/* * QEMU Sun4u/Sun4v System Emulator * * Copyright (c) 2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "pci.h" #include "apb_pci.h" #include "pc.h" #include "nvram.h" #include "fdc.h" #include "net.h" #include "qemu-timer.h" #include "sysemu.h" #include "boards.h" #include "firmware_abi.h" #include "fw_cfg.h" #include "sysbus.h" #include "ide.h" #include "loader.h" #include "elf.h" #include "blockdev.h" #include "exec-memory.h" //#define DEBUG_IRQ //#define DEBUG_EBUS //#define DEBUG_TIMER #ifdef DEBUG_IRQ #define CPUIRQ_DPRINTF(fmt, ...) \ do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) #else #define CPUIRQ_DPRINTF(fmt, ...) #endif #ifdef DEBUG_EBUS #define EBUS_DPRINTF(fmt, ...) \ do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0) #else #define EBUS_DPRINTF(fmt, ...) #endif #ifdef DEBUG_TIMER #define TIMER_DPRINTF(fmt, ...) \ do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0) #else #define TIMER_DPRINTF(fmt, ...) #endif #define KERNEL_LOAD_ADDR 0x00404000 #define CMDLINE_ADDR 0x003ff000 #define INITRD_LOAD_ADDR 0x00300000 #define PROM_SIZE_MAX (4 * 1024 * 1024) #define PROM_VADDR 0x000ffd00000ULL #define APB_SPECIAL_BASE 0x1fe00000000ULL #define APB_MEM_BASE 0x1ff00000000ULL #define APB_PCI_IO_BASE (APB_SPECIAL_BASE + 0x02000000ULL) #define PROM_FILENAME "openbios-sparc64" #define NVRAM_SIZE 0x2000 #define MAX_IDE_BUS 2 #define BIOS_CFG_IOPORT 0x510 #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00) #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01) #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02) #define MAX_PILS 16 #define TICK_MAX 0x7fffffffffffffffULL struct hwdef { const char * const default_cpu_model; uint16_t machine_id; uint64_t prom_addr; uint64_t console_serial_base; }; typedef struct EbusState { PCIDevice pci_dev; MemoryRegion bar0; MemoryRegion bar1; } EbusState; int DMA_get_channel_mode (int nchan) { return 0; } int DMA_read_memory (int nchan, void *buf, int pos, int size) { return 0; } int DMA_write_memory (int nchan, void *buf, int pos, int size) { return 0; } void DMA_hold_DREQ (int nchan) {} void DMA_release_DREQ (int nchan) {} void DMA_schedule(int nchan) {} void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit) { } void DMA_register_channel (int nchan, DMA_transfer_handler transfer_handler, void *opaque) { } static int fw_cfg_boot_set(void *opaque, const char *boot_device) { fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]); return 0; } static int sun4u_NVRAM_set_params(M48t59State *nvram, uint16_t NVRAM_size, const char *arch, ram_addr_t RAM_size, const char *boot_devices, uint32_t kernel_image, uint32_t kernel_size, const char *cmdline, uint32_t initrd_image, uint32_t initrd_size, uint32_t NVRAM_image, int width, int height, int depth, const uint8_t *macaddr) { unsigned int i; uint32_t start, end; uint8_t image[0x1ff0]; struct OpenBIOS_nvpart_v1 *part_header; memset(image, '\0', sizeof(image)); start = 0; // OpenBIOS nvram variables // Variable partition part_header = (struct OpenBIOS_nvpart_v1 *)&image[start]; part_header->signature = OPENBIOS_PART_SYSTEM; pstrcpy(part_header->name, sizeof(part_header->name), "system"); end = start + sizeof(struct OpenBIOS_nvpart_v1); for (i = 0; i < nb_prom_envs; i++) end = OpenBIOS_set_var(image, end, prom_envs[i]); // End marker image[end++] = '\0'; end = start + ((end - start + 15) & ~15); OpenBIOS_finish_partition(part_header, end - start); // free