/* * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator * * Copyright (c) 2004-2007 Fabrice Bellard * Copyright (c) 2007 Jocelyn Mayer * Copyright (c) 2010 David Gibson, IBM Corporation. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "sysemu.h" #include "hw.h" #include "elf.h" #include "net.h" #include "blockdev.h" #include "cpus.h" #include "kvm.h" #include "kvm_ppc.h" #include "hw/boards.h" #include "hw/ppc.h" #include "hw/loader.h" #include "hw/spapr.h" #include "hw/spapr_vio.h" #include "hw/spapr_pci.h" #include "hw/xics.h" #include "hw/msi.h" #include "kvm.h" #include "kvm_ppc.h" #include "pci.h" #include "vga-pci.h" #include "exec-memory.h" #include "hw/usb.h" #include <libfdt.h> /* SLOF memory layout: * * SLOF raw image loaded at 0, copies its romfs right below the flat * device-tree, then position SLOF itself 31M below that * * So we set FW_OVERHEAD to 40MB which should account for all of that * and more * * We load our kernel at 4M, leaving space for SLOF initial image */ #define FDT_MAX_SIZE 0x10000 #define RTAS_MAX_SIZE 0x10000 #define FW_MAX_SIZE 0x400000 #define FW_FILE_NAME "slof.bin" #define FW_OVERHEAD 0x2800000 #define KERNEL_LOAD_ADDR FW_MAX_SIZE #define MIN_RMA_SLOF 128UL #define TIMEBASE_FREQ 512000000ULL #define MAX_CPUS 256 #define XICS_IRQS 1024 #define SPAPR_PCI_BUID 0x800000020000001ULL #define SPAPR_PCI_MEM_WIN_ADDR (0x10000000000ULL + 0xA0000000) #define SPAPR_PCI_MEM_WIN_SIZE 0x20000000 #define SPAPR_PCI_IO_WIN_ADDR (0x10000000000ULL + 0x80000000) #define SPAPR_PCI_MSI_WIN_ADDR (0x10000000000ULL + 0x90000000) #define PHANDLE_XICP 0x00001111 sPAPREnvironment *spapr; int spapr_allocate_irq(int hint, enum xics_irq_type type) { int irq; if (hint) { irq = hint; /* FIXME: we should probably check for collisions somehow */ } else { irq = spapr->next_irq++; } /* Configure irq type */ if (!xics_get_qirq(spapr->icp, irq)) { return 0; } xics_set_irq_type(spapr->icp, irq, type); return irq; } /* Allocate block of consequtive IRQs, returns a number of the first */ int spapr_allocate_irq_block(int num, enum xics_irq_type type) { int first = -1; int i; for (i = 0; i < num; ++i) { int irq; irq = spapr_allocate_irq(0, type); if (!irq) { return -1; } if (0 == i) { first = irq; } /* If the above doesn't create a consecutive block then that's * an internal bug */ assert(irq == (first + i)); } return first; } static int spapr_set_associativity(void *fdt, sPAPREnvironment *spapr) { int ret = 0, offset; CPUPPCState *env; char cpu_model[32]; int smt = kvmppc_smt_threads(); assert(spapr->cpu_model); for (env = first_cpu; env != NULL; env = env->next_cpu) { uint32_t associativity[] = {cpu_to_be32(0x5), cpu_to_be32(0x0), cpu_to_be32(0x0), cpu_to_be32(0x0), cpu_to_be32(env->numa_node), cpu_to_be32(env->cpu_index)}; if ((env->cpu_index % smt) != 0) { continue; } snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model, env->cpu_index); offset = fdt_path_offset(fdt, cpu_model); if (offset < 0) { return offset; } ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity, sizeof(associativity)); if (ret < 0) { return ret; } } return ret; } static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop, size_t maxsize) { size_t maxcells = maxsize / sizeof(uint32_t); int i, j, count; uint32_t *p = prop; for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { struct ppc_one_seg_page_size *sps = &env->sps.sps[i]; if (!sps->page_shift) { break; } for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) { if (sps->enc[count].page_shift == 0) { break; } } if ((p - prop) >= (maxcells - 3 - count * 2)) { break; } *(p++) = cpu_to_be32(sps->page_shift); *(p++) = cpu_to_be32(sps->slb_enc); *(p++) = cpu_to_be32(count); for (j = 0; j < count; j++) { *(p++) = cpu_to_be32(sps->enc[j].page_shift); *(p++) = cpu_to_be32(sps->enc[j].pte_enc); } } return (p - prop) * sizeof(uint32_t); } static void *spapr_create_fdt_skel(const char *cpu_model, target_phys_addr_t rma_size, target_phys_addr_t initrd_base, target_phys_addr_t initrd_size, target_phys_addr_t kernel_size, const char *boot_device, const char *kernel_cmdline, long hash_shift) { void *fdt; CPUPPCState *env; uint64_t mem_reg_property[2]; uint32_t start_prop = cpu_to_be32(initrd_base); uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)}; char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt" "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk"; char qemu_hypertas_prop[] = "hcall-memop1"; uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)}; int i; char *modelname; int smt = kvmppc_smt_threads(); unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80}; uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)}; uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0), cpu_to_be32(0x0), cpu_to_be32(0x0), cpu_to_be32(0x0)}; char mem_name[32]; target_phys_addr_t node0_size, mem_start; #define _FDT(exp) \ do { \ int ret = (exp); \ if (ret < 0) { \ fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ #exp, fdt_strerror(ret)); \ exit(1); \ } \ } while (0) fdt = g_malloc0(FDT_MAX_SIZE); _FDT((fdt_create(fdt, FDT_MAX_SIZE))); if (kernel_size) { _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size))); } if (initrd_size) { _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size))); } _FDT((fdt_finish_reservemap(fdt))); /* Root node */ _FDT((fdt_begin_node(fdt, ""))); _FDT((fdt_property_string(fdt, "device_type", "chrp"))); _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)"))); _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); /* /chosen */ _FDT((fdt_begin_node(fdt, "chosen"))); /* Set Form1_affinity */ _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5)))); _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); _FDT((fdt_property(fdt, "linux,initrd-start", &start_prop, sizeof(start_prop)))); _FDT((fdt_property(fdt, "linux,initrd-end", &end_prop, sizeof(end_prop)))); if (kernel_size) { uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), cpu_to_be64(kernel_size) }; _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop)))); } _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device))); _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width))); _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height))); _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth))); _FDT((fdt_end_node(fdt))); /* memory node(s) */ node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size; if (rma_size > node0_size) { rma_size = node0_size; } /* RMA */ mem_reg_property[0] = 0; mem_reg_property[1] = cpu_to_be64(rma_size); _FDT((fdt_begin_node(fdt, "memory@0"))); _FDT((fdt_property_string(fdt, "device_type", "memory"))); _FDT((fdt_property(fdt, "reg", mem_reg_property, sizeof(mem_reg_property)))); _FDT((fdt_property(fdt, "ibm,associativity", associativity, sizeof(associativity)))); _FDT((fdt_end_node(fdt))); /* RAM: Node 0 */ if (node0_size > rma_size) { mem_reg_property[0] = cpu_to_be64(rma_size); mem_reg_property[1] = cpu_to_be64(node0_size - rma_size); sprintf(mem_name, "memory@" TARGET_FMT_lx, rma_size); _FDT((fdt_begin_node(fdt, mem_name))); _FDT((fdt_property_string(fdt, "device_type", "memory"))); _FDT((fdt_property(fdt, "reg", mem_reg_property, sizeof(mem_reg_property)))); _FDT((fdt_property(fdt, "ibm,associativity", associativity, sizeof(associativity)))); _FDT((fdt_end_node(fdt))); } /* RAM: Node 1 and beyond */ mem_start = node0_size; for (i = 1; i < nb_numa_nodes; i++) { mem_reg_property[0] = cpu_to_be64(mem_start); mem_reg_property[1] = cpu_to_be64(node_mem[i]); associativity[3] = associativity[4] = cpu_to_be32(i); sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start); _FDT((fdt_begin_node(fdt, mem_name))); _FDT((fdt_property_string(fdt, "device_type", "memory"))); _FDT((fdt_property(fdt, "reg", mem_reg_property, sizeof(mem_reg_property)))); _FDT((fdt_property(fdt, "ibm,associativity", associativity, sizeof(associativity)))); _FDT((fdt_end_node(fdt))); mem_start += node_mem[i]; } /* cpus */ _FDT((fdt_begin_node(fdt, "cpus"))); _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); modelname = g_strdup(cpu_model); for (i = 0; i < strlen(modelname); i++) { modelname[i] = toupper(modelname[i]); } /* This