#include <assert.h> #include "hw.h" #include "sh.h" #include "sysemu.h" #define CE1 0x0100 #define CE2 0x0200 #define RE 0x0400 #define WE 0x0800 #define ALE 0x1000 #define CLE 0x2000 #define RDY1 0x4000 #define RDY2 0x8000 #define RDY(n) ((n) == 0 ? RDY1 : RDY2) typedef enum { WAIT, READ1, READ2, READ3 } state_t; typedef struct { uint8_t *flash_contents; state_t state; uint32_t address; uint8_t address_cycle; } tc58128_dev; static tc58128_dev tc58128_devs[2]; #define FLASH_SIZE (16*1024*1024) static void init_dev(tc58128_dev * dev, const char *filename) { int ret, blocks; dev->state = WAIT; dev->flash_contents = qemu_mallocz(FLASH_SIZE); memset(dev->flash_contents, 0xff, FLASH_SIZE); if (!dev->flash_contents) { fprintf(stderr, "could not alloc memory for flash\n"); exit(1); } if (filename) { /* Load flash image skipping the first block */ ret = load_image(filename, dev->flash_contents + 528 * 32); if (ret < 0) { fprintf(stderr, "ret=%d\n", ret); fprintf(stderr, "qemu: could not load flash image %s\n", filename); exit(1); } else { /* Build first block with number of blocks */ blocks = (ret + 528 * 32 - 1) / (528 * 32); dev->flash_contents[0] = blocks & 0xff; dev->flash_contents[1] = (blocks >> 8) & 0xff; dev->flash_contents[2] = (blocks >> 16) & 0xff; dev->flash_contents[3] = (blocks >> 24) & 0xff; fprintf(stderr, "loaded %d bytes for %s into flash\n", ret, filename); } } } static void handle_command(tc58128_dev * dev, uint8_t command) { switch (command) { case 0xff: fprintf(stderr, "reset flash device\n"); dev->state = WAIT; break; case 0x00: fprintf(stderr, "read mode 1\n"); dev->state = READ1; dev->address_cycle = 0; break; case 0x01: fprintf(stderr, "read mode 2\n"); dev->state = READ2; dev->address_cycle = 0; break; case 0x50: fprintf(stderr, "read mode 3\n"); dev->state = READ3; dev->address_cycle = 0; break; default: fprintf(stderr, "unknown flash command 0x%02x\n", command); assert(0); } } static void handle_address(tc58128_dev * dev, uint8_t data) { switch (dev->state) { case READ1: case READ2: case READ3: switch (dev->address_cycle) { case 0: dev->address = data; if (dev->state == READ2) dev->address |= 0x100; else if (dev->state == READ3) dev->address |= 0x200; break; case 1: dev->address += data * 528 * 0x100; break; case 2: dev->address += data * 528; fprintf(stderr, "address pointer in flash: 0x%08x\n", dev->address); break; default: /* Invalid data */ assert(0); } dev->address_cycle++; break; default: assert(0); } } static uint8_t handle_read(tc58128_dev * dev) { #if 0 if (dev->address % 0x100000 == 0) fprintf(stderr, "reading flash at address 0x%08x\n", dev->address); #endif return dev->flash_contents[dev->address++]; } /* We never mark the device as busy, so interrupts cannot be triggered XXXXX */ static int tc58128_cb(uint16_t porta, uint16_t portb, uint16_t * periph_pdtra, uint16_t * periph_portadir, uint16_t * periph_pdtrb, uint16_t * periph_portbdir) { int dev; if ((porta & CE1) == 0) dev = 0; else if ((porta & CE2) == 0) dev = 1; else return 0; /* No device selected */ if ((porta & RE) && (porta & WE)) { /* Nothing to do, assert ready and return to input state */ *periph_portadir &= 0xff00; *periph_portadir |= RDY(dev); *periph_pdtra |= RDY(dev); return 1; } if (porta & CLE) { /* Command */ assert((porta & WE) == 0); handle_command(&tc58128_devs[dev], porta & 0x00ff); } else if (porta & ALE) { assert((porta & WE) == 0); handle_address(&tc58128_devs[dev], porta & 0x00ff); } else if ((porta & RE) == 0) { *periph_portadir |= 0x00ff; *periph_pdtra &= 0xff00; *periph_pdtra |= handle_read(&tc58128_devs[dev]); } else { assert(0); } return 1; } static sh7750_io_device tc58128 = { RE | WE, /* Port A triggers */ 0, /* Port B triggers */ tc58128_cb /* Callback */ }; int tc58128_init(struct SH7750State *s, const char *zone1, const char *zone2) { init_dev(&tc58128_devs[0], zone1); init_dev(&tc58128_devs[1], zone2); return sh7750_register_io_device(s, &tc58128); }