partition start = end; part_header = (struct OpenBIOS_nvpart_v1 *)&image[start]; part_header->signature = OPENBIOS_PART_FREE; pstrcpy(part_header->name, sizeof(part_header->name), "free"); end = 0x1fd0; OpenBIOS_finish_partition(part_header, end - start); Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80); for (i = 0; i < sizeof(image); i++) m48t59_write(nvram, i, image[i]); return 0; } static unsigned long sun4u_load_kernel(const char *kernel_filename, const char *initrd_filename, ram_addr_t RAM_size, long *initrd_size) { int linux_boot; unsigned int i; long kernel_size; uint8_t *ptr; linux_boot = (kernel_filename != NULL); kernel_size = 0; if (linux_boot) { int bswap_needed; #ifdef BSWAP_NEEDED bswap_needed = 1; #else bswap_needed = 0; #endif kernel_size = load_elf(kernel_filename, NULL, NULL, NULL, NULL, NULL, 1, ELF_MACHINE, 0); if (kernel_size < 0) kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR, RAM_size - KERNEL_LOAD_ADDR, bswap_needed, TARGET_PAGE_SIZE); if (kernel_size < 0) kernel_size = load_image_targphys(kernel_filename, KERNEL_LOAD_ADDR, RAM_size - KERNEL_LOAD_ADDR); if (kernel_size < 0) { fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } /* load initrd */ *initrd_size = 0; if (initrd_filename) { *initrd_size = load_image_targphys(initrd_filename, INITRD_LOAD_ADDR, RAM_size - INITRD_LOAD_ADDR); if (*initrd_size < 0) { fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", initrd_filename); exit(1); } } if (*initrd_size > 0) { for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) { ptr = rom_ptr(KERNEL_LOAD_ADDR + i); if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */ stl_p(ptr + 24, INITRD_LOAD_ADDR + KERNEL_LOAD_ADDR - 0x4000); stl_p(ptr + 28, *initrd_size); break; } } } } return kernel_size; } void pic_info(Monitor *mon) { } void irq_info(Monitor *mon) { } void cpu_check_irqs(CPUState *env) { uint32_t pil = env->pil_in | (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER)); /* check if TM or SM in SOFTINT are set setting these also causes interrupt 14 */ if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) { pil |= 1 << 14; } /* The bit corresponding to psrpil is (1<< psrpil), the next bit is (2 << psrpil). */ if (pil < (2 << env->psrpil)){ if (env->interrupt_request & CPU_INTERRUPT_HARD) { CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n", env->interrupt_index); env->interrupt_index = 0; cpu_reset_interrupt(env, CPU_INTERRUPT_HARD); } return; } if (cpu_interrupts_enabled(env)) { unsigned int i; for (i = 15; i > env->psrpil; i--) { if (pil & (1 << i)) { int old_interrupt = env->interrupt_index; int new_interrupt = TT_EXTINT | i; if (env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt) { CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d " "current %x >= pending %x\n", env->tl, cpu_tsptr(env)->tt, new_interrupt); } else if (old_interrupt != new_interrupt) { env->interrupt_index = new_interrupt; CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i, old_interrupt, new_interrupt); cpu_interrupt(env, CPU_INTERRUPT_HARD); } break; } } } else if (env->interrupt_request & CPU_INTERRUPT_HARD) { CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x " "current interrupt %x\n", pil, env->pil_in, env->softint, env->interrupt_index); env->interrupt_index = 0; cpu_reset_interrupt(env, CPU_INTERRUPT_HARD); } } static void cpu_kick_irq(CPUState *env) { env->halted = 0; cpu_check_irqs(env); qemu_cpu_kick(env); } static