is needed during FDT finalization */ spapr->cpu_model = g_strdup(modelname); for (env = first_cpu; env != NULL; env = env->next_cpu) { int index = env->cpu_index; uint32_t servers_prop[smp_threads]; uint32_t gservers_prop[smp_threads * 2]; char *nodename; uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 0xffffffff, 0xffffffff}; uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ; uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; uint32_t page_sizes_prop[64]; size_t page_sizes_prop_size; if ((index % smt) != 0) { continue; } if (asprintf(&nodename, "%s@%x", modelname, index) < 0) { fprintf(stderr, "Allocation failure\n"); exit(1); } _FDT((fdt_begin_node(fdt, nodename))); free(nodename); _FDT((fdt_property_cell(fdt, "reg", index))); _FDT((fdt_property_string(fdt, "device_type", "cpu"))); _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR]))); _FDT((fdt_property_cell(fdt, "dcache-block-size", env->dcache_line_size))); _FDT((fdt_property_cell(fdt, "icache-block-size", env->icache_line_size))); _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq))); _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq))); _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr))); _FDT((fdt_property(fdt, "ibm,pft-size", pft_size_prop, sizeof(pft_size_prop)))); _FDT((fdt_property_string(fdt, "status", "okay"))); _FDT((fdt_property(fdt, "64-bit", NULL, 0))); /* Build interrupt servers and gservers properties */ for (i = 0; i < smp_threads; i++) { servers_prop[i] = cpu_to_be32(index + i); /* Hack, direct the group queues back to cpu 0 */ gservers_prop[i*2] = cpu_to_be32(index + i); gservers_prop[i*2 + 1] = 0; } _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s", servers_prop, sizeof(servers_prop)))); _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s", gservers_prop, sizeof(gservers_prop)))); if (env->mmu_model & POWERPC_MMU_1TSEG) { _FDT((fdt_property(fdt, "ibm,processor-segment-sizes", segs, sizeof(segs)))); } /* Advertise VMX/VSX (vector extensions) if available * 0 / no property == no vector extensions * 1 == VMX / Altivec available * 2 == VSX available */ if (env->insns_flags & PPC_ALTIVEC) { uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1; _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx))); } /* Advertise DFP (Decimal Floating Point) if available * 0 / no property == no DFP * 1 == DFP available */ if (env->insns_flags2 & PPC2_DFP) { _FDT((fdt_property_cell(fdt, "ibm,dfp", 1))); } page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop, sizeof(page_sizes_prop)); if (page_sizes_prop_size) { _FDT((fdt_property(fdt, "ibm,segment-page-sizes", page_sizes_prop, page_sizes_prop_size))); } _FDT((fdt_end_node(fdt))); } g_free(modelname); _FDT((fdt_end_node(fdt))); /* RTAS */ _FDT((fdt_begin_node(fdt, "rtas"))); _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop, sizeof(hypertas_prop)))); _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop, sizeof(qemu_hypertas_prop)))); _FDT((fdt_property(fdt, "ibm,associativity-reference-points", refpoints, sizeof(refpoints)))); _FDT((fdt_end_node(fdt))); /* interrupt controller */ _FDT((fdt_begin_node(fdt, "interrupt-controller"))); _FDT((fdt_property_string(fdt, "device_type", "PowerPC-External-Interrupt-Presentation"))); _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", interrupt_server_ranges_prop, sizeof(interrupt_server_ranges_prop)))); _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2))); _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP))); _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP))); _FDT((fdt_end_node(fdt))); /* vdevice */ _FDT((fdt_begin_node(fdt, "vdevice"))); _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); _FDT((fdt_end_node(fdt))); _FDT((fdt_end_node(fdt))); /* close root node */ _FDT((fdt_finish(fdt))); return fdt; } static void spapr_finalize_fdt(sPAPREnvironment *spapr, target_phys_addr_t fdt_addr, target_phys_addr_t rtas_addr, target_phys_addr_t rtas_size) { int ret; void *fdt; sPAPRPHBState *phb; fdt = g_malloc(FDT_MAX_SIZE); /* open out the base tree into a