/* * StrongARM SA-1100/SA-1110 emulation * * Copyright (C) 2011 Dmitry Eremin-Solenikov * * Largely based on StrongARM emulation: * Copyright (c) 2006 Openedhand Ltd. * Written by Andrzej Zaborowski <balrog@zabor.org> * * UART code based on QEMU 16550A UART emulation * Copyright (c) 2003-2004 Fabrice Bellard * Copyright (c) 2008 Citrix Systems, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along * with this program; if not, see <http://www.gnu.org/licenses/>. */ #include "sysbus.h" #include "strongarm.h" #include "qemu-error.h" #include "arm-misc.h" #include "sysemu.h" #include "ssi.h" //#define DEBUG /* TODO - Implement cp15, c14 ? - Implement cp15, c15 !!! (idle used in L) - Implement idle mode handling/DIM - Implement sleep mode/Wake sources - Implement reset control - Implement memory control regs - PCMCIA handling - Maybe support MBGNT/MBREQ - DMA channels - GPCLK - IrDA - MCP - Enhance UART with modem signals */ #ifdef DEBUG # define DPRINTF(format, ...) printf(format , ## __VA_ARGS__) #else # define DPRINTF(format, ...) do { } while (0) #endif static struct { target_phys_addr_t io_base; int irq; } sa_serial[] = { { 0x80010000, SA_PIC_UART1 }, { 0x80030000, SA_PIC_UART2 }, { 0x80050000, SA_PIC_UART3 }, { 0, 0 } }; /* Interrupt Controller */ typedef struct { SysBusDevice busdev; MemoryRegion iomem; qemu_irq irq; qemu_irq fiq; uint32_t pending; uint32_t enabled; uint32_t is_fiq; uint32_t int_idle; } StrongARMPICState; #define ICIP 0x00 #define ICMR 0x04 #define ICLR 0x08 #define ICFP 0x10 #define ICPR 0x20 #define ICCR 0x0c #define SA_PIC_SRCS 32 static void strongarm_pic_update(void *opaque) { StrongARMPICState *s = opaque; /* FIXME: reflect DIM */ qemu_set_irq(s->fiq, s->pending & s->enabled & s->is_fiq); qemu_set_irq(s->irq, s->pending & s->enabled & ~s->is_fiq); } static void strongarm_pic_set_irq(void *opaque, int irq, int level) { StrongARMPICState *s = opaque; if (level) { s->pending |= 1 << irq; } else { s->pending &= ~(1 << irq); } strongarm_pic_update(s); } static uint64_t strongarm_pic_mem_read(void *opaque, target_phys_addr_t offset, unsigned size) { StrongARMPICState *s = opaque; switch (offset) { case ICIP: return s->pending & ~s->is_fiq & s->enabled; case ICMR: return s->enabled; case ICLR: return s->is_fiq; case ICCR: return s->int_idle == 0; case ICFP: return s->pending & s->is_fiq & s->enabled; case ICPR: return s->pending; default: printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n", __func__, offset); return 0; } } static void strongarm_pic_mem_write(void *opaque, target_phys_addr_t offset, uint64_t value, unsigned size) { StrongARMPICState *s = opaque; switch (offset) { case ICMR: s->enabled = value; break; case ICLR: s->is_fiq = value; break; case ICCR: s->int_idle = (value & 1) ? 0 : ~0; break; default: printf("%s: Bad register offset 0x" TARGET_FMT_plx "\n", __func__, offset); break; } strongarm_pic_update(s); } static const MemoryRegionOps strongarm_pic_ops = { .read = strongarm_pic_mem_read, .write = strongarm_pic_mem_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static int strongarm_pic_initfn(SysBusDevice *dev) { StrongARMPICState *s = FROM_SYSBUS(StrongARMPICState, dev); qdev_init_gpio_in(&dev->qdev, strongarm_pic_set_irq, SA_PIC_SRCS); memory_region_init_io(&s->iomem, &strongarm_pic_ops, s, "pic", 0x1000); sysbus_init_mmio(dev, &s->iomem); sysbus_init_irq(dev, &s->irq); sysbus_init_irq(dev, &s->fiq); return 0; } static int strongarm_pic_post_load(void *opaque, int version_id) { strongarm_pic_update(opaque); return 0; } static VMStateDescription vmstate_strongarm_pic_regs = { .name = "strongarm_pic", .version_id = 0, .minimum_version_id = 0, .minimum_version_id_old = 0, .post_load = strongarm_pic_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32(pending, StrongARMPICState), VMSTATE_UINT32(enabled, StrongARMPICState), VMSTATE_UINT32(is_fiq, StrongARMPICState), VMSTATE_UINT32(int_idle, StrongARMPICState), VMSTATE_END_OF_LIST(), }, }; static SysBusDeviceInfo strongarm_pic_info = { .init = strongarm_pic_initfn, .qdev.name = "strongarm_pic", .qdev.desc = "StrongARM PIC", .qdev.size = sizeof(StrongARMPICState), .qdev.vmsd = &vmstate_strongarm_pic_regs, }; /* Real-Time Clock */ #define RTAR 0x00 /* RTC Alarm register */ #define RCNR 