/* * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator * * Copyright (c) 2004-2007 Fabrice Bellard * Copyright (c) 2007 Jocelyn Mayer * Copyright (c) 2010 David Gibson, IBM Corporation. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. * */ #include "sysemu.h" #include "hw.h" #include "elf.h" #include "net.h" #include "blockdev.h" #include "hw/boards.h" #include "hw/ppc.h" #include "hw/loader.h" #include "hw/spapr.h" #include "hw/spapr_vio.h" #include "hw/xics.h" #include #define KERNEL_LOAD_ADDR 0x00000000 #define INITRD_LOAD_ADDR 0x02800000 #define FDT_MAX_SIZE 0x10000 #define RTAS_MAX_SIZE 0x10000 #define FW_MAX_SIZE 0x400000 #define FW_FILE_NAME "slof.bin" #define MIN_RAM_SLOF 512UL #define TIMEBASE_FREQ 512000000ULL #define MAX_CPUS 32 #define XICS_IRQS 1024 sPAPREnvironment *spapr; static void *spapr_create_fdt(int *fdt_size, ram_addr_t ramsize, const char *cpu_model, sPAPREnvironment *spapr, target_phys_addr_t initrd_base, target_phys_addr_t initrd_size, const char *boot_device, const char *kernel_cmdline, target_phys_addr_t rtas_addr, target_phys_addr_t rtas_size, long hash_shift) { void *fdt; CPUState *env; uint64_t mem_reg_property[] = { 0, cpu_to_be64(ramsize) }; uint32_t start_prop = cpu_to_be32(initrd_base); uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size); uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)}; char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt" "\0hcall-tce\0hcall-vio\0hcall-splpar"; uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)}; int i; char *modelname; int ret; #define _FDT(exp) \ do { \ int ret = (exp); \ if (ret < 0) { \ fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \ #exp, fdt_strerror(ret)); \ exit(1); \ } \ } while (0) fdt = qemu_mallocz(FDT_MAX_SIZE); _FDT((fdt_create(fdt, FDT_MAX_SIZE))); _FDT((fdt_finish_reservemap(fdt))); /* Root node */ _FDT((fdt_begin_node(fdt, ""))); _FDT((fdt_property_string(fdt, "device_type", "chrp"))); _FDT((fdt_property_string(fdt, "model", "qemu,emulated-pSeries-LPAR"))); _FDT((fdt_property_cell(fdt, "#address-cells", 0x2))); _FDT((fdt_property_cell(fdt, "#size-cells", 0x2))); /* /chosen */ _FDT((fdt_begin_node(fdt, "chosen"))); _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline))); _FDT((fdt_property(fdt, "linux,initrd-start", &start_prop, sizeof(start_prop)))); _FDT((fdt_property(fdt, "linux,initrd-end", &end_prop, sizeof(end_prop)))); _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device))); _FDT((fdt_end_node(fdt))); /* memory node */ _FDT((fdt_begin_node(fdt, "memory@0"))); _FDT((fdt_property_string(fdt, "device_type", "memory"))); _FDT((fdt_property(fdt, "reg", mem_reg_property, sizeof(mem_reg_property)))); _FDT((fdt_end_node(fdt))); /* cpus */ _FDT((fdt_begin_node(fdt, "cpus"))); _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); modelname = qemu_strdup(cpu_model); for (i = 0; i < strlen(modelname); i++) { modelname[i] = toupper(modelname[i]); } for (env = first_cpu; env != NULL; env = env->next_cpu) { int index = env->cpu_index; uint32_t gserver_prop[] = {cpu_to_be32(index), 0}; /* HACK! */ char *nodename; uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 0xffffffff, 0xffffffff}; if (asprintf(&nodename, "%s@%x", modelname, index) < 0) { fprintf(stderr, "Allocation failure\n"); exit(1); } _FDT((fdt_begin_node(fdt, nodename))); free(nodename); _FDT((fdt_property_cell(fdt, "reg", index))); _FDT((fdt_property_string(fdt, "device_type", "cpu"))); _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR]))); _FDT((fdt_property_cell(fdt, "dcache-block-size", env->dcache_line_size))); _FDT((fdt_property_cell(fdt, "icache-block-size", env->icache_line_size))); _FDT((fdt_property_cell(fdt, "timebase-frequency", TIMEBASE_FREQ))); /* Hardcode