #include "qemu/log.h" /* Common timer implementation. */ #define TIMER_CTRL_ONESHOT (1 << 0) #define TIMER_CTRL_32BIT (1 << 1) #define TIMER_CTRL_DIV1 (0 << 2) #define TIMER_CTRL_DIV16 (1 << 2) #define TIMER_CTRL_DIV256 (2 << 2) #define TIMER_CTRL_IE (1 << 5) #define TIMER_CTRL_PERIODIC (1 << 6) #define TIMER_CTRL_ENABLE (1 << 7) typedef struct { ptimer_state *timer; uint32_t control; uint32_t limit; int freq; int int_level; qemu_irq irq; } arm_timer_state; /* Check all active timers, and schedule the next timer interrupt. */ static void arm_timer_update(arm_timer_state *s) { /* Update interrupts. */ if (s->int_level && (s->control & TIMER_CTRL_IE)) { qemu_irq_raise(s->irq); } else { qemu_irq_lower(s->irq); } } static uint32_t arm_timer_read(void *opaque, hwaddr offset) { arm_timer_state *s = (arm_timer_state *)opaque; switch (offset >> 2) { case 0: /* TimerLoad */ case 6: /* TimerBGLoad */ return s->limit; case 1: /* TimerValue */ return ptimer_get_count(s->timer); case 2: /* TimerControl */ return s->control; case 4: /* TimerRIS */ return s->int_level; case 5: /* TimerMIS */ if ((s->control & TIMER_CTRL_IE) == 0) return 0; return s->int_level; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset %x\n", __func__, (int)offset); return 0; } } /* Reset the timer limit after settings have changed. */ static void arm_timer_recalibrate(arm_timer_state *s, int reload) { uint32_t limit; if ((s->control & (TIMER_CTRL_PERIODIC | TIMER_CTRL_ONESHOT)) == 0) { /* Free running. */ if (s->control & TIMER_CTRL_32BIT) limit = 0xffffffff; else limit = 0xffff; } else { /* Periodic. */ limit = s->limit; } ptimer_set_limit(s->timer, limit, reload); } static void arm_timer_write(void *opaque, hwaddr offset, uint32_t value) { arm_timer_state *s = (arm_timer_state *)opaque; int freq; switch (offset >> 2) { case 0: /* TimerLoad */ s->limit = value; arm_timer_recalibrate(s, 1); break; case 1: /* TimerValue */ /* ??? Linux seems to want to write to this readonly register. Ignore it. */ break; case 2: /* TimerControl */ if (s->control & TIMER_CTRL_ENABLE) { /* Pause the timer if it is running. This may cause some inaccuracy dure to rounding, but avoids a whole lot of other messyness. */ ptimer_stop(s->timer); } s->control = value; freq = s->freq; /* ??? Need to recalculate expiry time after changing divisor. */ switch ((value >> 2) & 3) { case 1: freq >>= 4; break; case 2: freq >>= 8; break; } arm_timer_recalibrate(s, s->control & TIMER_CTRL_ENABLE); ptimer_set_freq(s->timer, freq); if (s->control & TIMER_CTRL_ENABLE) { /* Restart the timer if still enabled. */ ptimer_run(s->timer, (s->control & TIMER_CTRL_ONESHOT) != 0); } break; case 3: /* TimerIntClr */ s->int_level = 0; break; case 6: /* TimerBGLoad */ s->limit = value; arm_timer_recalibrate(s, 0); break; default: qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset %x\n", __func__, (int)offset); } arm_timer_update(s); } static void arm_timer_tick(void *opaque) { arm_timer_state *s = (arm_timer_state *)opaque; s->int_level = 1; arm_timer_update(s); } static const VMStateDescription vmstate_arm_timer = { .name = "arm_timer", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(control, arm_timer_state), VMSTATE_UINT32(limit, arm_timer_state), VMSTATE_INT32(int_level, arm_timer_state), VMSTATE_PTIMER(timer, arm_timer_state), VMSTATE_END_OF_LIST() } }; static arm_timer_state *arm_timer_init(uint32_t freq) { arm_timer_state *s; QEMUBH *bh; s = (arm_timer_state *)g_malloc0(sizeof(arm_timer_state)); s->freq = freq; s->control = TIMER_CTRL_IE; bh = qemu_bh_new(arm_timer_tick, s); s->timer = ptimer_init_with_bh(bh, PTIMER_POLICY_DEFAULT); vmstate_register(NULL, -1, &vmstate_arm_timer, s); return s; } /* ARM PrimeCell SP804 dual timer module. * Docs at * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0271d/index.html */ #define TYPE_SP804 "sp804" #define SP804(obj) OBJECT_CHECK(SP804State, (obj), TYPE_SP804) typedef struct SP804State { SysBusDevice parent_obj; MemoryRegion iomem; arm_timer_state *timer[2]; uint32_t freq0, freq1; int level[2]; qemu_irq irq; } SP804State; static const uint8_t sp804_ids[] = { /* Timer ID */ 0x04, 0x18, 0x14, 0, /* PrimeCell ID */ 0xd, 0xf0, 0x05, 0xb1 }; /* Merge the IRQs from the two component devices. */ static void sp804_set_irq(void *opaque, int irq, int level) { SP804State *s = (SP804State *)opaque; s->level[irq] = level; qemu_set_irq(s->irq, s->level[0] || s->level[1]); } static uint64_t sp804_read(void *opaque, hwaddr offset, unsigned size) { SP804State *s = (SP804State *)opaque; if (offset < 0x20) { return arm_timer_read(s->timer[0], offset); } if (offset < 0x40) { return arm_timer_read(s->timer[1], offset - 0x20); } /* TimerPeriphID */ if (offset >= 0xfe0 && offset <= 0xffc) { return sp804_ids[(offset - 0xfe0) >> 2]; } switch (offset) { /* Integration Test control registers, which we won't support */ case 0xf00: /* TimerITCR */ case 0xf04: /* TimerITOP (strictly write only but..) */ qemu_log_mask(LOG_UNIMP, "%s: integration test registers unimplemented\n", __func__); return 0; } qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset %x\n", __func__, (int)offset); return 0; } static void sp804_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { SP804State *s = (SP804State *)opaque; if (offset < 0x20) { arm_timer_write(s->timer[0], offset, value); return; } if (offset < 0x40) { arm_timer_write(s->timer[1], offset - 0x20, value); return; } /* Technically we could be writing to the Test Registers, but not likely */ qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset %x\n", __func__, (int)offset); } static const MemoryRegionOps sp804_ops = { .read = sp804_read, .write = sp804_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static const VMStateDescription vmstate_sp804 = { .name = "sp804", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_INT32_ARRAY(level, SP804State, 2), VMSTATE_END_OF_LIST() } }; static void sp804_init(Object *obj) { SP804State *s = SP804(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(obj); sysbus_init_irq(sbd, &s->irq); memory_region_init_io(&s->iomem, obj, &sp804_ops, s, "sp804", 0x1000); sysbus_init_mmio(sbd, &s->iomem); } static void sp804_realize(DeviceState *dev, Error **errp) { SP804State *s = SP804(dev); s->timer[0] = arm_timer_init(s->freq0); s->timer[1] = arm_timer_init(s->freq1); s->timer[0]->irq = qemu_allocate_irq(sp804_set_irq, s, 0); s->timer[1]->irq = qemu_allocate_irq(sp804_set_irq, s, 1); } /* Integrator/CP timer module. */ #define TYPE_INTEGRATOR_PIT "integrator_pit" #define INTEGRATOR_PIT(obj) \ OBJECT_CHECK(icp_pit_state, (obj), TYPE_INTEGRATOR_PIT) typedef struct { SysBusDevice parent_obj; MemoryRegion iomem; arm_timer_state *timer[3]; } icp_pit_state; static uint64_t icp_pit_read(void *opaque, hwaddr offset, unsigned size) { icp_pit_state *s = (icp_pit_state *)opaque; int n; /* ??? Don't know the PrimeCell ID for this device. */ n = offset >> 8; if (n > 2) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad timer %d\n", __func__, n); return 0; } return arm_timer_read(s->timer[n], offset & 0xff); } static void icp_pit_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { icp_pit_state *s = (icp_pit_state *)opaque; int n; n = offset >> 8; if (n > 2) { qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad timer %d\n", __func__, n); return; } arm_timer_write(s->timer[n], offset & 0xff, value); } static const MemoryRegionOps icp_pit_ops = { .read = icp_pit_read, .write = icp_pit_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static void icp_pit_init(Object *obj) { icp_pit_state *s = INTEGRATOR_PIT(obj); SysBusDevice *dev = SYS_BUS_DEVICE(obj); /* Timer 0 runs at the system clock speed (40MHz). */ s->timer[0] = arm_timer_init(40000000); /* The other two timers run at 1MHz. */ s->timer[1] = arm_timer_init(1000000); s->timer[2] = arm_timer_init(1000000); sysbus_init_irq(dev, &s->timer[0]->irq); sysbus_init_irq(dev, &s->timer[1]->irq); sysbus_init_irq(dev, &s->timer[2]->irq); memory_region_init_io(&s->iomem, obj, &icp_pit_ops, s, "icp_pit", 0x1000); sysbus_init_mmio(dev, &s->iomem); /* This device has no state to save/restore. The component timers will save themselves. */ } static const TypeInfo icp_pit_info = { .name = TYPE_INTEGRATOR_PIT, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(icp_pit_state), .instance_init = icp_pit_init, }; static Property sp804_properties[] = { DEFINE_PROP_UINT32("freq0", SP804State, freq0, 1000000), DEFINE_PROP_UINT32("freq1", SP804State, freq1, 1000000), DEFINE_PROP_END_OF_LIST(), }; static void sp804_class_init(ObjectClass *klass, void *data) { DeviceClass *k = DEVICE_CLASS(klass); k->realize = sp804_realize; k->props = sp804_properties; k->vmsd = &vmstate_sp804; } static const TypeInfo sp804_info = { .name = TYPE_SP804, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(SP804State), .instance_init = sp804_init, .class_init = sp804_class_init, }; static void arm_timer_register_types(void) { type_register_static(&icp_pit_info); type_register_static(&sp804_info); } type_init(arm_timer_register_types)