0x04 /* RTC Counter register */ #define RTTR 0x08 /* RTC Timer Trim register */ #define RTSR 0x10 /* RTC Status register */ #define RTSR_AL (1 << 0) /* RTC Alarm detected */ #define RTSR_HZ (1 << 1) /* RTC 1Hz detected */ #define RTSR_ALE (1 << 2) /* RTC Alarm enable */ #define RTSR_HZE (1 << 3) /* RTC 1Hz enable */ /* 16 LSB of RTTR are clockdiv for internal trim logic, * trim delete isn't emulated, so * f = 32 768 / (RTTR_trim + 1) */ typedef struct { SysBusDevice busdev; MemoryRegion iomem; uint32_t rttr; uint32_t rtsr; uint32_t rtar; uint32_t last_rcnr; int64_t last_hz; QEMUTimer *rtc_alarm; QEMUTimer *rtc_hz; qemu_irq rtc_irq; qemu_irq rtc_hz_irq; } StrongARMRTCState; static inline void strongarm_rtc_int_update(StrongARMRTCState *s) { qemu_set_irq(s->rtc_irq, s->rtsr & RTSR_AL); qemu_set_irq(s->rtc_hz_irq, s->rtsr & RTSR_HZ); } static void strongarm_rtc_hzupdate(StrongARMRTCState *s) { int64_t rt = qemu_get_clock_ms(rt_clock); s->last_rcnr += ((rt - s->last_hz) << 15) / (1000 * ((s->rttr & 0xffff) + 1)); s->last_hz = rt; } static inline void strongarm_rtc_timer_update(StrongARMRTCState *s) { if ((s->rtsr & RTSR_HZE) && !(s->rtsr & RTSR_HZ)) { qemu_mod_timer(s->rtc_hz, s->last_hz + 1000); } else { qemu_del_timer(s->rtc_hz); } if ((s->rtsr & RTSR_ALE) && !(s->rtsr & RTSR_AL)) { qemu_mod_timer(s->rtc_alarm, s->last_hz + (((s->rtar - s->last_rcnr) * 1000 * ((s->rttr & 0xffff) + 1)) >> 15)); } else { qemu_del_timer(s->rtc_alarm); } } static inline void strongarm_rtc_alarm_tick(void *opaque) { StrongARMRTCState *s = opaque; s->rtsr |= RTSR_AL; strongarm_rtc_timer_update(s); strongarm_rtc_int_update(s); } static inline void strongarm_rtc_hz_tick(void *opaque) { StrongARMRTCState *s = opaque; s->rtsr |= RTSR_HZ; strongarm_rtc_timer_update(s); strongarm_rtc_int_update(s); } static uint64_t strongarm_rtc_read(void *opaque, target_phys_addr_t addr, unsigned size) { StrongARMRTCState *s = opaque; switch (addr) { case RTTR: return s->rttr; case RTSR: return s->rtsr; case RTAR: return s->rtar; case RCNR: return s->last_rcnr + ((qemu_get_clock_ms(rt_clock) - s->last_hz) << 15) / (1000 * ((s->rttr & 0xffff) + 1)); default: printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr); return 0; } } static void strongarm_rtc_write(void *opaque, target_phys_addr_t addr, uint64_t value, unsigned size) { StrongARMRTCState *s = opaque; uint32_t old_rtsr; switch (addr) { case RTTR: strongarm_rtc_hzupdate(s); s->rttr = value; strongarm_rtc_timer_update(s); break; case RTSR: old_rtsr = s->rtsr; s->rtsr = (value & (RTSR_ALE | RTSR_HZE)) | (s->rtsr & ~(value & (RTSR_AL | RTSR_HZ))); if (s->rtsr != old_rtsr) { strongarm_rtc_timer_update(s); } strongarm_rtc_int_update(s); break; case RTAR: s->rtar = value; strongarm_rtc_timer_update(s); break; case RCNR: strongarm_rtc_hzupdate(s); s->last_rcnr = value; strongarm_rtc_timer_update(s); break; default: printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr); } } static const MemoryRegionOps strongarm_rtc_ops = { .read = strongarm_rtc_read, .write = strongarm_rtc_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static int strongarm_rtc_init(SysBusDevice *dev) { StrongARMRTCState *s = FROM_SYSBUS(StrongARMRTCState, dev); struct tm tm; s->rttr = 0x0; s->rtsr = 0; qemu_get_timedate(&tm, 0); s->last_rcnr = (uint32_t) mktimegm(&tm); s->last_hz = qemu_get_clock_ms(rt_clock); s->rtc_alarm = qemu_new_timer_ms(rt_clock, strongarm_rtc_alarm_tick, s); s->rtc_hz = qemu_new_timer_ms(rt_clock, strongarm_rtc_hz_tick, s); sysbus_init_irq(dev, &s->rtc_irq); sysbus_init_irq(dev, &s->rtc_hz_irq); memory_region_init_io(&s->iomem, &strongarm_rtc_ops, s, "rtc", 0x10000); sysbus_init_mmio(dev, &s->iomem); return 0; } static void strongarm_rtc_pre_save(void *opaque) { StrongARMRTCState *s = opaque; strongarm_rtc_hzupdate(s); } static int strongarm_rtc_post_load(void *opaque, int version_id) { StrongARMRTCState *s = opaque; strongarm_rtc_timer_update(s); strongarm_rtc_int_update(s); return 0; } static const VMStateDescription vmstate_strongarm_rtc_regs = { .name = "strongarm-rtc", .version_id = 0, .minimum_version_id = 0, .minimum_version_id_old = 0, .pre_save = strongarm_rtc_pre_save, .post_load = strongarm_rtc_post_load, .fields = (VMStateField[]) { VMSTATE_UINT32(rttr, StrongARMRTCState), VMSTATE_UINT32(rtsr, StrongARMRTCState), VMSTATE_UINT32(rtar, StrongARMRTCState), VMSTATE_UINT32(last_rcnr, StrongARMRTCState), VMSTATE_INT64(last_hz, StrongARMRTCState), VMSTATE_END_OF_LIST(), }, }; static SysBusDeviceInfo strongarm_rtc_sysbus_info = { .init = strongarm_rtc_init, .qdev.name = "strongarm-rtc", .qdev.desc = "StrongARM RTC Controller", .qdev.size = sizeof(StrongARMRTCState), .qdev.vmsd = &vmstate_strongarm_rtc_regs, }; /* GPIO */ #define GPLR 0x00 #define GPDR 0x04 #define GPSR 0x08 #define GPCR 0x0c #define GRER 0x10 #define GFER 0x14 #define GEDR 0x18 #define GAFR 0x1c typedef struct StrongARMGPIOInfo StrongARMGPIOInfo; struct StrongARMGPIOInfo { SysBusDevice busdev; MemoryRegion iomem; qemu_irq handler[28]; qemu_irq irqs[11]; qemu_irq irqX; uint32_t ilevel; uint32_t olevel; uint32_t dir; uint32_t rising; uint32_t falling; uint32_t status; uint32_t gpsr; uint32_t gafr; uint32_t prev_level; }; static void strongarm_gpio_irq_update(StrongARMGPIOInfo *s) { int i; for (i = 0; i < 11; i++) { qemu_set_irq(s->irqs[i], s->status & (1 << i)); } qemu_set_irq(s->irqX, (s->status & ~0x7ff)); } static void strongarm_gpio_set(void *opaque, int line, int level) { StrongARMGPIOInfo *s = opaque; uint32_t mask; mask = 1 << line; if (level) { s->status |= s->rising & mask & ~s->ilevel & ~s->dir; s->ilevel |= mask; } else { s->status |= s->falling & mask & s->ilevel & ~s->dir; s->ilevel &= ~mask; } if (s->status & mask) { strongarm_gpio_irq_update(s); } } static void strongarm_gpio_handler_update(StrongARMGPIOInfo *s) { uint32_t level, diff; int bit; level = s->olevel & s->dir; for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) { bit = ffs(diff) - 1; qemu_set_irq(s->handler[bit], (level >> bit) & 1); } s->prev_level = level; } static uint64_t strongarm_gpio_read(void *opaque, target_phys_addr_t offset, unsigned size) { StrongARMGPIOInfo *s = opaque; switch (offset) { case GPDR: /* GPIO Pin-Direction registers */ return s->dir; case GPSR: /* GPIO Pin-Output Set registers */ DPRINTF("%s: Read from a write-only register 0x" TARGET_FMT_plx "\n", __func__, offset); return s->gpsr; /* Return last written value. */ case GPCR: /* GPIO Pin-Output Clear registers */ DPRINTF("%s: Read from a write-only register 0x" TARGET_FMT_plx "\n", __func__, offset); return 31337; /* Specified as unpredictable in the docs. */ case GRER: /* GPIO Rising-Edge Detect Enable registers */ return s->rising; case GFER: /* GPIO Falling-Edge Detect Enable registers */ return s->falling; case GAFR: /* GPIO Alternate Function registers */ return s->gafr; case GPLR: /* GPIO Pin-Level registers */ return (s->olevel & s->dir) | (s->ilevel & ~s->dir); case GEDR: /* GPIO Edge Detect Status registers */ return s->status; default: printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset); } return 0; } static void strongarm_gpio_write(void *opaque, target_phys_addr_t offset, uint64_t value, unsigned size) { StrongARMGPIOInfo *s = opaque; switch (offset) { case GPDR: /* GPIO Pin-Direction registers */ s->dir = value; strongarm_gpio_handler_update(s); break; case GPSR: /* GPIO Pin-Output Set registers */ s->olevel |= value; strongarm_gpio_handler_update(s); s->gpsr = value; break; case GPCR: /* GPIO Pin-Output Clear registers */ s->olevel &= ~value; strongarm_gpio_handler_update(s); break; case GRER: /* GPIO Rising-Edge Detect Enable registers */ s->rising = value; break; case GFER: /* GPIO Falling-Edge Detect Enable registers */ s->falling = value; break; case GAFR: /* GPIO Alternate Function registers */ s->gafr = value; break; case GEDR: /* GPIO Edge Detect Status registers */ s->status &= ~value; strongarm_gpio_irq_update(s); break; default: printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset); } } static const MemoryRegionOps strongarm_gpio_ops = { .read = strongarm_gpio_read, .write = strongarm_gpio_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static DeviceState *strongarm_gpio_init(target_phys_addr_t base, DeviceState *pic) { DeviceState *dev; int i; dev = qdev_create(NULL, "strongarm-gpio"); qdev_init_nofail(dev); sysbus_mmio_map(sysbus_from_qdev(dev), 0, base); for (i = 0; i < 12; i++) sysbus_connect_irq(sysbus_from_qdev(dev), i, qdev_get_gpio_in(pic, SA_PIC_GPIO0_EDGE + i)); return