temp buffer for the final tweaks */ _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE))); ret = spapr_populate_vdevice(spapr->vio_bus, fdt); if (ret < 0) { fprintf(stderr, "couldn't setup vio devices in fdt\n"); exit(1); } QLIST_FOREACH(phb, &spapr->phbs, list) { ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt); } if (ret < 0) { fprintf(stderr, "couldn't setup PCI devices in fdt\n"); exit(1); } /* RTAS */ ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); if (ret < 0) { fprintf(stderr, "Couldn't set up RTAS device tree properties\n"); } /* Advertise NUMA via ibm,associativity */ if (nb_numa_nodes > 1) { ret = spapr_set_associativity(fdt, spapr); if (ret < 0) { fprintf(stderr, "Couldn't set up NUMA device tree properties\n"); } } if (!spapr->has_graphics) { spapr_populate_chosen_stdout(fdt, spapr->vio_bus); } _FDT((fdt_pack(fdt))); if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n", fdt_totalsize(fdt), FDT_MAX_SIZE); exit(1); } cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); g_free(fdt); } static uint64_t translate_kernel_address(void *opaque, uint64_t addr) { return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; } static void emulate_spapr_hypercall(CPUPPCState *env) { env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]); } static void spapr_reset(void *opaque) { sPAPREnvironment *spapr = (sPAPREnvironment *)opaque; /* flush out the hash table */ memset(spapr->htab, 0, spapr->htab_size); /* Load the fdt */ spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr, spapr->rtas_size); /* Set up the entry state */ first_cpu->gpr[3] = spapr->fdt_addr; first_cpu->gpr[5] = 0; first_cpu->halted = 0; first_cpu->nip = spapr->entry_point; } static void spapr_cpu_reset(void *opaque) { PowerPCCPU *cpu = opaque; cpu_reset(CPU(cpu)); } /* Returns whether we want to use VGA or not */ static int spapr_vga_init(PCIBus *pci_bus) { switch (vga_interface_type) { case VGA_STD: pci_vga_init(pci_bus); return 1; case VGA_NONE: return 0; default: fprintf(stderr, "This vga model is not supported," "currently it only supports -vga std\n"); exit(0); break; } } /* pSeries LPAR / sPAPR hardware init */ static void ppc_spapr_init(ram_addr_t ram_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { PowerPCCPU *cpu; CPUPPCState *env; PCIHostState *phb; int i; MemoryRegion *sysmem = get_system_memory(); MemoryRegion *ram = g_new(MemoryRegion, 1); target_phys_addr_t rma_alloc_size, rma_size; uint32_t initrd_base = 0; long kernel_size = 0, initrd_size = 0; long load_limit, rtas_limit, fw_size; long pteg_shift = 17; char *filename; msi_supported = true; spapr = g_malloc0(sizeof(*spapr)); QLIST_INIT(&spapr->phbs); cpu_ppc_hypercall = emulate_spapr_hypercall; /* Allocate RMA if necessary */ rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem); if (rma_alloc_size == -1) { hw_error("qemu: Unable to create RMA\n"); exit(1); } if (rma_alloc_size && (rma_alloc_size < ram_size)) { rma_size = rma_alloc_size; } else { rma_size = ram_size; } /* We place the device tree and RTAS just below either the top of the RMA, * or just below 2GB, whichever is lowere, so that it can be * processed with 32-bit real mode code if necessary */ rtas_limit = MIN(rma_size, 0x80000000); spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE; spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE; load_limit = spapr->fdt_addr - FW_OVERHEAD; /* init CPUs */ if (cpu_model == NULL) { cpu_model = kvm_enabled() ? "host" : "POWER7"; } for (i = 0; i < smp_cpus; i++) { cpu = cpu_ppc_init(cpu_model); if (cpu == NULL) { fprintf(stderr, "Unable to find PowerPC CPU definition\n"); exit(1); } env = &cpu->env; /* Set time-base frequency to 512 MHz */ cpu_ppc_tb_init(env, TIMEBASE_FREQ); qemu_register_reset(spapr_cpu_reset, cpu); env->hreset_vector = 0x60; env->hreset_excp_prefix = 0; env->gpr[3] = env->cpu_index; } /* allocate RAM */ spapr->ram_limit = ram_size; if (spapr->ram_limit > rma_alloc_size) { ram_addr_t nonrma_base = rma_alloc_size; ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size; memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size); vmstate_register_ram_global(ram); memory_region_add_subregion(sysmem, nonrma_base, ram); } /* allocate hash page table. For now we always make this 16mb, * later we should probably make it scale to the size of guest * RAM */ spapr->htab_size = 1ULL << (pteg_shift + 7); spapr->htab = qemu_memalign(spapr->htab_size, spapr->htab_size); for (env = first_cpu; env != NULL; env = env->next_cpu) { env->external_htab = spapr->htab; env->htab_base = -1; env->htab_mask = spapr->htab_size - 1; /* Tell KVM that we're in PAPR mode */ env->spr[SPR_SDR1] = (unsigned long)spapr->htab | ((pteg_shift + 7) - 18); env->spr[SPR_HIOR] = 0; if (kvm_enabled()) { kvmppc_set_papr(env); } } filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr, rtas_limit - spapr->rtas_addr); if (spapr->rtas_size < 0) { hw_error("qemu: could not load LPAR rtas '%s'\n", filename); exit(1); } if (spapr->rtas_size > RTAS_MAX_SIZE) { hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n", spapr->rtas_size, RTAS_MAX_SIZE); exit(1); } g_free(filename); /* Set up Interrupt Controller */ spapr->icp = xics_system_init(XICS_IRQS); spapr->next_irq = 16; /* Set up IOMMU */ spapr_iommu_init(); /* Set up VIO bus */ spapr->vio_bus = spapr_vio_bus_init(); for (i = 0; i < MAX_SERIAL_PORTS; i++) { if (serial_hds[i]) { spapr_vty_create(spapr->vio_bus, serial_hds[i]); } } /* Set up PCI */ spapr_pci_rtas_init(); spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID, SPAPR_PCI_MEM_WIN_ADDR, SPAPR_PCI_MEM_WIN_SIZE, SPAPR_PCI_IO_WIN_ADDR, SPAPR_PCI_MSI_WIN_ADDR); phb = PCI_HOST_BRIDGE(QLIST_FIRST(&spapr->phbs)); for (i = 0; i < nb_nics; i++) { NICInfo *nd = &nd_table[i]; if (!nd->model) { nd->model = g_strdup("ibmveth"); } if (strcmp(nd->model, "ibmveth") == 0) { spapr_vlan_create(spapr->vio_bus, nd); } else { pci_nic_init_nofail(&nd_table[i], nd->model, NULL); } } for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { spapr_vscsi_create(spapr->vio_bus); } /* Graphics */ if (spapr_vga_init(phb->bus)) { spapr->has_graphics = true; } if (usb_enabled) { pci_create_simple(phb->bus, -1, "pci-ohci"); if (spapr->has_graphics) { usbdevice_create("keyboard"); usbdevice_create("mouse"); } } if (rma_size < (MIN_RMA_SLOF << 20)) { fprintf(stderr, "qemu: pSeries SLOF firmware requires >= " "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF); exit(1); } if (kernel_filename) { uint64_t lowaddr = 0; kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0); if (kernel_size < 0) { kernel_size = load_image_targphys(kernel_filename, KERNEL_LOAD_ADDR, load_limit - KERNEL_LOAD_ADDR); } if (kernel_size < 0) { fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } /* load initrd */ if (initrd_filename) { /* Try to locate the initrd in the gap between the kernel * and the firmware. Add a bit of space just in case */ initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff; initrd_size = load_image_targphys(initrd_filename, initrd_base, load_limit - initrd_base); if (initrd_size < 0) { fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", initrd_filename); exit(1); } } else { initrd_base = 0; initrd_size = 0; } } filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME); fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); if (fw_size < 0) { hw_error("qemu: could not load LPAR rtas '%s'\n", filename); exit(1); } g_free(filename); spapr->entry_point = 0x100; /* SLOF will startup the secondary CPUs using RTAS */ for (env = first_cpu; env != NULL; env = env->next_cpu) { env->halted = 1; } /* Prepare the device tree */ spapr->fdt_skel = spapr_create_fdt_skel(cpu_model, rma_size, initrd_base, initrd_size, kernel_size, boot_device, kernel_cmdline, pteg_shift + 7); assert(spapr->fdt_skel != NULL); qemu_register_reset(spapr_reset, spapr); } static QEMUMachine spapr_machine = { .name = "pseries", .desc = "pSeries Logical Partition (PAPR compliant)", .init = ppc_spapr_init, .max_cpus = MAX_CPUS, .no_parallel = 1, .use_scsi = 1, }; static void spapr_machine_init(void) { qemu_register_machine(&spapr_machine); } machine_init(spapr_machine_init);