/* * SMBIOS Support * * Copyright (C) 2009 Hewlett-Packard Development Company, L.P. * Copyright (C) 2013 Red Hat, Inc. * * Authors: * Alex Williamson * Markus Armbruster * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Contributions after 2012-01-13 are licensed under the terms of the * GNU GPL, version 2 or (at your option) any later version. */ #include "qemu/osdep.h" #include "qemu/units.h" #include "qapi/error.h" #include "qemu/config-file.h" #include "qemu/error-report.h" #include "qemu/module.h" #include "qemu/option.h" #include "sysemu/sysemu.h" #include "qemu/uuid.h" #include "hw/firmware/smbios.h" #include "hw/loader.h" #include "hw/boards.h" #include "hw/pci/pci_bus.h" #include "smbios_build.h" /* legacy structures and constants for <= 2.0 machines */ struct smbios_header { uint16_t length; uint8_t type; } QEMU_PACKED; struct smbios_field { struct smbios_header header; uint8_t type; uint16_t offset; uint8_t data[]; } QEMU_PACKED; struct smbios_table { struct smbios_header header; uint8_t data[]; } QEMU_PACKED; #define SMBIOS_FIELD_ENTRY 0 #define SMBIOS_TABLE_ENTRY 1 static uint8_t *smbios_entries; static size_t smbios_entries_len; static bool smbios_legacy = true; static bool smbios_uuid_encoded = true; /* end: legacy structures & constants for <= 2.0 machines */ uint8_t *smbios_tables; size_t smbios_tables_len; unsigned smbios_table_max; unsigned smbios_table_cnt; static SmbiosEntryPointType smbios_ep_type = SMBIOS_ENTRY_POINT_TYPE_32; static SmbiosEntryPoint ep; static int smbios_type4_count = 0; static bool smbios_immutable; static bool smbios_have_defaults; static uint32_t smbios_cpuid_version, smbios_cpuid_features, smbios_smp_sockets; static DECLARE_BITMAP(have_binfile_bitmap, SMBIOS_MAX_TYPE+1); static DECLARE_BITMAP(have_fields_bitmap, SMBIOS_MAX_TYPE+1); static struct { const char *vendor, *version, *date; bool have_major_minor, uefi; uint8_t major, minor; } type0; static struct { const char *manufacturer, *product, *version, *serial, *sku, *family; /* uuid is in qemu_uuid */ } type1; static struct { const char *manufacturer, *product, *version, *serial, *asset, *location; } type2; static struct { const char *manufacturer, *version, *serial, *asset, *sku; } type3; /* * SVVP requires max_speed and current_speed to be set and not being * 0 which counts as unknown (SMBIOS 3.1.0/Table 21). Set the * default value to 2000MHz as we did before. */ #define DEFAULT_CPU_SPEED 2000 static struct { const char *sock_pfx, *manufacturer, *version, *serial, *asset, *part; uint64_t max_speed; uint64_t current_speed; uint64_t processor_id; } type4 = { .max_speed = DEFAULT_CPU_SPEED, .current_speed = DEFAULT_CPU_SPEED, .processor_id = 0, }; struct type8_instance { const char *internal_reference, *external_reference; uint8_t connector_type, port_type; QTAILQ_ENTRY(type8_instance) next; }; static QTAILQ_HEAD(, type8_instance) type8 = QTAILQ_HEAD_INITIALIZER(type8); static struct { size_t nvalues; char **values; } type11; static struct { const char *loc_pfx, *bank, *manufacturer, *serial, *asset, *part; uint16_t speed; } type17; static QEnumLookup type41_kind_lookup = { .array = (const char *const[]) { "other", "unknown", "video", "scsi", "ethernet", "tokenring", "sound", "pata", "sata", "sas", }, .size = 10 }; struct type41_instance { const char *designation, *pcidev; uint8_t instance, kind; QTAILQ_ENTRY(type41_instance) next; }; static QTAILQ_HEAD(, type41_instance) type41 = QTAILQ_HEAD_INITIALIZER(type41); static QemuOptsList qemu_smbios_opts = { .name = "smbios", .head = QTAILQ_HEAD_INITIALIZER(qemu_smbios_opts.head), .desc = { /* * no elements => accept any params * validation will happen later */ { /* end of list */ } } }; static const QemuOptDesc qemu_smbios_file_opts[] = { { .name = "file", .type = QEMU_OPT_STRING, .help = "binary file containing an SMBIOS element", }, { /* end of list */ } }; static const QemuOptDesc qemu_smbios_type0_opts[] = { { .name = "type", .type = QEMU_OPT_NUMBER, .help = "SMBIOS element type", },{ .name = "vendor", .type = QEMU_OPT_STRING, .help = "vendor name", },{ .name = "version", .type = QEMU_OPT_STRING, .help = "version number", },{ .name = "date", .type = QEMU_OPT_STRING, .help = "release date", },{ .name = "release", .type = QEMU_OPT_STRING, .help = "revision number", },{ .name = "uefi", .type = QEMU_OPT_BOOL, .help = "uefi support", }, { /* end of list */ } }; static const QemuOptDesc qemu_smbios_type1_opts[] = { { .name = "type", .type = QEMU_OPT_NUMBER, .help = "SMBIOS element type", },{ .name = "manufacturer", .type = QEMU_OPT_STRING, .help = "manufacturer name", },{ .name = "product", .type = QEMU_OPT_STRING, .help = "product name", },{ .name = "version", .type = QEMU_OPT_STRING, .help = "version number", },{ .name = "serial", .type = QEMU_OPT_STRING, .help = "serial number", },{ .name = "uuid", .type = QEMU_OPT_STRING, .help = "UUID", },{ .name = "sku", .type = QEMU_OPT_STRING, .help = "SKU number", },{ .name = "family", .type = QEMU_OPT_STRING, .help = "family name", }, { /* end of list */ } }; static const QemuOptDesc qemu_smbios_type2_opts[] = { { .name = "type", .type = QEMU_OPT_NUMBER, .help = "SMBIOS element type", },{ .name = "manufacturer", .type = QEMU_OPT_STRING, .help = "manufacturer name", },{ .name = "product", .type = QEMU_OPT_STRING, .help = "product name", },{ .name = "version", .type = QEMU_OPT_STRING, .help = "version number", },{ .name = "serial", .type = QEMU_OPT_STRING, .help = "serial number", },{ .name = "asset", .type = QEMU_OPT_STRING, .help = "asset tag number", },{ .name = "location", .type = QEMU_OPT_STRING, .help = "location in chassis", }, { /* end of list */ } }; static const QemuOptDesc qemu_smbios_type3_opts[] = { { .name = "type", .type = QEMU_OPT_NUMBER, .help = "SMBIOS element type", },{ .name = "manufacturer", .type = QEMU_OPT_STRING, .help = "manufacturer name", },{ .name = "version", .type = QEMU_OPT_STRING, .help = "version number", },{ .name = "serial", .type = QEMU_OPT_STRING, .help = "serial number", },{ .name = "asset", .type = QEMU_OPT_STRING, .help = "asset tag number", },{ .name = "sku", .type = QEMU_OPT_STRING, .help = "SKU number", }, { /* end of list */ } }; static const QemuOptDesc qemu_smbios_type4_opts[] = { { .name = "type", .type = QEMU_OPT_NUMBER, .help = "SMBIOS element type", },{ .name = "sock_pfx", .type = QEMU_OPT_STRING, .help = "socket designation string prefix", },{ .name = "manufacturer", .type = QEMU_OPT_STRING, .help = "manufacturer name", },{ .name = "version", .type = QEMU_OPT_STRING, .help = "version number", },{ .name = "max-speed", .type = QEMU_OPT_NUMBER, .help = "max speed in MHz", },{ .name = "current-speed", .type = QEMU_OPT_NUMBER, .help = "speed at system boot in MHz", },{ .name = "serial", .type = QEMU_OPT_STRING, .help = "serial number", },{ .name = "asset", .type = QEMU_OPT_STRING, .help = "asset tag number", },{ .name = "part", .type = QEMU_OPT_STRING, .help = "part number", }, { .name = "processor-id", .type = QEMU_OPT_NUMBER, .help = "processor id", }, { /* end of list */ } }; static const QemuOptDesc qemu_smbios_type8_opts[] = { { .name = "internal_reference", .type = QEMU_OPT_STRING, .help = "internal reference designator", }, { .name = "external_reference", .type = QEMU_OPT_STRING, .help = "external reference designator", }, { .name = "connector_type", .type = QEMU_OPT_NUMBER, .help = "connector type", }, { .name = "port_type", .type = QEMU_OPT_NUMBER, .help = "port type", }, }; static const QemuOptDesc qemu_smbios_type11_opts[] = { { .name = "value", .type = QEMU_OPT_STRING, .help = "OEM string data", }, { .name = "path", .type = QEMU_OPT_STRING, .help = "OEM string data from file", }, }; static const QemuOptDesc qemu_smbios_type17_opts[] = { { .name = "type", .type = QEMU_OPT_NUMBER, .help = "SMBIOS element type", },{ .name = "loc_pfx", .type = QEMU_OPT_STRING, .help = "device locator string prefix", },{ .name = "bank", .type = QEMU_OPT_STRING, .help = "bank locator string", },{ .name = "manufacturer", .type = QEMU_OPT_STRING, .help = "manufacturer name", },{ .name = "serial", .type = QEMU_OPT_STRING, .help = "serial number", },{ .name = "asset", .type = QEMU_OPT_STRING, .help = "asset tag number", },{ .name = "part", .type = QEMU_OPT_STRING, .help = "part number", },{ .name = "speed", .type = QEMU_OPT_NUMBER, .help = "maximum capable speed", }, { /* end of list */ } }; static const QemuOptDesc qemu_smbios_type41_opts[] = { { .name = "type", .type = QEMU_OPT_NUMBER, .help = "SMBIOS element type", },{ .name = "designation", .type = QEMU_OPT_STRING, .help = "reference designation string", },{ .name = "kind", .type = QEMU_OPT_STRING, .help = "device type", .def_value_str = "other", },{ .name = "instance", .type = QEMU_OPT_NUMBER, .help = "device type instance", },{ .name = "pcidev", .type = QEMU_OPT_STRING, .help = "PCI device", }, { /* end of list */ } }; static void smbios_register_config(void) { qemu_add_opts(&qemu_smbios_opts); } opts_init(smbios_register_config); /* * The SMBIOS 2.1 "structure table length" field in the * entry point uses a 16-bit integer, so we're limited * in total table size */ #define SMBIOS_21_MAX_TABLES_LEN 0xffff static void smbios_validate_table(MachineState *ms) { uint32_t expect_t4_count = smbios_legacy ? ms->smp.cpus : smbios_smp_sockets; if (smbios_type4_count && smbios_type4_count != expect_t4_count) { error_report("Expected %d SMBIOS Type 4 tables, got %d instead", expect_t4_count, smbios_type4_count); exit(1); } if (smbios_ep_type == SMBIOS_ENTRY_POINT_TYPE_32 && smbios_tables_len > SMBIOS_21_MAX_TABLES_LEN) { error_report("SMBIOS 2.1 table length %zu exceeds %d", smbios_tables_len, SMBIOS_21_MAX_TABLES_LEN); exit(1); } } /* legacy setup functions for <= 2.0 machines */ static void smbios_add_field(int type, int offset, const void *data, size_t len) { struct smbios_field *field; if (!smbios_entries) { smbios_entries_len = sizeof(uint16_t); smbios_entries = g_malloc0(smbios_entries_len); } smbios_entries = g_realloc(smbios_entries, smbios_entries_len + sizeof(*field) + len); field = (struct smbios_field *)(smbios_entries + smbios_entries_len); field->header.type = SMBIOS_FIELD_ENTRY; field->header.length = cpu_to_le16(sizeof(*field) + len); field->type = type; field->offset = cpu_to_le16(offset); memcpy(field->data, data, len); smbios_entries_len += sizeof(*field) + len; (*(uint16_t *)smbios_entries) = cpu_to_le16(le16_to_cpu(*(uint16_t *)smbios_entries) + 1); } static void smbios_maybe_add_str(int type, int offset, const char *data) { if (data) { smbios_add_field(type, offset, data, strlen(data) + 1); } } static void smbios_build_type_0_fields(void) { smbios_maybe_add_str(0, offsetof(struct smbios_type_0, vendor_str), type0.vendor); smbios_maybe_add_str(0, offsetof(struct smbios_type_0, bios_version_str), type0.version); smbios_maybe_add_str(0, offsetof(struct smbios_type_0, bios_release_date_str), type0.date); if (type0.have_major_minor) { smbios_add_field(0, offsetof(struct smbios_type_0, system_bios_major_release), &type0.major, 1); smbios_add_field(0, offsetof(struct smbios_type_0, system_bios_minor_release), &type0.minor, 1); } } static void smbios_build_type_1_fields(void) { smbios_maybe_add_str(1, offsetof(struct smbios_type_1, manufacturer_str), type1.manufacturer); smbios_maybe_add_str(1, offsetof(struct smbios_type_1, product_name_str), type1.product); smbios_maybe_add_str(1, offsetof(struct smbios_type_1, version_str), type1.version); smbios_maybe_add_str(1, offsetof(struct smbios_type_1, serial_number_str), type1.serial); smbios_maybe_add_str(1, offsetof(struct smbios_type_1, sku_number_str), type1.sku); smbios_maybe_add_str(1, offsetof(struct smbios_type_1, family_str), type1.family); if (qemu_uuid_set) { /* We don't encode the UUID in the "wire format" here because this * function is for legacy mode and needs to keep the guest ABI, and * because we don't know what's the SMBIOS version advertised by the * BIOS. */ smbios_add_field(1, offsetof(struct smbios_type_1, uuid), &qemu_uuid, 16); } } uint8_t *smbios_get_table_legacy(MachineState *ms, size_t *length) { if (!smbios_legacy) { *length = 0; return NULL; } if (!smbios_immutable) { smbios_build_type_0_fields(); smbios_build_type_1_fields(); smbios_validate_table(ms); smbios_immutable = true; } *length = smbios_entries_len; return smbios_entries; } /* end: legacy setup functions for <= 2.0 machines */ bool smbios_skip_table(uint8_t type, bool required_table) { if (test_bit(type, have_binfile_bitmap)) { return true; /* user provided their own binary blob(s) */ } if (test_bit(type, have_fields_bitmap)) { return false; /* user provided fields via command line */ } if (smbios_have_defaults && required_table) { return false; /* we're building tables, and this one's required */ } return true; } #define T0_BASE 0x000 #define T1_BASE 0x100 #define T2_BASE 0x200 #define T3_BASE 0x300 #define T4_BASE 0x400 #define T11_BASE 0xe00 #define T16_BASE 0x1000 #define T17_BASE 0x1100 #define T19_BASE 