dev; } static int strongarm_gpio_initfn(SysBusDevice *dev) { StrongARMGPIOInfo *s; int i; s = FROM_SYSBUS(StrongARMGPIOInfo, dev); qdev_init_gpio_in(&dev->qdev, strongarm_gpio_set, 28); qdev_init_gpio_out(&dev->qdev, s->handler, 28); memory_region_init_io(&s->iomem, &strongarm_gpio_ops, s, "gpio", 0x1000); sysbus_init_mmio(dev, &s->iomem); for (i = 0; i < 11; i++) { sysbus_init_irq(dev, &s->irqs[i]); } sysbus_init_irq(dev, &s->irqX); return 0; } static const VMStateDescription vmstate_strongarm_gpio_regs = { .name = "strongarm-gpio", .version_id = 0, .minimum_version_id = 0, .minimum_version_id_old = 0, .fields = (VMStateField[]) { VMSTATE_UINT32(ilevel, StrongARMGPIOInfo), VMSTATE_UINT32(olevel, StrongARMGPIOInfo), VMSTATE_UINT32(dir, StrongARMGPIOInfo), VMSTATE_UINT32(rising, StrongARMGPIOInfo), VMSTATE_UINT32(falling, StrongARMGPIOInfo), VMSTATE_UINT32(status, StrongARMGPIOInfo), VMSTATE_UINT32(gafr, StrongARMGPIOInfo), VMSTATE_END_OF_LIST(), }, }; static SysBusDeviceInfo strongarm_gpio_info = { .init = strongarm_gpio_initfn, .qdev.name = "strongarm-gpio", .qdev.desc = "StrongARM GPIO controller", .qdev.size = sizeof(StrongARMGPIOInfo), }; /* Peripheral Pin Controller */ #define PPDR 0x00 #define PPSR 0x04 #define PPAR 0x08 #define PSDR 0x0c #define PPFR 0x10 typedef struct StrongARMPPCInfo StrongARMPPCInfo; struct StrongARMPPCInfo { SysBusDevice busdev; MemoryRegion iomem; qemu_irq handler[28]; uint32_t ilevel; uint32_t olevel; uint32_t dir; uint32_t ppar; uint32_t psdr; uint32_t ppfr; uint32_t prev_level; }; static void strongarm_ppc_set(void *opaque, int line, int level) { StrongARMPPCInfo *s = opaque; if (level) { s->ilevel |= 1 << line; } else { s->ilevel &= ~(1 << line); } } static void strongarm_ppc_handler_update(StrongARMPPCInfo *s) { uint32_t level, diff; int bit; level = s->olevel & s->dir; for (diff = s->prev_level ^ level; diff; diff ^= 1 << bit) { bit = ffs(diff) - 1; qemu_set_irq(s->handler[bit], (level >> bit) & 1); } s->prev_level = level; } static uint64_t strongarm_ppc_read(void *opaque, target_phys_addr_t offset, unsigned size) { StrongARMPPCInfo *s = opaque; switch (offset) { case PPDR: /* PPC Pin Direction registers */ return s->dir | ~0x3fffff; case PPSR: /* PPC Pin State registers */ return (s->olevel & s->dir) | (s->ilevel & ~s->dir) | ~0x3fffff; case PPAR: return s->ppar | ~0x41000; case PSDR: return s->psdr; case PPFR: return s->ppfr | ~0x7f001; default: printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset); } return 0; } static void strongarm_ppc_write(void *opaque, target_phys_addr_t offset, uint64_t value, unsigned size) { StrongARMPPCInfo *s = opaque; switch (offset) { case PPDR: /* PPC Pin Direction registers */ s->dir = value & 0x3fffff; strongarm_ppc_handler_update(s); break; case PPSR: /* PPC Pin State registers */ s->olevel = value & s->dir & 0x3fffff; strongarm_ppc_handler_update(s); break; case PPAR: s->ppar = value & 0x41000; break; case PSDR: s->psdr = value & 0x3fffff; break; case PPFR: s->ppfr = value & 0x7f001; break; default: printf("%s: Bad offset 0x" TARGET_FMT_plx "\n", __func__, offset); } } static const MemoryRegionOps strongarm_ppc_ops = { .read = strongarm_ppc_read, .write = strongarm_ppc_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static int strongarm_ppc_init(SysBusDevice *dev) { StrongARMPPCInfo *s; s = FROM_SYSBUS(StrongARMPPCInfo, dev); qdev_init_gpio_in(&dev->qdev, strongarm_ppc_set, 22); qdev_init_gpio_out(&dev->qdev, s->handler, 22); memory_region_init_io(&s->iomem, &strongarm_ppc_ops, s, "ppc", 0x1000); sysbus_init_mmio(dev, &s->iomem); return 0; } static const VMStateDescription vmstate_strongarm_ppc_regs = { .name = "strongarm-ppc", .version_id = 0, .minimum_version_id = 0, .minimum_version_id_old = 0, .fields = (VMStateField[]) { VMSTATE_UINT32(ilevel, StrongARMPPCInfo), VMSTATE_UINT32(olevel, StrongARMPPCInfo), VMSTATE_UINT32(dir, StrongARMPPCInfo), VMSTATE_UINT32(ppar, StrongARMPPCInfo), VMSTATE_UINT32(psdr, StrongARMPPCInfo), VMSTATE_UINT32(ppfr, StrongARMPPCInfo), VMSTATE_END_OF_LIST(), }, }; static SysBusDeviceInfo strongarm_ppc_info = { .init = strongarm_ppc_init, .qdev.name = "strongarm-ppc", .qdev.desc = "StrongARM PPC controller", .qdev.size = sizeof(StrongARMPPCInfo), }; /* UART Ports */ #define UTCR0 0x00 #define UTCR1 0x04 #define UTCR2 0x08 #define UTCR3 0x0c #define UTDR 0x14 #define UTSR0 0x1c #define UTSR1 0x20 #define UTCR0_PE (1 << 0) /* Parity enable */ #define UTCR0_OES (1 << 1) /* Even parity */ #define UTCR0_SBS (1 << 2) /* 2 stop bits */ #define UTCR0_DSS (1 << 3) /* 8-bit data */ #define UTCR3_RXE (1 << 0) /* Rx enable */ #define UTCR3_TXE (1 << 1) /* Tx enable */ #define UTCR3_BRK (1 << 2) /* Force Break */ #define UTCR3_RIE (1 << 3) /* Rx int enable */ #define UTCR3_TIE (1 << 4) /* Tx int enable */ #define UTCR3_LBM (1 << 5) /* Loopback */ #define UTSR0_TFS (1 << 0) /* Tx FIFO nearly empty */ #define UTSR0_RFS (1 << 1) /* Rx FIFO nearly full */ #define UTSR0_RID (1 << 2) /* Receiver Idle */ #define UTSR0_RBB (1 << 3) /* Receiver begin break */ #define UTSR0_REB (1 << 4) /* Receiver end break */ #define UTSR0_EIF (1 << 5) /* Error in FIFO */ #define UTSR1_RNE (1 << 1) /* Receive FIFO not empty */ #define UTSR1_TNF (1 << 2) /* Transmit FIFO not full */ #define UTSR1_PRE (1 << 3) /* Parity error */ #define UTSR1_FRE (1 << 4) /* Frame error */ #define UTSR1_ROR (1 << 5) /* Receive Over Run */ #define RX_FIFO_PRE (1 << 8) #define RX_FIFO_FRE (1 << 9) #define RX_FIFO_ROR (1 << 10) typedef struct { SysBusDevice busdev; MemoryRegion iomem; CharDriverState *chr; qemu_irq irq; uint8_t utcr0; uint16_t brd; uint8_t utcr3; uint8_t utsr0; uint8_t utsr1; uint8_t tx_fifo[8]; uint8_t tx_start; uint8_t tx_len; uint16_t rx_fifo[12]; /* value + error flags in high bits */ uint8_t rx_start; uint8_t rx_len; uint64_t char_transmit_time; /* time to transmit a char in ticks*/ bool wait_break_end; QEMUTimer *rx_timeout_timer; QEMUTimer *tx_timer; } StrongARMUARTState; static void strongarm_uart_update_status(StrongARMUARTState *s) { uint16_t utsr1 = 0; if (s->tx_len != 8) { utsr1 |= UTSR1_TNF; } if (s->rx_len != 0) { uint16_t ent = s->rx_fifo[s->rx_start]; utsr1 |= UTSR1_RNE; if (ent & RX_FIFO_PRE) { s->utsr1 |= UTSR1_PRE; } if (ent & RX_FIFO_FRE) { s->utsr1 |= UTSR1_FRE; } if (ent & RX_FIFO_ROR) { s->utsr1 |= UTSR1_ROR; } } s->utsr1 = utsr1; } static void strongarm_uart_update_int_status(StrongARMUARTState *s) { uint16_t utsr0 = s->utsr0 & (UTSR0_REB | UTSR0_RBB | UTSR0_RID); int i; if ((s->utcr3 & UTCR3_TXE) && (s->utcr3 & UTCR3_TIE) && s->tx_len <= 4) { utsr0 |= UTSR0_TFS; } if ((s->utcr3 & UTCR3_RXE) && (s->utcr3 & UTCR3_RIE) && s->rx_len > 4) { utsr0 |= UTSR0_RFS; } for (i = 0; i < s->rx_len && i < 4; i++) if (s->rx_fifo[(s->rx_start + i) % 12] & ~0xff) { utsr0 |= UTSR0_EIF; break; } s->utsr0 = utsr0; qemu_set_irq(s->irq, utsr0); } static void strongarm_uart_update_parameters(StrongARMUARTState *s) { int speed, parity, data_bits, stop_bits, frame_size; QEMUSerialSetParams ssp; /* Start bit. */ frame_size = 1; if (s->utcr0 & UTCR0_PE) { /* Parity bit. */ frame_size++; if (s->utcr0 & UTCR0_OES) { parity = 'E'; } else { parity = 'O'; } } else { parity = 'N'; } if (s->utcr0 & UTCR0_SBS) { stop_bits = 2; } else { stop_bits = 1; } data_bits = (s->utcr0 & UTCR0_DSS) ? 8 : 7; frame_size += data_bits + stop_bits; speed = 3686400 / 16 / (s->brd + 1); ssp.speed = speed; ssp.parity = parity; ssp.data_bits = data_bits; ssp.stop_bits = stop_bits; s->char_transmit_time = (get_ticks_per_sec() / speed) * frame_size; if (s->chr) { qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); } DPRINTF(stderr, "%s speed=%d parity=%c data=%d stop=%d\n", s->chr->label, speed, parity, data_bits, stop_bits); } static void strongarm_uart_rx_to(void *opaque) { StrongARMUARTState *s = opaque; if (s->rx_len) { s->utsr0 |= UTSR0_RID; strongarm_uart_update_int_status(s); } } static void strongarm_uart_rx_push(StrongARMUARTState *s, uint16_t c) { if ((s->utcr3 & UTCR3_RXE) == 0) { /* rx disabled */ return; } if (s->wait_break_end) { s->utsr0 |= UTSR0_REB; s->wait_break_end = false; } if (s->rx_len < 12) { s->rx_fifo[(s->rx_start + s->rx_len) % 12] = c; s->rx_len++; } else s->rx_fifo[(s->rx_start + 11) % 12] |= RX_FIFO_ROR; } static int strongarm_uart_can_receive(void *opaque) { StrongARMUARTState *s = opaque; if (s->rx_len == 12) { return 0; } /* It's best not to get more than 2/3 of RX FIFO, so advertise that much */ if (s->rx_len < 8) { return 8 - s->rx_len; } return 1; } static void strongarm_uart_receive(void *opaque, const uint8_t *buf, int size) { StrongARMUARTState *s = opaque; int i; for (i = 0; i < size; i++) { strongarm_uart_rx_push(s, buf[i]); } /* call the timeout receive callback in 3 char transmit time */ qemu_mod_timer(s->rx_timeout_timer, qemu_get_clock_ns(vm_clock) + s->char_transmit_time * 3); strongarm_uart_update_status(s); strongarm_uart_update_int_status(s); } static void strongarm_uart_event(void *opaque, int event) { StrongARMUARTState *s = opaque; if (event == CHR_EVENT_BREAK) { s->utsr0 |= UTSR0_RBB; strongarm_uart_rx_push(s, RX_FIFO_FRE); s->wait_break_end = true; strongarm_uart_update_status(s); strongarm_uart_update_int_status(s); } } static void strongarm_uart_tx(void *opaque) { StrongARMUARTState *s = opaque; uint64_t new_xmit_ts = qemu_get_clock_ns(vm_clock); if (s->utcr3 & UTCR3_LBM) /* loopback */ { strongarm_uart_receive(s, &s->tx_fifo[s->tx_start], 1); } else if (s->chr) { qemu_chr_fe_write(s->chr, &s->tx_fifo[s->tx_start], 1); } s->tx_start = (s->tx_start + 1) % 8; s->tx_len--; if (s->tx_len) { qemu_mod_timer(s->tx_timer, new_xmit_ts + s->char_transmit_time); } strongarm_uart_update_status(s); strongarm_uart_update_int_status(s); } static uint64_t strongarm_uart_read(void *opaque, target_phys_addr_t addr, unsigned size) { StrongARMUARTState *s = opaque; uint16_t ret; switch (addr) { case UTCR0: return s->utcr0; case UTCR1: return s->brd >> 8; case UTCR2: return s->brd & 0xff; case UTCR3: return s->utcr3; case UTDR: if (s->rx_len != 0) { ret = s->rx_fifo[s->rx_start]; s->rx_start = (s->rx_start + 1) % 12; s->rx_len--; strongarm_uart_update_status(s); strongarm_uart_update_int_status(s); return ret; } return 0; case UTSR0: return s->utsr0; case UTSR1: return s->utsr1; default: printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr); return 0; } } static void strongarm_uart_write(void *opaque, target_phys_addr_t addr, uint64_t value, unsigned size) { StrongARMUARTState *s = opaque; switch (addr) { case UTCR0: s->utcr0 = value & 0x7f; strongarm_uart_update_parameters(s); break; case UTCR1: s->brd = (s->brd & 0xff) | ((value & 0xf) << 8); strongarm_uart_update_parameters(s); break; case UTCR2: s->brd = (s->brd & 0xf00) | (value & 0xff); strongarm_uart_update_parameters(s); break; case UTCR3: s->utcr3 = value & 0x3f; if ((s->utcr3 & UTCR3_RXE) == 0) { s->rx_len = 0; } if ((s->utcr3 & UTCR3_TXE) == 0) { s->tx_len = 0; } strongarm_uart_update_status(s); strongarm_uart_update_int_status(s); break; case UTDR: if ((s->utcr3 & UTCR3_TXE) && s->tx_len != 8) { s->tx_fifo[(s->tx_start + s->tx_len) % 8] = value; s->tx_len++; strongarm_uart_update_status(s); strongarm_uart_update_int_status(s); if (s->tx_len == 1) { strongarm_uart_tx(s); } } break; case UTSR0: s->utsr0 = s->utsr0 & ~(value & (UTSR0_REB | UTSR0_RBB | UTSR0_RID)); strongarm_uart_update_int_status(s); break; default: printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr); } } static const MemoryRegionOps strongarm_uart_ops = { .read = strongarm_uart_read, .write = strongarm_uart_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static int strongarm_uart_init(SysBusDevice *dev) { StrongARMUARTState *s = FROM_SYSBUS(StrongARMUARTState, dev); memory_region_init_io(&s->iomem, &strongarm_uart_ops, s, "uart", 0x10000); sysbus_init_mmio(dev, &s->iomem); sysbus_init_irq(dev, &s->irq); s->rx_timeout_timer = qemu_new_timer_ns(vm_clock, strongarm_uart_rx_to, s); s->tx_timer = qemu_new_timer_ns(vm_clock, strongarm_uart_tx, s); if (s->chr) { qemu_chr_add_handlers(s->chr, strongarm_uart_can_receive, strongarm_uart_receive, strongarm_uart_event, s); } return 0; } static void strongarm_uart_reset(DeviceState *dev) { StrongARMUARTState *s = DO_UPCAST(StrongARMUARTState, busdev.qdev, dev); s->utcr0 = UTCR0_DSS; /* 8 data, no parity */ s->brd = 23; /* 9600 */ /* enable send & recv - this actually violates spec */ s->utcr3 = UTCR3_TXE | UTCR3_RXE; s->rx_len = s->tx_len = 0; strongarm_uart_update_parameters(s); strongarm_uart_update_status(s); strongarm_uart_update_int_status(s); } static int strongarm_uart_post_load(void *opaque, int version_id) { StrongARMUARTState *s = opaque; strongarm_uart_update_parameters(s); strongarm_uart_update_status(s); strongarm_uart_update_int_status(s); /* tx and restart timer */ if (s->tx_len) { strongarm_uart_tx(s); } /* restart rx timeout timer */ if (s->rx_len) { qemu_mod_timer(s->rx_timeout_timer, qemu_get_clock_ns(vm_clock) + s->char_transmit_time * 3); } return 0; } static const VMStateDescription vmstate_strongarm_uart_regs = { .name = "strongarm-uart", .version_id = 0, .minimum_version_id = 0, .minimum_version_id_old = 0, .post_load = strongarm_uart_post_load, .fields = (VMStateField[]) { VMSTATE_UINT8(utcr0, StrongARMUARTState), VMSTATE_UINT16(brd, StrongARMUARTState), VMSTATE_UINT8(utcr3, StrongARMUARTState), VMSTATE_UINT8(utsr0, StrongARMUARTState), VMSTATE_UINT8_ARRAY(tx_fifo, StrongARMUARTState, 8), VMSTATE_UINT8(tx_start, StrongARMUARTState), VMSTATE_UINT8(tx_len, StrongARMUARTState), VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMUARTState, 12), VMSTATE_UINT8(rx_start, StrongARMUARTState), VMSTATE_UINT8(rx_len, StrongARMUARTState), VMSTATE_BOOL(wait_break_end, StrongARMUARTState), VMSTATE_END_OF_LIST(), }, }; static SysBusDeviceInfo strongarm_uart_info = { .init = strongarm_uart_init, .qdev.name = "strongarm-uart", .qdev.desc = "StrongARM UART controller", .qdev.size = sizeof(StrongARMUARTState), .qdev.reset = strongarm_uart_reset, .qdev.vmsd = &vmstate_strongarm_uart_regs, .qdev.props = (Property[]) { DEFINE_PROP_CHR("chardev", StrongARMUARTState, chr), DEFINE_PROP_END_OF_LIST(), } }; /* Synchronous Serial Ports */ typedef struct { SysBusDevice busdev; MemoryRegion iomem; qemu_irq irq; SSIBus *bus; uint16_t sscr[2]; uint16_t sssr; uint16_t rx_fifo[8]; uint8_t rx_level; uint8_t rx_start; } StrongARMSSPState; #define SSCR0 0x60 /* SSP Control register 0 */ #define SSCR1 0x64 /* SSP Control register 1 */ #define SSDR 0x6c /* SSP Data register */ #define SSSR 0x74 /* SSP Status register */ /* Bitfields for above registers */ #define SSCR0_SPI(x) (((x) & 0x30) == 0x00) #define SSCR0_SSP(x) (((x) & 0x30) == 0x10) #define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20) #define SSCR0_PSP(x) (((x) & 0x30) == 0x30) #define SSCR0_SSE (1 << 7) #define SSCR0_DSS(x) (((x) & 0xf) + 1) #define SSCR1_RIE (1 << 0) #define SSCR1_TIE (1 << 1) #define SSCR1_LBM (1 << 2) #define SSSR_TNF (1 << 2) #define SSSR_RNE (1 << 3) #define SSSR_TFS (1 << 5) #define SSSR_RFS (1 << 6) #define SSSR_ROR (1 << 7) #define SSSR_RW 0x0080 static void strongarm_ssp_int_update(StrongARMSSPState *s) { int level = 0; level |= (s->sssr & SSSR_ROR); level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE); level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE); qemu_set_irq(s->irq, level); } static void strongarm_ssp_fifo_update(StrongARMSSPState *s) { s->sssr &= ~SSSR_TFS; s->sssr &= ~SSSR_TNF; if (s->sscr[0] & SSCR0_SSE) { if (s->rx_level >= 4) { s->sssr |= SSSR_RFS; } else { s->sssr &= ~SSSR_RFS; } if (s->rx_level) { s->sssr |= SSSR_RNE; } else { s->sssr &= ~SSSR_RNE; } /* TX FIFO is never filled, so it is always in underrun condition if SSP is enabled */ s->sssr |= SSSR_TFS; s->sssr |= SSSR_TNF; } strongarm_ssp_int_update(s); } static uint64_t strongarm_ssp_read(void *opaque, target_phys_addr_t addr, unsigned size) { StrongARMSSPState *s = opaque; uint32_t retval; switch (addr) { case SSCR0: return s->sscr[0]; case SSCR1: return s->sscr[1]; case SSSR: return s->sssr; case SSDR: if (~s->sscr[0] & SSCR0_SSE) { return 0xffffffff; } if (s->rx_level < 1) { printf("%s: SSP Rx Underrun\n", __func__); return 0xffffffff; } s->rx_level--; retval = s->rx_fifo[s->rx_start++]; s->rx_start &= 0x7; strongarm_ssp_fifo_update(s); return retval; default: printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr); break; } return 0; } static void strongarm_ssp_write(void *opaque, target_phys_addr_t addr, uint64_t value, unsigned size) { StrongARMSSPState *s = opaque; switch (addr) { case SSCR0: s->sscr[0] = value & 0xffbf; if ((s->sscr[0] & SSCR0_SSE) && SSCR0_DSS(value) < 4) { printf("%s: Wrong data size: %i bits\n", __func__, (int)SSCR0_DSS(value)); } if (!