void cpu_set_irq(void *opaque, int irq, int level) { CPUState *env = opaque; if (level) { CPUIRQ_DPRINTF("Raise CPU IRQ %d\n", irq); env->pil_in |= 1 << irq; cpu_kick_irq(env); } else { CPUIRQ_DPRINTF("Lower CPU IRQ %d\n", irq); env->pil_in &= ~(1 << irq); cpu_check_irqs(env); } } typedef struct ResetData { CPUState *env; uint64_t prom_addr; } ResetData; void cpu_put_timer(QEMUFile *f, CPUTimer *s) { qemu_put_be32s(f, &s->frequency); qemu_put_be32s(f, &s->disabled); qemu_put_be64s(f, &s->disabled_mask); qemu_put_sbe64s(f, &s->clock_offset); qemu_put_timer(f, s->qtimer); } void cpu_get_timer(QEMUFile *f, CPUTimer *s) { qemu_get_be32s(f, &s->frequency); qemu_get_be32s(f, &s->disabled); qemu_get_be64s(f, &s->disabled_mask); qemu_get_sbe64s(f, &s->clock_offset); qemu_get_timer(f, s->qtimer); } static CPUTimer* cpu_timer_create(const char* name, CPUState *env, QEMUBHFunc *cb, uint32_t frequency, uint64_t disabled_mask) { CPUTimer *timer = g_malloc0(sizeof (CPUTimer)); timer->name = name; timer->frequency = frequency; timer->disabled_mask = disabled_mask; timer->disabled = 1; timer->clock_offset = qemu_get_clock_ns(vm_clock); timer->qtimer = qemu_new_timer_ns(vm_clock, cb, env); return timer; } static void cpu_timer_reset(CPUTimer *timer) { timer->disabled = 1; timer->clock_offset = qemu_get_clock_ns(vm_clock); qemu_del_timer(timer->qtimer); } static void main_cpu_reset(void *opaque) { ResetData *s = (ResetData *)opaque; CPUState *env = s->env; static unsigned int nr_resets; cpu_reset(env); cpu_timer_reset(env->tick); cpu_timer_reset(env->stick); cpu_timer_reset(env->hstick); env->gregs[1] = 0; // Memory start env->gregs[2] = ram_size; // Memory size env->gregs[3] = 0; // Machine description XXX if (nr_resets++ == 0) { /* Power on reset */ env->pc = s->prom_addr + 0x20ULL; } else { env->pc = s->prom_addr + 0x40ULL; } env->npc = env->pc + 4; } static void tick_irq(void *opaque) { CPUState *env = opaque; CPUTimer* timer = env->tick; if (timer->disabled) { CPUIRQ_DPRINTF("tick_irq: softint disabled\n"); return; } else { CPUIRQ_DPRINTF("tick: fire\n"); } env->softint |= SOFTINT_TIMER; cpu_kick_irq(env); } static void stick_irq(void *opaque) { CPUState *env = opaque; CPUTimer* timer = env->stick; if (timer->disabled) { CPUIRQ_DPRINTF("stick_irq: softint disabled\n"); return; } else { CPUIRQ_DPRINTF("stick: fire\n"); } env->softint |= SOFTINT_STIMER; cpu_kick_irq(env); } static void hstick_irq(void *opaque) { CPUState *env = opaque; CPUTimer* timer = env->hstick; if (timer->disabled) { CPUIRQ_DPRINTF("hstick_irq: softint disabled\n"); return; } else { CPUIRQ_DPRINTF("hstick: fire\n"); } env->softint |= SOFTINT_STIMER; cpu_kick_irq(env); } static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency) { return muldiv64(cpu_ticks, get_ticks_per_sec(), frequency); } static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency) { return muldiv64(timer_ticks, frequency, get_ticks_per_sec()); } void cpu_tick_set_count(CPUTimer *timer, uint64_t count) { uint64_t real_count = count & ~timer->disabled_mask; uint64_t disabled_bit = count & timer->disabled_mask; int64_t vm_clock_offset = qemu_get_clock_ns(vm_clock) - cpu_to_timer_ticks(real_count, timer->frequency); TIMER_DPRINTF("%s set_count count=0x%016lx (%s) p=%p\n", timer->name, real_count, timer->disabled?"disabled":"enabled", timer); timer->disabled = disabled_bit ? 