/* * QEMU sPAPR PCI host originated from Uninorth PCI host * * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation. * Copyright (C) 2011 David Gibson, IBM Corporation. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "hw.h" #include "pci.h" #include "pci_host.h" #include "hw/spapr.h" #include "hw/spapr_pci.h" #include "exec-memory.h" #include <libfdt.h> #include "hw/pci_internals.h" static PCIDevice *find_dev(sPAPREnvironment *spapr, uint64_t buid, uint32_t config_addr) { DeviceState *qdev; int devfn = (config_addr >> 8) & 0xFF; sPAPRPHBState *phb; QLIST_FOREACH(phb, &spapr->phbs, list) { if (phb->buid != buid) { continue; } QTAILQ_FOREACH(qdev, &phb->host_state.bus->qbus.children, sibling) { PCIDevice *dev = (PCIDevice *)qdev; if (dev->devfn == devfn) { return dev; } } } return NULL; } static uint32_t rtas_pci_cfgaddr(uint32_t arg) { return ((arg >> 20) & 0xf00) | (arg & 0xff); } static uint32_t rtas_read_pci_config_do(PCIDevice *pci_dev, uint32_t addr, uint32_t limit, uint32_t len) { if ((addr + len) <= limit) { return pci_host_config_read_common(pci_dev, addr, limit, len); } else { return ~0x0; } } static void rtas_write_pci_config_do(PCIDevice *pci_dev, uint32_t addr, uint32_t limit, uint32_t val, uint32_t len) { if ((addr + len) <= limit) { pci_host_config_write_common(pci_dev, addr, limit, val, len); } } static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t val, size, addr; uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); PCIDevice *dev = find_dev(spapr, buid, rtas_ld(args, 0)); if (!dev) { rtas_st(rets, 0, -1); return; } size = rtas_ld(args, 3); addr = rtas_pci_cfgaddr(rtas_ld(args, 0)); val = rtas_read_pci_config_do(dev, addr, pci_config_size(dev), size); rtas_st(rets, 0, 0); rtas_st(rets, 1, val); } static void rtas_read_pci_config(sPAPREnvironment *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t val, size, addr; PCIDevice *dev = find_dev(spapr, 0, rtas_ld(args, 0)); if (!dev) { rtas_st(rets, 0, -1); return; } size = rtas_ld(args, 1); addr = rtas_pci_cfgaddr(rtas_ld(args, 0)); val = rtas_read_pci_config_do(dev, addr, pci_config_size(dev), size); rtas_st(rets, 0, 0); rtas_st(rets, 1, val); } static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t val, size, addr; uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2); PCIDevice *dev = find_dev(spapr, buid, rtas_ld(args, 0)); if (!dev) { rtas_st(rets, 0, -1); return; } val = rtas_ld(args, 4); size = rtas_ld(args, 3); addr = rtas_pci_cfgaddr(rtas_ld(args, 0)); rtas_write_pci_config_do(dev, addr, pci_config_size(dev), val, size); rtas_st(rets, 0, 0); } static void rtas_write_pci_config(sPAPREnvironment *spapr, uint32_t token, uint32_t nargs, target_ulong args, uint32_t nret, target_ulong rets) { uint32_t val, size, addr; PCIDevice *dev = find_dev(spapr, 0, rtas_ld(args, 0)); if (!dev) { rtas_st(rets, 0, -1); return; } val = rtas_ld(args, 2); size = rtas_ld(args, 1); addr = rtas_pci_cfgaddr(rtas_ld(args, 0)); rtas_write_pci_config_do(dev, addr, pci_config_size(dev), val, size); rtas_st(rets, 0, 0); } static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num) { /* * Here we need to convert pci_dev + irq_num to some unique value * which is less than number of IRQs on the specific bus (now it * is 16). At the moment irq_num == device_id (number of the * slot?) * FIXME: we should swizzle in fn and irq_num */ return (pci_dev->devfn >> 3) % SPAPR_PCI_NUM_LSI; } static void pci_spapr_set_irq(void *opaque, int irq_num, int level) { /* * Here we use the number returned by pci_spapr_map_irq to find a * corresponding qemu_irq. */ sPAPRPHBState *phb = opaque; qemu_set_irq(phb->lsi_table[irq_num].qirq, level); } static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr, unsigned size) { switch (size) { case 1: return cpu_inb(addr); case 2: return cpu_inw(addr); case 4: return cpu_inl(addr); } assert(0); } static void spapr_io_write(void *opaque, target_phys_addr_t addr, uint64_t data, unsigned size) { switch (size) { case 1: cpu_outb(addr, data); return; case 2: cpu_outw(addr, data); return; case 4: cpu_outl(addr, data); return; } assert(0); } static const MemoryRegionOps spapr_io_ops = { .endianness = DEVICE_LITTLE_ENDIAN, .read = spapr_io_read, .write = spapr_io_write }; /* * PHB PCI device */ static int spapr_phb_init(SysBusDevice *s) { sPAPRPHBState *phb = FROM_SYSBUS(sPAPRPHBState, s); char *namebuf; int i; PCIBus *bus; phb->dtbusname = g_strdup_printf("pci@%" PRIx64, phb->buid); namebuf = alloca(strlen(phb->dtbusname) + 32); /* Initialize memory regions */ sprintf(namebuf, "%s.mmio", phb->dtbusname); memory_region_init(&phb->memspace, namebuf, INT64_MAX); sprintf(namebuf, "%s.mmio-alias", phb->dtbusname); memory_region_init_alias(&phb->memwindow, namebuf, &phb->memspace, SPAPR_PCI_MEM_WIN_BUS_OFFSET, phb->mem_win_size); memory_region_add_subregion(get_system_memory(), phb->mem_win_addr, &phb->memwindow); /* On ppc, we only have MMIO no specific IO space from the CPU * perspective. In theory we ought to be able to embed the PCI IO * memory region direction in the system memory space. However, * if any of the IO BAR subregions use the old_portio mechanism, * that won't be processed properly unless accessed from the * system io address space. This hack to bounce things via * system_io works around the problem until all the users of * old_portion are updated */ sprintf(namebuf, "%s.io", phb->dtbusname); memory_region_init(&phb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE); /* FIXME: fix to support multiple PHBs */ memory_region_add_subregion(get_system_io(), 0, &phb->iospace); sprintf(namebuf, "%s.io-alias", phb->dtbusname); memory_region_init_io(&phb->iowindow, &spapr_io_ops, phb, namebuf, SPAPR_PCI_IO_WIN_SIZE); memory_region_add_subregion(get_system_memory(), phb->io_win_addr, &phb->iowindow); bus = pci_register_bus(&phb->busdev.qdev, phb->busname ? phb->busname : phb->dtbusname, pci_spapr_set_irq, pci_spapr_map_irq, phb, &phb->memspace, &phb->iospace, PCI_DEVFN(0, 0), SPAPR_PCI_NUM_LSI); phb->host_state.bus = bus; QLIST_INSERT_HEAD(&spapr->phbs, phb, list); /* Initialize the LSI table */ for (i = 0; i < SPAPR_PCI_NUM_LSI; i++) { qemu_irq qirq; uint32_t num; qirq = spapr_allocate_lsi(0, &num); if (!qirq) { return -1; } phb->lsi_table[i].dt_irq = num; phb->lsi_table[i].qirq = qirq; } return 0; } static Property spapr_phb_properties[] = { DEFINE_PROP_HEX64("buid", sPAPRPHBState, buid, 0), DEFINE_PROP_STRING("busname", sPAPRPHBState, busname), DEFINE_PROP_HEX64("mem_win_addr", sPAPRPHBState, mem_win_addr, 0), DEFINE_PROP_HEX64("mem_win_size", sPAPRPHBState, mem_win_size, 0x20000000), DEFINE_PROP_HEX64("io_win_addr", sPAPRPHBState, io_win_addr, 0), DEFINE_PROP_HEX64("io_win_size", sPAPRPHBState, io_win_size, 0x10000), DEFINE_PROP_END_OF_LIST(), }; static void spapr_phb_class_init(ObjectClass *klass, void *data) { SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); sdc->init = spapr_phb_init; dc->props = spapr_phb_properties; spapr_rtas_register("read-pci-config", rtas_read_pci_config); spapr_rtas_register("write-pci-config", rtas_write_pci_config); spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config); spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config); } static TypeInfo spapr_phb_info = { .name = "spapr-pci-host-bridge", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(sPAPRPHBState), .class_init = spapr_phb_class_init, }; void spapr_create_phb(sPAPREnvironment *spapr, const char *busname, uint64_t buid, uint64_t mem_win_addr, uint64_t mem_win_size, uint64_t io_win_addr) { DeviceState *dev; dev = qdev_create(NULL, spapr_phb_info.name); if (busname) { qdev_prop_set_string(dev, "busname", g_strdup(busname)); } qdev_prop_set_uint64(dev, "buid", buid); qdev_prop_set_uint64(dev, "mem_win_addr", mem_win_addr); qdev_prop_set_uint64(dev, "mem_win_size", mem_win_size); qdev_prop_set_uint64(dev, "io_win_addr", io_win_addr); qdev_init_nofail(dev); } /* Macros to operate with address in OF binding to PCI */ #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p)) #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */ #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */ #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */ #define b_ss(x) b_x((x), 24, 2) /* the space code */ #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */ #define b_ddddd(x) b_x((x), 11, 5) /* device number */ #define b_fff(x) b_x((x), 8, 3) /* function number */ #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */ int spapr_populate_pci_devices(sPAPRPHBState *phb, uint32_t xics_phandle, void *fdt) { PCIBus *bus = phb->host_state.bus; int bus_off, i; char nodename[256]; uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) }; struct { uint32_t hi; uint64_t child; uint64_t parent; uint64_t size; } __attribute__((packed)) ranges[] = { { cpu_to_be32(b_ss(1)), cpu_to_be64(0), cpu_to_be64(phb->io_win_addr), cpu_to_be64(memory_region_size(&phb->iospace)), }, { cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET), cpu_to_be64(phb->mem_win_addr), cpu_to_be64(memory_region_size(&phb->memwindow)), }, }; uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 }; uint32_t interrupt_map_mask[] = { cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, 0x0}; uint32_t interrupt_map[bus->nirq][7]; /* Start populating the FDT */ sprintf(nodename, "pci@%" PRIx64, phb->buid); bus_off = fdt_add_subnode(fdt, 0, nodename); if (bus_off < 0) { return bus_off; } #define _FDT(exp) \ do { \ int ret = (exp); \ if (ret < 0) { \ return ret; \ } \ } while (0) /* Write PHB properties */ _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci")); _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB")); _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3)); _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2)); _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1)); _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0)); _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range))); _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges))); _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg))); _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1)); /* Build the interrupt-map, this must matches what is done * in pci_spapr_map_irq */ _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask", &interrupt_map_mask, sizeof(interrupt_map_mask))); for (i = 0; i < 7; i++) { uint32_t *irqmap = interrupt_map[i]; irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0)); irqmap[1] = 0; irqmap[2] = 0; irqmap[3] = 0; irqmap[4] = cpu_to_be32(xics_phandle); irqmap[5] = cpu_to_be32(phb->lsi_table[i % SPAPR_PCI_NUM_LSI].dt_irq); irqmap[6] = cpu_to_be32(0x8); } /* Write interrupt map */ _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map, 7 * sizeof(interrupt_map[0]))); return 0; } static void register_types(void) { type_register_static(&spapr_phb_info); } type_init(register_types)