(value & SSCR0_SSE)) { s->sssr = 0; s->rx_level = 0; } strongarm_ssp_fifo_update(s); break; case SSCR1: s->sscr[1] = value & 0x2f; if (value & SSCR1_LBM) { printf("%s: Attempt to use SSP LBM mode\n", __func__); } strongarm_ssp_fifo_update(s); break; case SSSR: s->sssr &= ~(value & SSSR_RW); strongarm_ssp_int_update(s); break; case SSDR: if (SSCR0_UWIRE(s->sscr[0])) { value &= 0xff; } else /* Note how 32bits overflow does no harm here */ value &= (1 << SSCR0_DSS(s->sscr[0])) - 1; /* Data goes from here to the Tx FIFO and is shifted out from * there directly to the slave, no need to buffer it. */ if (s->sscr[0] & SSCR0_SSE) { uint32_t readval; if (s->sscr[1] & SSCR1_LBM) { readval = value; } else { readval = ssi_transfer(s->bus, value); } if (s->rx_level < 0x08) { s->rx_fifo[(s->rx_start + s->rx_level++) & 0x7] = readval; } else { s->sssr |= SSSR_ROR; } } strongarm_ssp_fifo_update(s); break; default: printf("%s: Bad register 0x" TARGET_FMT_plx "\n", __func__, addr); break; } } static const MemoryRegionOps strongarm_ssp_ops = { .read = strongarm_ssp_read, .write = strongarm_ssp_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static int strongarm_ssp_post_load(void *opaque, int version_id) { StrongARMSSPState *s = opaque; strongarm_ssp_fifo_update(s); return 0; } static int strongarm_ssp_init(SysBusDevice *dev) { StrongARMSSPState *s = FROM_SYSBUS(StrongARMSSPState, dev); sysbus_init_irq(dev, &s->irq); memory_region_init_io(&s->iomem, &strongarm_ssp_ops, s, "ssp", 0x1000); sysbus_init_mmio(dev, &s->iomem); s->bus = ssi_create_bus(&dev->qdev, "ssi"); return 0; } static void strongarm_ssp_reset(DeviceState *dev) { StrongARMSSPState *s = DO_UPCAST(StrongARMSSPState, busdev.qdev, dev); s->sssr = 0x03; /* 3 bit data, SPI, disabled */ s->rx_start = 0; s->rx_level = 0; } static const VMStateDescription vmstate_strongarm_ssp_regs = { .name = "strongarm-ssp", .version_id = 0, .minimum_version_id = 0, .minimum_version_id_old = 0, .post_load = strongarm_ssp_post_load, .fields = (VMStateField[]) { VMSTATE_UINT16_ARRAY(sscr, StrongARMSSPState, 2), VMSTATE_UINT16(sssr, StrongARMSSPState), VMSTATE_UINT16_ARRAY(rx_fifo, StrongARMSSPState, 8), VMSTATE_UINT8(rx_start, StrongARMSSPState), VMSTATE_UINT8(rx_level, StrongARMSSPState), VMSTATE_END_OF_LIST(), }, }; static SysBusDeviceInfo strongarm_ssp_info = { .init = strongarm_ssp_init, .qdev.name = "strongarm-ssp", .qdev.desc = "StrongARM SSP controller", .qdev.size = sizeof(StrongARMSSPState), .qdev.reset = strongarm_ssp_reset, .qdev.vmsd = &vmstate_strongarm_ssp_regs, }; /* Main CPU functions */ StrongARMState *sa1110_init(MemoryRegion *sysmem, unsigned int sdram_size, const char *rev) { StrongARMState *s; qemu_irq *pic; int i; s = g_malloc0(sizeof(StrongARMState)); if (!rev) { rev = "sa1110-b5"; } if (strncmp(rev, "sa1110", 6)) { error_report("Machine requires a SA1110 processor."); exit(1); } s->env = cpu_init(rev); if (!s->env) { error_report("Unable to find CPU definition"); exit(1); } memory_region_init_ram(&s->sdram, "strongarm.sdram", sdram_size); vmstate_register_ram_global(&s->sdram); memory_region_add_subregion(sysmem, SA_SDCS0, &s->sdram); pic = arm_pic_init_cpu(s->env); s->pic = sysbus_create_varargs("strongarm_pic", 0x90050000, pic[ARM_PIC_CPU_IRQ], pic[ARM_PIC_CPU_FIQ], NULL); sysbus_create_varargs("pxa25x-timer", 0x90000000, qdev_get_gpio_in(s->pic, SA_PIC_OSTC0), qdev_get_gpio_in(s->pic, SA_PIC_OSTC1), qdev_get_gpio_in(s->pic, SA_PIC_OSTC2), qdev_get_gpio_in(s->pic, SA_PIC_OSTC3), NULL); sysbus_create_simple("strongarm-rtc", 0x90010000, qdev_get_gpio_in(s->pic, SA_PIC_RTC_ALARM)); s->gpio = strongarm_gpio_init(0x90040000, s->pic); s->ppc = sysbus_create_varargs("strongarm-ppc", 0x90060000, NULL); for (i = 0; sa_serial[i].io_base; i++) { DeviceState *dev = qdev_create(NULL, "strongarm-uart"); qdev_prop_set_chr(dev, "chardev", serial_hds[i]); qdev_init_nofail(dev); sysbus_mmio_map(sysbus_from_qdev(dev), 0, sa_serial[i].io_base); sysbus_connect_irq(sysbus_from_qdev(dev), 0, qdev_get_gpio_in(s->pic, sa_serial[i].irq)); } s->ssp = sysbus_create_varargs("strongarm-ssp", 0x80070000, qdev_get_gpio_in(s->pic, SA_PIC_SSP), NULL); s->ssp_bus = (SSIBus *)qdev_get_child_bus(s->ssp, "ssi"); return s; } static void strongarm_register_devices(void) { sysbus_register_withprop(&strongarm_pic_info); sysbus_register_withprop(&strongarm_rtc_sysbus_info); sysbus_register_withprop(&strongarm_gpio_info); sysbus_register_withprop(&strongarm_ppc_info); sysbus_register_withprop(&strongarm_uart_info); sysbus_register_withprop(&strongarm_ssp_info); } device_init(strongarm_register_devices)