1 : 0; timer->clock_offset = vm_clock_offset; } uint64_t cpu_tick_get_count(CPUTimer *timer) { uint64_t real_count = timer_to_cpu_ticks( qemu_get_clock_ns(vm_clock) - timer->clock_offset, timer->frequency); TIMER_DPRINTF("%s get_count count=0x%016lx (%s) p=%p\n", timer->name, real_count, timer->disabled?"disabled":"enabled", timer); if (timer->disabled) real_count |= timer->disabled_mask; return real_count; } void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit) { int64_t now = qemu_get_clock_ns(vm_clock); uint64_t real_limit = limit & ~timer->disabled_mask; timer->disabled = (limit & timer->disabled_mask) ? 1 : 0; int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) + timer->clock_offset; if (expires < now) { expires = now + 1; } TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p " "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n", timer->name, real_limit, timer->disabled?"disabled":"enabled", timer, limit, timer_to_cpu_ticks(now - timer->clock_offset, timer->frequency), timer_to_cpu_ticks(expires - now, timer->frequency)); if (!real_limit) { TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n", timer->name); qemu_del_timer(timer->qtimer); } else if (timer->disabled) { qemu_del_timer(timer->qtimer); } else { qemu_mod_timer(timer->qtimer, expires); } } static void dummy_isa_irq_handler(void *opaque, int n, int level) { } /* EBUS (Eight bit bus) bridge */ static void pci_ebus_init(PCIBus *bus, int devfn) { qemu_irq *isa_irq; pci_create_simple(bus, devfn, "ebus"); isa_irq = qemu_allocate_irqs(dummy_isa_irq_handler, NULL, 16); isa_bus_irqs(isa_irq); } static int pci_ebus_init1(PCIDevice *pci_dev) { EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev); isa_bus_new(&pci_dev->qdev, pci_address_space_io(pci_dev)); pci_dev->config[0x04] = 0x06; // command = bus master, pci mem pci_dev->config[0x05] = 0x00; pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error pci_dev->config[0x07] = 0x03; // status = medium devsel pci_dev->config[0x09] = 0x00; // programming i/f pci_dev->config[0x0D] = 0x0a; // latency_timer isa_mmio_setup(&s->bar0, 0x1000000); pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0); isa_mmio_setup(&s->bar1, 0x800000); pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar1); return 0; } static PCIDeviceInfo ebus_info = { .qdev.name = "ebus", .qdev.size = sizeof(EbusState), .init = pci_ebus_init1, .vendor_id = PCI_VENDOR_ID_SUN, .device_id = PCI_DEVICE_ID_SUN_EBUS, .revision = 0x01, .class_id = PCI_CLASS_BRIDGE_OTHER, }; static void pci_ebus_register(void) { pci_qdev_register(&ebus_info); } device_init(pci_ebus_register); static uint64_t translate_prom_address(void *opaque, uint64_t addr) { target_phys_addr_t *base_addr = (target_phys_addr_t *)opaque; return addr + *base_addr - PROM_VADDR; } /* Boot PROM (OpenBIOS) */ static void prom_init(target_phys_addr_t addr, const char *bios_name) { DeviceState *dev; SysBusDevice *s; char *filename; int ret; dev = qdev_create(NULL, "openprom"); qdev_init_nofail(dev); s = sysbus_from_qdev(dev); sysbus_mmio_map(s, 0, addr); /* load boot prom */ if (bios_name == NULL) { bios_name = PROM_FILENAME; } filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); if (filename) { ret = load_elf(filename, translate_prom_address, &addr, NULL, NULL, NULL, 1, ELF_MACHINE, 0); if (ret < 0 || ret > PROM_SIZE_MAX) { ret = load_image_targphys(filename, addr, PROM_SIZE_MAX); } g_free(filename); } else { ret = -1; } if (ret < 0 || ret > PROM_SIZE_MAX) { fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name); exit(1); } } static int prom_init1(SysBusDevice *dev) { ram_addr_t prom_offset; prom_offset = qemu_ram_alloc(NULL, "sun4u.prom", PROM_SIZE_MAX); sysbus_init_mmio(dev, PROM_SIZE_MAX, prom_offset | IO_MEM_ROM); return 0; } static SysBusDeviceInfo prom_info = { .init = prom_init1, .qdev.name = "openprom", .qdev.size = sizeof(SysBusDevice), .qdev.props = (Property[]) { {/* end of property list */} } }; static void prom_register_devices(void) { sysbus_register_withprop(&prom_info); } device_init(prom_register_devices); typedef struct RamDevice { SysBusDevice busdev; uint64_t size; } RamDevice; /* System RAM */ static int ram_init1(SysBusDevice *dev) { ram_addr_t RAM_size, ram_offset; RamDevice *d = FROM_SYSBUS(RamDevice, dev); RAM_size = d->size; ram_offset = qemu_ram_alloc(NULL, "sun4u.ram", RAM_size); sysbus_init_mmio(dev, RAM_size, ram_offset); return 0; } static void ram_init(target_phys_addr_t addr, ram_addr_t RAM_size) { DeviceState *dev; SysBusDevice *s; RamDevice *d; /* allocate RAM */ dev = qdev_create(NULL, "memory"); s = sysbus_from_qdev(dev); d = FROM_SYSBUS(RamDevice, s); d->size = RAM_size; qdev_init_nofail(dev); sysbus_mmio_map(s, 0, addr); } static SysBusDeviceInfo ram_info = { .init = ram_init1, .qdev.name = "memory", .qdev.size = sizeof(RamDevice), .qdev.props = (Property[]) { DEFINE_PROP_UINT64("size", RamDevice, size, 0), DEFINE_PROP_END_OF_LIST(), } }; static void ram_register_devices(void) { sysbus_register_withprop(&ram_info); } device_init(ram_register_devices); static CPUState *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef) { CPUState *env; ResetData *reset_info; uint32_t tick_frequency = 100*1000000; uint32_t stick_frequency = 100*1000000; uint32_t hstick_frequency = 100*1000000; if (!cpu_model) cpu_model = hwdef->default_cpu_model; env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to find Sparc CPU definition\n"); exit(1); } env->tick = cpu_timer_create("tick", env, tick_irq, tick_frequency, TICK_NPT_MASK); env->stick = cpu_timer_create("stick", env, stick_irq, stick_frequency, TICK_INT_DIS); env->hstick = cpu_timer_create("hstick", env, hstick_irq, hstick_frequency, TICK_INT_DIS); reset_info = g_malloc0(sizeof(ResetData)); reset_info->env = env; reset_info->prom_addr = hwdef->prom_addr; qemu_register_reset(main_cpu_reset, reset_info); return env; } static void sun4uv_init(ram_addr_t RAM_size, const char *boot_devices, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model, const struct hwdef *hwdef) { CPUState *env; M48t59State *nvram; unsigned int i; long initrd_size, kernel_size; PCIBus *pci_bus, *pci_bus2, *pci_bus3; qemu_irq *irq; DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; DriveInfo *fd[MAX_FD]; void *fw_cfg; /* init CPUs */ env = cpu_devinit(cpu_model, hwdef); /* set up devices */ ram_init(0, RAM_size); prom_init(hwdef->prom_addr, bios_name); irq = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS); pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, irq, &pci_bus2, &pci_bus3); pci_vga_init(pci_bus); // XXX Should be pci_bus3 pci_ebus_init(pci_bus, -1); i = 0; if (hwdef->console_serial_base) { serial_mm_init(get_system_memory(), hwdef->console_serial_base, 0, NULL, 115200, serial_hds[i], DEVICE_BIG_ENDIAN); i++; } for(; i < MAX_SERIAL_PORTS; i++) { if (serial_hds[i]) { serial_isa_init(i, serial_hds[i]); } } for(i = 0; i < MAX_PARALLEL_PORTS; i++) { if (parallel_hds[i]) { parallel_init(i, parallel_hds[i]); } } for(i = 0; i < nb_nics; i++) pci_nic_init_nofail(&nd_table[i], "ne2k_pci", NULL); ide_drive_get(hd, MAX_IDE_BUS); pci_cmd646_ide_init(pci_bus, hd, 1); isa_create_simple("i8042"); for(i = 0; i < MAX_FD; i++) { fd[i] = drive_get(IF_FLOPPY, 0, i); } fdctrl_init_isa(fd); nvram = m48t59_init_isa(0x0074, NVRAM_SIZE, 59); initrd_size = 0; kernel_size = sun4u_load_kernel(kernel_filename, initrd_filename, ram_size, &initrd_size); sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", RAM_size, boot_devices, KERNEL_LOAD_ADDR, kernel_size, kernel_cmdline, INITRD_LOAD_ADDR, initrd_size, /* XXX: need an option to load a NVRAM image */ 0, graphic_width, graphic_height, graphic_depth, (uint8_t *)&nd_table[0].macaddr); fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0); fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); if (kernel_cmdline) { fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA, (uint8_t*)strdup(kernel_cmdline), strlen(kernel_cmdline) + 1); } else { fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0); } fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_devices[0]); fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width); fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height); fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth); qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); } enum { sun4u_id = 0, sun4v_id = 64, niagara_id, }; static const struct hwdef hwdefs[] = { /* Sun4u generic PC-like machine */ { .default_cpu_model = "TI UltraSparc IIi", .machine_id = sun4u_id, .prom_addr = 0x1fff0000000ULL, .console_serial_base = 0, }, /* Sun4v generic PC-like machine */ { .default_cpu_model = "Sun UltraSparc T1", .machine_id = sun4v_id, .prom_addr = 0x1fff0000000ULL, .console_serial_base = 0, }, /* Sun4v generic Niagara machine */ { .default_cpu_model = "Sun UltraSparc T1", .machine_id = niagara_id, .prom_addr = 0xfff0000000ULL, .console_serial_base = 0xfff0c2c000ULL, }, }; /* Sun4u hardware initialisation */ static void sun4u_init(ram_addr_t RAM_size, const char *boot_devices, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4uv_init(RAM_size, boot_devices, kernel_filename, kernel_cmdline, initrd_filename, cpu_model, &hwdefs[0]); } /* Sun4v hardware initialisation */ static void sun4v_init(ram_addr_t RAM_size, const char *boot_devices, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4uv_init(RAM_size, boot_devices, kernel_filename, kernel_cmdline, initrd_filename, cpu_model, &hwdefs[1]); } /* Niagara hardware initialisation */ static void niagara_init(ram_addr_t RAM_size, const char *boot_devices, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4uv_init(RAM_size, boot_devices, kernel_filename, kernel_cmdline, initrd_filename, cpu_model, &hwdefs[2]); } static QEMUMachine sun4u_machine = { .name = "sun4u", .desc = "Sun4u platform", .init = sun4u_init, .max_cpus = 1, // XXX for now .is_default = 1, }; static QEMUMachine sun4v_machine = { .name = "sun4v", .desc = "Sun4v platform", .init = sun4v_init, .max_cpus = 1, // XXX for now }; static QEMUMachine niagara_machine = { .name = "Niagara", .desc = "Sun4v platform, Niagara", .init = niagara_init, .max_cpus = 1, // XXX for now }; static void sun4u_machine_init(void) { qemu_register_machine(&sun4u_machine); qemu_register_machine(&sun4v_machine); qemu_register_machine(&niagara_machine); } machine_init(sun4u_machine_init);