/* * QEMU Sun4m System Emulator * * Copyright (c) 2003-2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" #define KERNEL_LOAD_ADDR 0x00004000 #define CMDLINE_ADDR 0x007ff000 #define INITRD_LOAD_ADDR 0x00800000 #define PROM_SIZE_MAX (256 * 1024) #define PROM_ADDR 0xffd00000 #define PROM_FILENAME "openbios-sparc32" #define PHYS_JJ_EEPROM 0x71200000 /* m48t08 */ #define PHYS_JJ_IDPROM_OFF 0x1FD8 #define PHYS_JJ_EEPROM_SIZE 0x2000 // IRQs are not PIL ones, but master interrupt controller register // bits #define PHYS_JJ_IOMMU 0x10000000 /* I/O MMU */ #define PHYS_JJ_TCX_FB 0x50000000 /* TCX frame buffer */ #define PHYS_JJ_SLAVIO 0x70000000 /* Slavio base */ #define PHYS_JJ_DMA 0x78400000 /* DMA controller */ #define PHYS_JJ_ESP 0x78800000 /* ESP SCSI */ #define PHYS_JJ_ESP_IRQ 18 #define PHYS_JJ_LE 0x78C00000 /* Lance ethernet */ #define PHYS_JJ_LE_IRQ 16 #define PHYS_JJ_CLOCK 0x71D00000 /* Per-CPU timer/counter, L14 */ #define PHYS_JJ_CLOCK_IRQ 7 #define PHYS_JJ_CLOCK1 0x71D10000 /* System timer/counter, L10 */ #define PHYS_JJ_CLOCK1_IRQ 19 #define PHYS_JJ_INTR0 0x71E00000 /* Per-CPU interrupt control registers */ #define PHYS_JJ_INTR_G 0x71E10000 /* Master interrupt control registers */ #define PHYS_JJ_MS_KBD 0x71000000 /* Mouse and keyboard */ #define PHYS_JJ_MS_KBD_IRQ 14 #define PHYS_JJ_SER 0x71100000 /* Serial */ #define PHYS_JJ_SER_IRQ 15 #define PHYS_JJ_FDC 0x71400000 /* Floppy */ #define PHYS_JJ_FLOPPY_IRQ 22 #define PHYS_JJ_ME_IRQ 30 /* Module error, power fail */ #define PHYS_JJ_CS 0x6c000000 /* Crystal CS4231 */ #define PHYS_JJ_CS_IRQ 5 #define MAX_CPUS 16 /* TSC handling */ uint64_t cpu_get_tsc() { return qemu_get_clock(vm_clock); } int DMA_get_channel_mode (int nchan) { return 0; } int DMA_read_memory (int nchan, void *buf, int pos, int size) { return 0; } int DMA_write_memory (int nchan, void *buf, int pos, int size) { return 0; } void DMA_hold_DREQ (int nchan) {} void DMA_release_DREQ (int nchan) {} void DMA_schedule(int nchan) {} void DMA_run (void) {} void DMA_init (int high_page_enable) {} void DMA_register_channel (int nchan, DMA_transfer_handler transfer_handler, void *opaque) { } static void nvram_set_word (m48t59_t *nvram, uint32_t addr, uint16_t value) { m48t59_write(nvram, addr++, (value >> 8) & 0xff); m48t59_write(nvram, addr++, value & 0xff); } static void nvram_set_lword (m48t59_t *nvram, uint32_t addr, uint32_t value) { m48t59_write(nvram, addr++, value >> 24); m48t59_write(nvram, addr++, (value >> 16) & 0xff); m48t59_write(nvram, addr++, (value >> 8) & 0xff); m48t59_write(nvram, addr++, value & 0xff); } static void nvram_set_string (m48t59_t *nvram, uint32_t addr, const unsigned char *str, uint32_t max) { unsigned int i; for (i = 0; i < max && str[i] != '\0'; i++) { m48t59_write(nvram, addr + i, str[i]); } m48t59_write(nvram, addr + max - 1, '\0'); } static m48t59_t *nvram; extern int nographic; static void nvram_init(m48t59_t *nvram, uint8_t *macaddr, const char *cmdline, int boot_device, uint32_t RAM_size, uint32_t kernel_size, int width, int height, int depth) { unsigned char tmp = 0; int i, j; // Try to match PPC NVRAM nvram_set_string(nvram, 0x00, "QEMU_BIOS", 16); nvram_set_lword(nvram, 0x10, 0x00000001); /* structure v1 */ // NVRAM_size, arch not applicable m48t59_write(nvram, 0x2D, smp_cpus & 0xff); m48t59_write(nvram, 0x2E, 0); m48t59_write(nvram, 0x2F, nographic & 0xff); nvram_set_lword(nvram, 0x30, RAM_size); m48t59_write(nvram, 0x34, boot_device & 0xff); nvram_set_lword(nvram, 0x38, KERNEL_LOAD_ADDR); nvram_set_lword(nvram, 0x3C, kernel_size); if (cmdline) { strcpy(phys_ram_base + CMDLINE_ADDR, cmdline); nvram_set_lword(nvram, 0x40, CMDLINE_ADDR); nvram_set_lword(nvram, 0x44, strlen(cmdline)); } // initrd_image, initrd_size passed differently nvram_set_word(nvram, 0x54, width); nvram_set_word(nvram, 0x56, height); nvram_set_word(nvram, 0x58, depth); // Sun4m specific use i = 0x1fd8; m48t59_write(nvram, i++, 0x01); m48t59_write(nvram, i++, 0x80); /* Sun4m OBP */ j = 0; m48t59_write(nvram, i++, macaddr[j++]); m48t59_write(nvram, i++, macaddr[j++]); m48t59_write(nvram, i++, macaddr[j++]); m48t59_write(nvram, i++, macaddr[j++]); m48t59_write(nvram, i++, macaddr[j++]); m48t59_write(nvram, i, macaddr[j]); /* Calculate checksum */ for (i = 0x1fd8; i < 0x1fe7; i++) { tmp ^= m48t59_read(nvram, i); } m48t59_write(nvram, 0x1fe7, tmp); } static void *slavio_intctl; void