/* * Luminary Micro Stellaris preipherals * * Copyright (c) 2006 CodeSourcery. * Written by Paul Brook * * This code is licenced under the GPL. */ #include "hw.h" #include "arm-misc.h" #include "primecell.h" #include "devices.h" #include "qemu-timer.h" #include "i2c.h" #include "sysemu.h" #include "boards.h" typedef const struct { const char *name; uint32_t did0; uint32_t did1; uint32_t dc0; uint32_t dc1; uint32_t dc2; uint32_t dc3; uint32_t dc4; enum {OLED_I2C, OLED_SSI} oled; } stellaris_board_info; /* General purpose timer module. */ /* Multiplication factor to convert from GPTM timer ticks to qemu timer ticks. */ static int stellaris_clock_scale; typedef struct gptm_state { uint32_t config; uint32_t mode[2]; uint32_t control; uint32_t state; uint32_t mask; uint32_t load[2]; uint32_t match[2]; uint32_t prescale[2]; uint32_t match_prescale[2]; uint32_t rtc; int64_t tick[2]; struct gptm_state *opaque[2]; uint32_t base; QEMUTimer *timer[2]; /* The timers have an alternate output used to trigger the ADC. */ qemu_irq trigger; qemu_irq irq; } gptm_state; static void gptm_update_irq(gptm_state *s) { int level; level = (s->state & s->mask) != 0; qemu_set_irq(s->irq, level); } static void gptm_stop(gptm_state *s, int n) { qemu_del_timer(s->timer[n]); } static void gptm_reload(gptm_state *s, int n, int reset) { int64_t tick; if (reset) tick = qemu_get_clock(vm_clock); else tick = s->tick[n]; if (s->config == 0) { /* 32-bit CountDown. */ uint32_t count; count = s->load[0] | (s->load[1] << 16); tick += (int64_t)count * stellaris_clock_scale; } else if (s->config == 1) { /* 32-bit RTC. 1Hz tick. */ tick += ticks_per_sec; } else if (s->mode[n] == 0xa) { /* PWM mode. Not implemented. */ } else { cpu_abort(cpu_single_env, "TODO: 16-bit timer mode 0x%x\n", s->mode[n]); } s->tick[n] = tick; qemu_mod_timer(s->timer[n], tick); } static void gptm_tick(void *opaque) { gptm_state **p = (gptm_state **)opaque; gptm_state *s; int n; s = *p; n = p - s->opaque; if (s->config == 0) { s->state |= 1; if ((s->control & 0x20)) { /* Output trigger. */ qemu_irq_raise(s->trigger); qemu_irq_lower(s->trigger); } if (s->mode[0] & 1) { /* One-shot. */ s->control &= ~1; } else { /* Periodic. */ gptm_reload(s, 0, 0); } } else if (s->config == 1) { /* RTC. */ uint32_t match; s->rtc++; match = s->match[0] | (s->match[1] << 16); if (s->rtc > match) s->rtc = 0; if (s->rtc == 0) { s->state |= 8; } gptm_reload(s, 0, 0); } else if (s->mode[n] == 0xa) { /* PWM mode. Not implemented. */ } else { cpu_abort(cpu_single_env, "TODO: 16-bit timer mode 0x%x\n", s->mode[n]); } gptm_update_irq(s); } static uint32_t gptm_read(void *opaque, target_phys_addr_t offset) { gptm_state *s = (gptm_state *)opaque; offset -= s->base; switch (offset) { case 0x00: /* CFG */ return s->config; case 0x04: /* TAMR */ return s->mode[0]; case 0x08: /* TBMR */ return s->mode[1]; case 0x0c: /* CTL */ return s->control; case 0x18: /* IMR */ return s->mask; case 0x1c: /* RIS */ return s->state; case 0x20: /* MIS */ return s->state & s->mask; case 0x24: /* CR */ return 0; case 0x28: /* TAILR */ return s->load[0] | ((s->config < 4) ? (s->load[1] << 16) : 0); case 0x2c: /* TBILR */ return s->load[1]; case 0x30: /* TAMARCHR */ return s->match[0] | ((s->config < 4) ? (s->match[1] << 16) : 0); case 0x34: /* TBMATCHR */ return s->match[1]; case 0x38: /* TAPR */ return s->prescale[0]; case 0x3c: /* TBPR */ return s->prescale[1]; case 0x40: /* TAPMR */ return s->match_prescale[0]; case 0x44: /* TBPMR */ return s->match_prescale[1]; case 0x48: /* TAR */ if (s->control == 1) return s->rtc; case 0x4c: /* TBR */ cpu_abort(cpu_single_env, "TODO: Timer value read\n"); default: cpu_abort(cpu_single_env, "gptm_read: Bad offset 0x%x\n", (int)offset); return 0; } } static void gptm_write(void *opaque, target_phys_addr_t offset, uint32_t value) { gptm_state *s = (gptm_state *)opaque; uint32_t oldval; offset -= s->base; /* The timers should be disabled before changing the configuration. We take advantage of this and defer everything until the timer is enabled. */ switch (offset) { case 0x00: /* CFG */ s->config = value; break; case 0x04: /* TAMR */ s->mode[0] = value; break; case 0x08: /* TBMR */ s->mode[1] = value; break; case 0x0c: /* CTL */ oldval = s->control; s->control = value; /* TODO: Implement pause. */ if ((oldval ^ value) & 1) { if (value & 1) { gptm_reload(s, 0, 1); } else { gptm_stop(s, 0); } } if (((oldval ^ value) & 0x100) && s->config >= 4) { if (value & 0x100) { gptm_reload(s, 1, 1); } else { gptm_stop(s, 1); } } break; case 0x18: /* IMR */ s->mask = value & 0x77; gptm_update_irq(s); break; case 0x24: /* CR */ s->state &= ~value; break; case 0x28: /* TAILR */ s->load[0] = value & 0xffff; if (s->config < 4) { s->load[1] = value >> 16; } break; case 0x2c: /* TBILR */ s->load[1] = value & 0xffff; break; case 0x30: /* TAMARCHR */ s->match[0] = value & 0xffff; if (s->config < 4) { s->match[1] = value >> 16; } break; case 0x34: /* TBMATCHR */ s->match[1] = value >> 16; break; case 0x38: /* TAPR */ s->prescale[0] = value; break; case 0x3c: /* TBPR */ s->prescale[1] = value; break; case 0x40: /* TAPMR */ s->match_prescale[0] = value; break; case 0x44: /* TBPMR */ s->match_prescale[0] = value; break; default: cpu_abort(cpu_single_env, "gptm_write: Bad offset 0x%x\n", (int)offset); } gptm_update_irq(s); } static CPUReadMemoryFunc *gptm_readfn[] = { gptm_read, gptm_read, gptm_read }; static CPUWriteMemoryFunc *gptm_writefn[] = { gptm_write, gptm_write, gptm_write }; static void stellaris_gptm_init(uint32_t base, qemu_irq irq, qemu_irq trigger) { int iomemtype; gptm_state *s; s = (gptm_state *)qemu_mallocz(sizeof(gptm_state)); s->base = base; s->irq = irq; s->trigger = trigger; s->opaque[0] = s->opaque[1] = s; iomemtype = cpu_register_io_memory(0, gptm_readfn, gptm_writefn, s); cpu_register_physical_memory(base, 0x00001000, iomemtype); s->timer[0] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[0]); s->timer[1] = qemu_new_timer(vm_clock, gptm_tick, &s->opaque[1]); /* ??? Save/restore. */ } /* System controller. */ typedef struct { uint32_t base; uint32_t pborctl; uint32_t ldopctl; uint32_t int_status; uint32_t int_mask; uint32_t resc; uint32_t rcc; uint32_t rcgc[3]; uint32_t scgc[3]; uint32_t dcgc[3]; uint32_t clkvclr; uint32_t ldoarst; qemu_irq irq; stellaris_board_info *board; } ssys_state; static void ssys_update(ssys_state *s) { qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0); } static uint32_t pllcfg_sandstorm[16] = { 0x31c0, /* 1 Mhz */ 0x1ae0, /* 1.8432 Mhz */ 0x18c0, /* 2 Mhz */ 0xd573, /* 2.4576 Mhz */ 0x37a6, /* 3.57954 Mhz */ 