CPU frequency for now. It's kind of arbitrary on * full emu, for kvm we should copy it from the host */ _FDT((fdt_property_cell(fdt, "clock-frequency", 1000000000))); _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr))); _FDT((fdt_property(fdt, "ibm,pft-size", pft_size_prop, sizeof(pft_size_prop)))); _FDT((fdt_property_string(fdt, "status", "okay"))); _FDT((fdt_property(fdt, "64-bit", NULL, 0))); _FDT((fdt_property_cell(fdt, "ibm,ppc-interrupt-server#s", index))); _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s", gserver_prop, sizeof(gserver_prop)))); if (env->mmu_model & POWERPC_MMU_1TSEG) { _FDT((fdt_property(fdt, "ibm,processor-segment-sizes", segs, sizeof(segs)))); } _FDT((fdt_end_node(fdt))); } qemu_free(modelname); _FDT((fdt_end_node(fdt))); /* RTAS */ _FDT((fdt_begin_node(fdt, "rtas"))); _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop, sizeof(hypertas_prop)))); _FDT((fdt_end_node(fdt))); /* interrupt controller */ _FDT((fdt_begin_node(fdt, "interrupt-controller@0"))); _FDT((fdt_property_string(fdt, "device_type", "PowerPC-External-Interrupt-Presentation"))); _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp"))); _FDT((fdt_property_cell(fdt, "reg", 0))); _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges", interrupt_server_ranges_prop, sizeof(interrupt_server_ranges_prop)))); _FDT((fdt_end_node(fdt))); /* vdevice */ _FDT((fdt_begin_node(fdt, "vdevice"))); _FDT((fdt_property_string(fdt, "device_type", "vdevice"))); _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice"))); _FDT((fdt_property_cell(fdt, "#address-cells", 0x1))); _FDT((fdt_property_cell(fdt, "#size-cells", 0x0))); _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2))); _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0))); _FDT((fdt_end_node(fdt))); _FDT((fdt_end_node(fdt))); /* close root node */ _FDT((fdt_finish(fdt))); /* re-expand to allow for further tweaks */ _FDT((fdt_open_into(fdt, fdt, FDT_MAX_SIZE))); ret = spapr_populate_vdevice(spapr->vio_bus, fdt); if (ret < 0) { fprintf(stderr, "couldn't setup vio devices in fdt\n"); exit(1); } /* RTAS */ ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size); if (ret < 0) { fprintf(stderr, "Couldn't set up RTAS device tree properties\n"); } _FDT((fdt_pack(fdt))); *fdt_size = fdt_totalsize(fdt); return fdt; } static uint64_t translate_kernel_address(void *opaque, uint64_t addr) { return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; } static void emulate_spapr_hypercall(CPUState *env) { env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]); } /* pSeries LPAR / sPAPR hardware init */ static void ppc_spapr_init(ram_addr_t ram_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { void *fdt, *htab; CPUState *env; int i; ram_addr_t ram_offset; target_phys_addr_t fdt_addr, rtas_addr; uint32_t kernel_base, initrd_base; long kernel_size, initrd_size, htab_size, rtas_size, fw_size; long pteg_shift = 17; int fdt_size; char *filename; int irq = 16; spapr = qemu_malloc(sizeof(*spapr)); cpu_ppc_hypercall = emulate_spapr_hypercall; /* We place the device tree just below either the top of RAM, or * 2GB, so that it can be processed with 32-bit code if * necessary */ fdt_addr = MIN(ram_size, 0x80000000) - FDT_MAX_SIZE; /* RTAS goes just below that */ rtas_addr = fdt_addr - RTAS_MAX_SIZE; /* init CPUs */ if (cpu_model == NULL) { cpu_model = "POWER7"; } for (i = 0; i < smp_cpus; i++) { env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "Unable to find PowerPC CPU definition\n"); exit(1); } /* Set time-base frequency to 512 MHz */ cpu_ppc_tb_init(env, TIMEBASE_FREQ); qemu_register_reset((QEMUResetHandler *)&cpu_reset, env); env->hreset_vector = 0x60; env->hreset_excp_prefix = 0; env->gpr[3] = env->cpu_index; } /* allocate RAM */ ram_offset = qemu_ram_alloc(NULL, "ppc_spapr.ram", ram_size); cpu_register_physical_memory(0, ram_size, ram_offset); /* allocate hash page table. For now we always make this 16mb, * later we should probably make it scale to the size of guest * RAM */ htab_size = 1ULL << (pteg_shift + 7); htab = qemu_mallocz(htab_size); for (env = first_cpu; env != NULL; env = env->next_cpu) { env->external_htab = htab; env->htab_base = -1; env->htab_mask = htab_size - 1; } filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); rtas_size = load_image_targphys(filename, rtas_addr, ram_size - rtas_addr); if (rtas_size < 0) { hw_error("qemu: could not load LPAR rtas '%s'\n", filename); exit(1); } qemu_free(filename); /* Set up Interrupt Controller */ spapr->icp = xics_system_init(XICS_IRQS); /* Set up VIO bus */ spapr->vio_bus = spapr_vio_bus_init(); for (i = 0; i < MAX_SERIAL_PORTS; i++, irq++) { if (serial_hds[i]) { spapr_vty_create(spapr->vio_bus, i, serial_hds[i], xics_find_qirq(spapr->icp, irq), irq); } } for (i = 0; i < nb_nics; i++, irq++) { NICInfo *nd = &nd_table[i]; if (!nd->model) { nd->model = qemu_strdup("ibmveth"); } if (strcmp(nd->model, "ibmveth") == 0) { spapr_vlan_create(spapr->vio_bus, 0x1000 + i, nd, xics_find_qirq(spapr->icp, irq), irq); } else { fprintf(stderr, "pSeries (sPAPR) platform does not support " "NIC model '%s' (only ibmveth is supported)\n", nd->model); exit(1); } } for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { spapr_vscsi_create(spapr->vio_bus, 0x2000 + i, xics_find_qirq(spapr->icp, irq), irq); irq++; } if (kernel_filename) { uint64_t lowaddr = 0; kernel_base = KERNEL_LOAD_ADDR; kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL, NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0); if (kernel_size < 0) { kernel_size = load_image_targphys(kernel_filename, kernel_base, ram_size - kernel_base); } if (kernel_size < 0) { fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } /* load initrd */ if (initrd_filename) { initrd_base = INITRD_LOAD_ADDR; initrd_size = load_image_targphys(initrd_filename, initrd_base, ram_size - initrd_base); if (initrd_size < 0) { fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", initrd_filename); exit(1); } } else { initrd_base = 0; initrd_size = 0; } } else { if (ram_size < (MIN_RAM_SLOF << 20)) { fprintf(stderr, "qemu: pSeries SLOF firmware requires >= " "%ldM guest RAM\n", MIN_RAM_SLOF); exit(1); } filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "slof.bin"); fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); if (fw_size < 0) { hw_error("qemu: could not load LPAR rtas '%s'\n", filename); exit(1); } qemu_free(filename); kernel_base = 0x100; initrd_base = 0; initrd_size = 0; /* SLOF will startup the secondary CPUs using RTAS, rather than expecting a kexec() style entry */ for (env = first_cpu; env != NULL; env = env->next_cpu) { env->halted = 1; } } /* Prepare the device tree */ fdt = spapr_create_fdt(&fdt_size, ram_size, cpu_model, spapr, initrd_base, initrd_size, boot_device, kernel_cmdline, rtas_addr, rtas_size, pteg_shift + 7); assert(fdt != NULL); cpu_physical_memory_write(fdt_addr, fdt, fdt_size); qemu_free(fdt); first_cpu->gpr[3] = fdt_addr; first_cpu->gpr[5] = 0; first_cpu->hreset_vector = kernel_base; first_cpu->halted = 0; } static QEMUMachine spapr_machine = { .name = "pseries", .desc = "pSeries Logical Partition (PAPR compliant)", .init = ppc_spapr_init, .max_cpus = MAX_CPUS, .no_vga = 1, .no_parallel = 1, .use_scsi = 1, }; static void spapr_machine_init(void) { qemu_register_machine(&spapr_machine); } machine_init(spapr_machine_init);