pic_info() { slavio_pic_info(slavio_intctl); } void irq_info() { slavio_irq_info(slavio_intctl); } void pic_set_irq(int irq, int level) { slavio_pic_set_irq(slavio_intctl, irq, level); } void pic_set_irq_new(void *opaque, int irq, int level) { pic_set_irq(irq, level); } void pic_set_irq_cpu(int irq, int level, unsigned int cpu) { slavio_pic_set_irq_cpu(slavio_intctl, irq, level, cpu); } static void *slavio_misc; void qemu_system_powerdown(void) { slavio_set_power_fail(slavio_misc, 1); } static void main_cpu_reset(void *opaque) { CPUState *env = opaque; cpu_reset(env); } /* Sun4m hardware initialisation */ static void sun4m_init(int ram_size, int vga_ram_size, int boot_device, DisplayState *ds, const char **fd_filename, int snapshot, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { CPUState *env, *envs[MAX_CPUS]; char buf[1024]; int ret, linux_boot; unsigned int i; long vram_size = 0x100000, prom_offset, initrd_size, kernel_size; void *iommu, *dma, *main_esp, *main_lance = NULL; const sparc_def_t *def; linux_boot = (kernel_filename != NULL); /* init CPUs */ if (cpu_model == NULL) cpu_model = "Fujitsu MB86904"; sparc_find_by_name(cpu_model, &def); if (def == NULL) { fprintf(stderr, "Unable to find Sparc CPU definition\n"); exit(1); } for(i = 0; i < smp_cpus; i++) { env = cpu_init(); cpu_sparc_register(env, def); envs[i] = env; if (i != 0) env->halted = 1; register_savevm("cpu", i, 3, cpu_save, cpu_load, env); qemu_register_reset(main_cpu_reset, env); } /* allocate RAM */ cpu_register_physical_memory(0, ram_size, 0); iommu = iommu_init(PHYS_JJ_IOMMU); slavio_intctl = slavio_intctl_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G); for(i = 0; i < smp_cpus; i++) { slavio_intctl_set_cpu(slavio_intctl, i, envs[i]); } dma = sparc32_dma_init(PHYS_JJ_DMA, PHYS_JJ_ESP_IRQ, PHYS_JJ_LE_IRQ, iommu, slavio_intctl); tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size, graphic_width, graphic_height); if (nd_table[0].vlan) { if (nd_table[0].model == NULL || strcmp(nd_table[0].model, "lance") == 0) { main_lance = lance_init(&nd_table[0], PHYS_JJ_LE, dma); } else { fprintf(stderr, "qemu: Unsupported NIC: %s\n", nd_table[0].model); exit (1); } } nvram = m48t59_init(0, PHYS_JJ_EEPROM, 0, PHYS_JJ_EEPROM_SIZE, 8); for (i = 0; i < MAX_CPUS; i++) { slavio_timer_init(PHYS_JJ_CLOCK + i * TARGET_PAGE_SIZE, PHYS_JJ_CLOCK_IRQ, 0, i); } slavio_timer_init(PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ, 2, (unsigned int)-1); slavio_serial_ms_kbd_init(PHYS_JJ_MS_KBD, PHYS_JJ_MS_KBD_IRQ); // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[1], serial_hds[0]); fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table); main_esp = esp_init(bs_table, PHYS_JJ_ESP, dma); for (i = 0; i < MAX_DISKS; i++) { if (bs_table[i]) { esp_scsi_attach(main_esp, bs_table[i], i); } } slavio_misc = slavio_misc_init(PHYS_JJ_SLAVIO, PHYS_JJ_ME_IRQ); cs_init(PHYS_JJ_CS, PHYS_JJ_CS_IRQ, slavio_intctl); sparc32_dma_set_reset_data(dma, main_esp, main_lance); prom_offset = ram_size + vram_size; cpu_register_physical_memory(PROM_ADDR, (PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK, prom_offset | IO_MEM_ROM); snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAME); ret = load_elf(buf, 0, NULL); if (ret < 0) { fprintf(stderr, "qemu: could not load prom '%s'\n", buf); exit(1); } kernel_size = 0; if (linux_boot) { kernel_size = load_elf(kernel_filename, -0xf0000000, NULL); if (kernel_size < 0) kernel_size = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR); if (kernel_size < 0) kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR); if (kernel_size < 0) { fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } /* load initrd */ initrd_size = 0; if (initrd_filename) { initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR); if (initrd_size < 0) { fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", initrd_filename); exit(1); } } if (initrd_size > 0) { for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) { if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i) == 0x48647253) { // HdrS stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR); stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size); break; } } } } nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, ram_size, kernel_size, graphic_width, graphic_height, graphic_depth); } QEMUMachine sun4m_machine = { "sun4m", "Sun4m platform", sun4m_init, };