0x1ae2, /* 3.6864 Mhz */ 0x0c40, /* 4 Mhz */ 0x98bc, /* 4.906 Mhz */ 0x935b, /* 4.9152 Mhz */ 0x09c0, /* 5 Mhz */ 0x4dee, /* 5.12 Mhz */ 0x0c41, /* 6 Mhz */ 0x75db, /* 6.144 Mhz */ 0x1ae6, /* 7.3728 Mhz */ 0x0600, /* 8 Mhz */ 0x585b /* 8.192 Mhz */ }; static uint32_t pllcfg_fury[16] = { 0x3200, /* 1 Mhz */ 0x1b20, /* 1.8432 Mhz */ 0x1900, /* 2 Mhz */ 0xf42b, /* 2.4576 Mhz */ 0x37e3, /* 3.57954 Mhz */ 0x1b21, /* 3.6864 Mhz */ 0x0c80, /* 4 Mhz */ 0x98ee, /* 4.906 Mhz */ 0xd5b4, /* 4.9152 Mhz */ 0x0a00, /* 5 Mhz */ 0x4e27, /* 5.12 Mhz */ 0x1902, /* 6 Mhz */ 0xec1c, /* 6.144 Mhz */ 0x1b23, /* 7.3728 Mhz */ 0x0640, /* 8 Mhz */ 0xb11c /* 8.192 Mhz */ }; static uint32_t ssys_read(void *opaque, target_phys_addr_t offset) { ssys_state *s = (ssys_state *)opaque; offset -= s->base; switch (offset) { case 0x000: /* DID0 */ return s->board->did0; case 0x004: /* DID1 */ return s->board->did1; case 0x008: /* DC0 */ return s->board->dc0; case 0x010: /* DC1 */ return s->board->dc1; case 0x014: /* DC2 */ return s->board->dc2; case 0x018: /* DC3 */ return s->board->dc3; case 0x01c: /* DC4 */ return s->board->dc4; case 0x030: /* PBORCTL */ return s->pborctl; case 0x034: /* LDOPCTL */ return s->ldopctl; case 0x040: /* SRCR0 */ return 0; case 0x044: /* SRCR1 */ return 0; case 0x048: /* SRCR2 */ return 0; case 0x050: /* RIS */ return s->int_status; case 0x054: /* IMC */ return s->int_mask; case 0x058: /* MISC */ return s->int_status & s->int_mask; case 0x05c: /* RESC */ return s->resc; case 0x060: /* RCC */ return s->rcc; case 0x064: /* PLLCFG */ { int xtal; xtal = (s->rcc >> 6) & 0xf; if (s->board->did0 & (1 << 16)) { return pllcfg_fury[xtal]; } else { return pllcfg_sandstorm[xtal]; } } case 0x100: /* RCGC0 */ return s->rcgc[0]; case 0x104: /* RCGC1 */ return s->rcgc[1]; case 0x108: /* RCGC2 */ return s->rcgc[2]; case 0x110: /* SCGC0 */ return s->scgc[0]; case 0x114: /* SCGC1 */ return s->scgc[1]; case 0x118: /* SCGC2 */ return s->scgc[2]; case 0x120: /* DCGC0 */ return s->dcgc[0]; case 0x124: /* DCGC1 */ return s->dcgc[1]; case 0x128: /* DCGC2 */ return s->dcgc[2]; case 0x150: /* CLKVCLR */ return s->clkvclr; case 0x160: /* LDOARST */ return s->ldoarst; default: cpu_abort(cpu_single_env, "gptm_read: Bad offset 0x%x\n", (int)offset); return 0; } } static void ssys_write(void *opaque, target_phys_addr_t offset, uint32_t value) { ssys_state *s = (ssys_state *)opaque; offset -= s->base; switch (offset) { case 0x030: /* PBORCTL */ s->pborctl = value & 0xffff; break; case 0x034: /* LDOPCTL */ s->ldopctl = value & 0x1f; break; case 0x040: /* SRCR0 */ case 0x044: /* SRCR1 */ case 0x048: /* SRCR2 */ fprintf(stderr, "Peripheral reset not implemented\n"); break; case 0x054: /* IMC */ s->int_mask = value & 0x7f; break; case 0x058: /* MISC */ s->int_status &= ~value; break; case 0x05c: /* RESC */ s->resc = value & 0x3f; break; case 0x060: /* RCC */ if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) { /* PLL enable. */ s->int_status |= (1 << 6); } s->rcc = value; stellaris_clock_scale = 5 * (((s->rcc >> 23) & 0xf) + 1); break; case 0x100: /* RCGC0 */ s->rcgc[0] = value; break; case 0x104: /* RCGC1 */ s->rcgc[1] = value; break; case 0x108: /* RCGC2 */ s->rcgc[2] = value; break; case 0x110: /* SCGC0 */ s->scgc[0] = value; break; case 0x114: /* SCGC1 */ s->scgc[1] = value; break; case 0x118: /* SCGC2 */ s->scgc[2] = value; break; case 0x120: /* DCGC0 */ s->dcgc[0] = value; break; case 0x124: /* DCGC1 */ s->dcgc[1] = value; break; case 0x128: /* DCGC2 */ s->dcgc[2] = value; break; case 0x150: /* CLKVCLR */ s->clkvclr = value; break; case 0x160: /* LDOARST */ s->ldoarst = value; break; default: cpu_abort(cpu_single_env, "gptm_write: Bad offset 0x%x\n", (int)offset); } ssys_update(s); } static CPUReadMemoryFunc *ssys_readfn[] = { ssys_read, ssys_read, ssys_read }; static CPUWriteMemoryFunc *ssys_writefn[] = { ssys_write, ssys_write, ssys_write }; void ssys_reset(void *opaque) { ssys_state *s = (ssys_state *)opaque; s->pborctl = 0x7ffd; s->rcc = 0x078e3ac0; s->rcgc[0] = 1; s->scgc[0] = 1; s->dcgc[0] = 1; } static void stellaris_sys_init(uint32_t base, qemu_irq irq, stellaris_board_info * board) { int iomemtype; ssys_state *s; s = (ssys_state *)qemu_mallocz(sizeof(ssys_state)); s->base = base; s->irq = irq; s->board = board; iomemtype = cpu_register_io_memory(0, ssys_readfn, ssys_writefn, s); cpu_register_physical_memory(base, 0x00001000, iomemtype); ssys_reset(s); /* ??? Save/restore. */ } /* I2C controller. */ typedef struct { i2c_bus *bus; qemu_irq irq; uint32_t base; uint32_t msa; uint32_t mcs; uint32_t mdr; uint32_t mtpr; uint32_t mimr; uint32_t mris; uint32_t mcr; } stellaris_i2c_state; #define STELLARIS_I2C_MCS_BUSY 0x01 #define STELLARIS_I2C_MCS_ERROR 0x02 #define STELLARIS_I2C_MCS_ADRACK 0x04 #define STELLARIS_I2C_MCS_DATACK 0x08 #define STELLARIS_I2C_MCS_ARBLST 0x10 #define STELLARIS_I2C_MCS_IDLE 0x20 #define STELLARIS_I2C_MCS_BUSBSY 0x40 static uint32_t stellaris_i2c_read(void *opaque, target_phys_addr_t offset) { stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; offset -= s->base; switch (offset) { case 0x00: /* MSA */ return s->msa; case 0x04: /* MCS */ /* We don't emulate timing, so the controller is never busy. */ return s->mcs | STELLARIS_I2C_MCS_IDLE; case 0x08: /* MDR */ return s->mdr; case 0x0c: /* MTPR */ return s->mtpr; case 0x10: /* MIMR */ return s->mimr; case 0x14: /* MRIS */ return s->mris; case 0x18: /* MMIS */ return s->mris & s->mimr; case 0x20: /* MCR */ return s->mcr; default: cpu_abort(cpu_single_env, "strllaris_i2c_read: Bad offset 0x%x\n", (int)offset); return 0; } } static void stellaris_i2c_update(stellaris_i2c_state *s) { int level; level = (s->mris & s->mimr) != 0; qemu_set_irq(s->irq, level); } static void stellaris_i2c_write(void *opaque, target_phys_addr_t offset, uint32_t value) { stellaris_i2c_state *s = (stellaris_i2c_state *)opaque; offset -= s->base; switch (offset) { case 0x00: /* MSA */ s->msa = value & 0xff; break; case 0x04: /* MCS */ if ((s->mcr & 0x10) == 0) { /* Disabled. Do nothing. */ break; } /* Grab the bus if this is starting a transfer. */ if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) { s->mcs |= STELLARIS_I2C_MCS_ARBLST; } else { s->mcs &= ~STELLARIS_I2C_MCS_ARBLST; s->mcs |= STELLARIS_I2C_MCS_BUSBSY; } } /* If we don't have the bus then indicate an error. */ if (!i2c_bus_busy(s->bus) || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) { s->mcs |= STELLARIS_I2C_MCS_ERROR; break; } s->mcs &= ~STELLARIS_I2C_MCS_ERROR; if (value & 1) { /* Transfer a byte. */ /* TODO: Handle errors. */ if (s->msa & 1) { /* Recv */ s->mdr = i2c_recv(s->bus) & 0xff; } else { /* Send */ i2c_send(s->bus, s->mdr); } /* Raise an interrupt. */ s->mris |= 1; } if (value & 4) { /* Finish transfer. */ i2c_end_transfer(s->bus); s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY; } break; case 0x08: /* MDR */ s->mdr = value & 0xff; break; case 0x0c: /* MTPR */ s->mtpr = value & 0xff; break; case 0x10: /* MIMR */ s->mimr = 1; break; case 0x1c: /* MICR */ s->mris &= ~value; break; case 0x20: /* MCR */ if (value & 1) cpu_abort(cpu_single_env, "stellaris_i2c_write: Loopback not implemented\n"); if (value & 0x20) cpu_abort(cpu_single_env, "stellaris_i2c_write: Slave mode not implemented\n"); s->mcr = value & 0x31; break; default: cpu_abort(cpu_single_env, "stellaris_i2c_write: Bad offset 0x%x\n", (int)offset); } stellaris_i2c_update(s); } static void stellaris_i2c_reset(stellaris_i2c_state *s) { if (s->mcs & STELLARIS_I2C_MCS_BUSBSY) i2c_end_transfer(s->bus); s->msa = 0; s->mcs = 0; s->mdr = 0; s->mtpr = 1; s->mimr = 0; s->mris = 0; s->mcr = 0; stellaris_i2c_update(s); } static CPUReadMemoryFunc *stellaris_i2c_readfn[] = { stellaris_i2c_read, stellaris_i2c_read, stellaris_i2c_read }; static CPUWriteMemoryFunc *stellaris_i2c_writefn[] = { stellaris_i2c_write, stellaris_i2c_write, stellaris_i2c_write }; static void stellaris_i2c_init(uint32_t base, qemu_irq irq, i2c_bus *bus) { stellaris_i2c_state *s; int iomemtype; s = (stellaris_i2c_state *)qemu_mallocz(sizeof(stellaris_i2c_state)); s->base = base; s->irq = irq; s->bus = bus; iomemtype = cpu_register_io_memory(0, stellaris_i2c_readfn, stellaris_i2c_writefn, s); cpu_register_physical_memory(base, 0x00001000, iomemtype); /* ??? For now we only implement the master interface. */ stellaris_i2c_reset(s); } /* Analogue to Digital Converter. This is only partially implemented, enough for applications that use a combined ADC and timer tick. */ #define STELLARIS_ADC_EM_CONTROLLER 0 #define STELLARIS_ADC_EM_COMP 1 #define STELLARIS_ADC_EM_EXTERNAL 4 #define STELLARIS_ADC_EM_TIMER 5 #define STELLARIS_ADC_EM_PWM0 6 #define STELLARIS_ADC_EM_PWM1 7 #define STELLARIS_ADC_EM_PWM2 8 #define STELLARIS_ADC_FIFO_EMPTY 0x0100 #define STELLARIS_ADC_FIFO_FULL 0x1000 typedef struct { uint32_t base; uint32_t actss; uint32_t ris; uint32_t im; uint32_t emux; uint32_t ostat; uint32_t ustat; uint32_t sspri; uint32_t sac; struct { uint32_t state; uint32_t data[16]; } fifo[4]; uint32_t ssmux[4]; uint32_t ssctl[4]; qemu_irq irq; } stellaris_adc_state; static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n) { int tail; tail = s->fifo[n].state & 0xf; if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) { s->ustat |= 1 << n; } else { s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf); s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL; if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf)) s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY; } return s->fifo[n].data[tail]; } static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n, uint32_t value) { int head; head = (s->fifo[n].state >> 4) & 0xf; if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) { s->ostat |= 1 << n; return; } s->fifo[n].data[head] = value; head = (head + 1) & 0xf; s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY; s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4); if ((s->fifo[n].state & 0xf) == head) s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL; } static void stellaris_adc_update(stellaris_adc_state *s) { int level; level = (s->ris & s->im) != 0; qemu_set_irq(s->irq, level); } static void stellaris_adc_trigger(void *opaque, int irq, int level) { stellaris_adc_state *s = (stellaris_adc_state *)opaque; /* Some applications use the ADC as a random number source, so introduce some variation into the signal. */ static uint32_t noise = 0; if ((s->actss & 1) == 0) { return; } noise = noise * 314159 + 1; /* ??? actual inputs not implemented. Return an arbitrary value. */ stellaris_adc_fifo_write(s, 0, 0x200 + ((noise >> 16) & 7)); s->ris |= 1; stellaris_adc_update(s); } static void stellaris_adc_reset(stellaris_adc_state *s) { int n; for (n = 0; n < 4; n++) { s->ssmux[n] = 0; s->ssctl[n] = 0; s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY; } } static uint32_t stellaris_adc_read(void *opaque, target_phys_addr_t offset) { stellaris_adc_state *s = (stellaris_adc_state *)opaque; /* TODO: Implement this. */ offset -= s->base; if (offset >= 0x40 && offset < 0xc0) { int n; n = (offset - 0x40) >> 5; switch (offset & 0x1f) { case 0x00: /* SSMUX */ return s->ssmux[n]; case 0x04: /* SSCTL */ return s->ssctl[n]; case 0x08: /* SSFIFO */ return stellaris_adc_fifo_read(s, n); case 0x0c: /* SSFSTAT */ return s->fifo[n].state; default: break; } } switch (offset) { case 0x00: /* ACTSS */ return s->actss; case 0x04: /* RIS */ return s->ris; case 0x08: /* IM */ return s->im; case 0x0c: /* ISC */ return s->ris & s->im; case 0x10: /* OSTAT */ return s->ostat; case 0x14: /* EMUX */ return s->emux; case 0x18: /* USTAT */ return s->ustat; case 0x20: /* SSPRI */ return s->sspri; case 0x30: /* SAC */ return s->sac; default: cpu_abort(cpu_single_env, "strllaris_adc_read: Bad offset 0x%x\n", (int)offset); return 0; } } static void stellaris_adc_write(void *opaque, target_phys_addr_t offset, uint32_t value) { stellaris_adc_state *s = (stellaris_adc_state *)opaque; /* TODO: Implement this. */ offset -= s->base; if (offset >= 0x40 && offset < 0xc0) { int n; n = (offset - 0x40) >> 5; switch (offset & 0x1f) { case 0x00: /* SSMUX */ s->ssmux[n] = value & 0x33333333; return; case 0x04: /* SSCTL */ if (value != 6) { cpu_abort(cpu_single_env, "ADC: Unimplemented sequence %x\n", value); } s->ssctl[n] = value; return; default: break; } } switch (offset) { case 0x00: /* ACTSS */ s->actss = value & 0xf; if (value & 0xe) { cpu_abort(cpu_single_env, "Not implemented: ADC sequencers 1-3\n"); } break; case 0x08: /* IM */ s->im = value; break; case 0x0c: /* ISC */ s->ris &= ~value; break; case 0x10: /* OSTAT */ s->ostat &= ~value; break; case 0x14: /* EMUX */ s->emux = value; break; case 0x18: /* USTAT */ s->ustat &= ~value; break; case 0x20: /* SSPRI */ s->sspri = value; break; case 0x28: /* PSSI */ cpu_abort(cpu_single_env, "Not implemented: ADC sample initiate\n"); break; case 0x30: /* SAC */ s->sac = value; break; default: cpu_abort(cpu_single_env, "stellaris_adc_write: Bad offset 0x%x\n", (int)offset); } stellaris_adc_update(s); } static CPUReadMemoryFunc *stellaris_adc_readfn[] = { stellaris_adc_read, stellaris_adc_read, stellaris_adc_read }; static CPUWriteMemoryFunc *stellaris_adc_writefn[] = { stellaris_adc_write, stellaris_adc_write, stellaris_adc_write }; static qemu_irq stellaris_adc_init(uint32_t base, qemu_irq irq) { stellaris_adc_state *s; int iomemtype; qemu_irq *qi; s = (stellaris_adc_state *)qemu_mallocz(sizeof(stellaris_adc_state)); s->base = base; s->irq = irq; iomemtype = cpu_register_io_memory(0, stellaris_adc_readfn, stellaris_adc_writefn, s); cpu_register_physical_memory(base, 0x00001000, iomemtype); stellaris_adc_reset(s); qi = qemu_allocate_irqs(stellaris_adc_trigger, s, 1); return qi[0]; } /* Board init. */ static stellaris_board_info stellaris_boards[] = { { "LM3S811EVB", 0, 0x0032000e, 0x001f001f, /* dc0 */ 0x001132bf, 0x01071013, 0x3f0f01ff, 0x0000001f, OLED_I2C }, { "LM3S6965EVB", 0x10010002, 0x1073402e, 0x00ff007f, /* dc0 */ 0x001133ff, 0x030f5317, 0x0f0f87ff, 0x5000007f, OLED_SSI } }; static void stellaris_init(const char *kernel_filename, const char *cpu_model, DisplayState *ds, stellaris_board_info *board) { static const int uart_irq[] = {5, 6, 33, 34}; static const int timer_irq[] = {19, 21, 23, 35}; static const uint32_t gpio_addr[7] = { 0x40004000, 0x40005000, 0x40006000, 0x40007000, 0x40024000, 0x40025000, 0x40026000}; static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31}; qemu_irq *pic; qemu_irq *gpio_in[5]; qemu_irq *gpio_out[5]; qemu_irq adc; int sram_size; int flash_size; i2c_bus *i2c; int i; flash_size = ((board->dc0 & 0xffff) + 1) << 1; sram_size = (board->dc0 >> 18) + 1; pic = armv7m_init(flash_size, sram_size, kernel_filename, cpu_model); if (board->dc1 & (1 << 16)) { adc = stellaris_adc_init(0x40038000, pic[14]); } else { adc = NULL; } for (i = 0; i < 4; i++) { if (board->dc2 & (0x10000 << i)) { stellaris_gptm_init(0x40030000 + i * 0x1000, pic[timer_irq[i]], adc); } } stellaris_sys_init(0x400fe000, pic[28], board); for (i = 0; i < 7; i++) { if (board->dc4 & (1 << i)) { gpio_in[i] = pl061_init(gpio_addr[i], pic[gpio_irq[i]], &gpio_out[i]); } } if (board->dc2 & (1 << 12)) { i2c = i2c_init_bus(); stellaris_i2c_init(0x40020000, pic[8], i2c); if (board->oled == OLED_I2C) { ssd0303_init(ds, i2c, 0x3d); } } for (i = 0; i < 4; i++) { if (board->dc2 & (1 << i)) { pl011_init(0x4000c000 + i * 0x1000, pic[uart_irq[i]], serial_hds[i], PL011_LUMINARY); } } if (board->dc2 & (1 << 4)) { if (board->oled == OLED_SSI) { void * oled; /* FIXME: Implement chip select for OLED/MMC. */ oled = ssd0323_init(ds, &gpio_out[2][7]); pl022_init(0x40008000, pic[7], ssd0323_xfer_ssi, oled); } else { pl022_init(0x40008000, pic[7], NULL, NULL); } } } /* FIXME: Figure out how to generate these from stellaris_boards. */ static void lm3s811evb_init(int ram_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char **fd_filename, int snapshot, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { stellaris_init(kernel_filename, cpu_model, ds, &stellaris_boards[0]); } static void lm3s6965evb_init(int ram_size, int vga_ram_size, const char *boot_device, DisplayState *ds, const char **fd_filename, int snapshot, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { stellaris_init(kernel_filename, cpu_model, ds, &stellaris_boards[1]); } QEMUMachine lm3s811evb_machine = { "lm3s811evb", "Stellaris LM3S811EVB", lm3s811evb_init, }; QEMUMachine lm3s6965evb_machine = { "lm3s6965evb", "Stellaris LM3S6965EVB", lm3s6965evb_init, };