0x1300 #define T32_BASE 0x2000 #define T41_BASE 0x2900 #define T127_BASE 0x7F00 static void smbios_build_type_0_table(void) { SMBIOS_BUILD_TABLE_PRE(0, T0_BASE, false); /* optional, leave up to BIOS */ SMBIOS_TABLE_SET_STR(0, vendor_str, type0.vendor); SMBIOS_TABLE_SET_STR(0, bios_version_str, type0.version); t->bios_starting_address_segment = cpu_to_le16(0xE800); /* from SeaBIOS */ SMBIOS_TABLE_SET_STR(0, bios_release_date_str, type0.date); t->bios_rom_size = 0; /* hardcoded in SeaBIOS with FIXME comment */ t->bios_characteristics = cpu_to_le64(0x08); /* Not supported */ t->bios_characteristics_extension_bytes[0] = 0; t->bios_characteristics_extension_bytes[1] = 0x14; /* TCD/SVVP | VM */ if (type0.uefi) { t->bios_characteristics_extension_bytes[1] |= 0x08; /* |= UEFI */ } if (type0.have_major_minor) { t->system_bios_major_release = type0.major; t->system_bios_minor_release = type0.minor; } else { t->system_bios_major_release = 0; t->system_bios_minor_release = 0; } /* hardcoded in SeaBIOS */ t->embedded_controller_major_release = 0xFF; t->embedded_controller_minor_release = 0xFF; SMBIOS_BUILD_TABLE_POST; } /* Encode UUID from the big endian encoding described on RFC4122 to the wire * format specified by SMBIOS version 2.6. */ static void smbios_encode_uuid(struct smbios_uuid *uuid, QemuUUID *in) { memcpy(uuid, in, 16); if (smbios_uuid_encoded) { uuid->time_low = bswap32(uuid->time_low); uuid->time_mid = bswap16(uuid->time_mid); uuid->time_hi_and_version = bswap16(uuid->time_hi_and_version); } } static void smbios_build_type_1_table(void) { SMBIOS_BUILD_TABLE_PRE(1, T1_BASE, true); /* required */ SMBIOS_TABLE_SET_STR(1, manufacturer_str, type1.manufacturer); SMBIOS_TABLE_SET_STR(1, product_name_str, type1.product); SMBIOS_TABLE_SET_STR(1, version_str, type1.version); SMBIOS_TABLE_SET_STR(1, serial_number_str, type1.serial); if (qemu_uuid_set) { smbios_encode_uuid(&t->uuid, &qemu_uuid); } else { memset(&t->uuid, 0, 16); } t->wake_up_type = 0x06; /* power switch */ SMBIOS_TABLE_SET_STR(1, sku_number_str, type1.sku); SMBIOS_TABLE_SET_STR(1, family_str, type1.family); SMBIOS_BUILD_TABLE_POST; } static void smbios_build_type_2_table(void) { SMBIOS_BUILD_TABLE_PRE(2, T2_BASE, false); /* optional */ SMBIOS_TABLE_SET_STR(2, manufacturer_str, type2.manufacturer); SMBIOS_TABLE_SET_STR(2, product_str, type2.product); SMBIOS_TABLE_SET_STR(2, version_str, type2.version); SMBIOS_TABLE_SET_STR(2, serial_number_str, type2.serial); SMBIOS_TABLE_SET_STR(2, asset_tag_number_str, type2.asset); t->feature_flags = 0x01; /* Motherboard */ SMBIOS_TABLE_SET_STR(2, location_str, type2.location); t->chassis_handle = cpu_to_le16(0x300); /* Type 3 (System enclosure) */ t->board_type = 0x0A; /* Motherboard */ t->contained_element_count = 0; SMBIOS_BUILD_TABLE_POST; } static void smbios_build_type_3_table(void) { SMBIOS_BUILD_TABLE_PRE(3, T3_BASE, true); /* required */ SMBIOS_TABLE_SET_STR(3, manufacturer_str, type3.manufacturer); t->type = 0x01; /* Other */ SMBIOS_TABLE_SET_STR(3, version_str, type3.version); SMBIOS_TABLE_SET_STR(3, serial_number_str, type3.serial); SMBIOS_TABLE_SET_STR(3, asset_tag_number_str, type3.asset); t->boot_up_state = 0x03; /* Safe */ t->power_supply_state = 0x03; /* Safe */ t->thermal_state = 0x03; /* Safe */ t->security_status = 0x02; /* Unknown */ t->oem_defined = cpu_to_le32(0); t->height = 0; t->number_of_power_cords = 0; t->contained_element_count = 0; t->contained_element_record_length = 0; SMBIOS_TABLE_SET_STR(3, sku_number_str, type3.sku); SMBIOS_BUILD_TABLE_POST; } static void smbios_build_type_4_table(MachineState *ms, unsigned instance) { char sock_str[128]; size_t tbl_len = SMBIOS_TYPE_4_LEN_V28; if (smbios_ep_type == SMBIOS_ENTRY_POINT_TYPE_64) { tbl_len = SMBIOS_TYPE_4_LEN_V30; } SMBIOS_BUILD_TABLE_PRE_SIZE(4, T4_BASE + instance, true, tbl_len); /* required */ snprintf(sock_str, sizeof(sock_str), "%s%2x", type4.sock_pfx, instance); SMBIOS_TABLE_SET_STR(4, socket_designation_str, sock_str); t->processor_type = 0x03; /* CPU */ t->processor_family = 0x01; /* Other */ SMBIOS_TABLE_SET_STR(4, processor_manufacturer_str, type4.manufacturer); if (type4.processor_id == 0) { t->processor_id[0] = cpu_to_le32(smbios_cpuid_version); t->processor_id[1] = cpu_to_le32(smbios_cpuid_features); } else { t->processor_id[0] = cpu_to_le32((uint32_t)type4.processor_id); t->processor_id[1] = cpu_to_le32(type4.processor_id >> 32); } SMBIOS_TABLE_SET_STR(4, processor_version_str, type4.version); t->voltage = 0; t->external_clock = cpu_to_le16(0); /* Unknown */ t->max_speed = cpu_to_le16(type4.max_speed); t->current_speed = cpu_to_le16(type4.current_speed); t->status = 0x41; /* Socket populated, CPU enabled */ t->processor_upgrade = 0x01; /* Other */ t->l1_cache_handle = cpu_to_le16(0xFFFF); /* N/A */ t->l2_cache_handle = cpu_to_le16(0xFFFF); /* N/A */ t->l3_cache_handle = cpu_to_le16(0xFFFF); /* N/A */ SMBIOS_TABLE_SET_STR(4, serial_number_str, type4.serial); SMBIOS_TABLE_SET_STR(4, asset_tag_number_str, type4.asset); SMBIOS_TABLE_SET_STR(4, part_number_str, type4.part); t->core_count = (ms->smp.cores > 255) ? 0xFF : ms->smp.cores; t->core_enabled = t->core_count; t->thread_count = (ms->smp.threads > 255) ? 0xFF : ms->smp.threads; t->processor_characteristics = cpu_to_le16(0x02); /* Unknown */ t->processor_family2 = cpu_to_le16(0x01); /* Other */ if (tbl_len == SMBIOS_TYPE_4_LEN_V30) { t->core_count2 = t->core_enabled2 = cpu_to_le16(ms->smp.cores); t->thread_count2 = cpu_to_le16(ms->smp.threads); } SMBIOS_BUILD_TABLE_POST; smbios_type4_count++; } static void smbios_build_type_8_table(void) { unsigned instance = 0; struct type8_instance *t8; QTAILQ_FOREACH(t8, &type8, next) { SMBIOS_BUILD_TABLE_PRE(8, T0_BASE + instance, true); SMBIOS_TABLE_SET_STR(8, internal_reference_str, t8->internal_reference); SMBIOS_TABLE_SET_STR(8, external_reference_str, t8->external_reference); /* most vendors seem to set this to None */ t->internal_connector_type = 0x0; t->external_connector_type = t8->connector_type; t->port_type = t8->port_type; SMBIOS_BUILD_TABLE_POST; instance++; } } static void smbios_build_type_11_table(void) { char count_str[128]; size_t i; if (type11.nvalues == 0) { return; } SMBIOS_BUILD_TABLE_PRE(11, T11_BASE, true); /* required */ snprintf(count_str, sizeof(count_str), "%zu", type11.nvalues); t->count = type11.nvalues; for (i = 0; i < type11.nvalues; i++) { SMBIOS_TABLE_SET_STR_LIST(11, type11.values[i]); g_free(type11.values[i]); type11.values[i] = NULL; } SMBIOS_BUILD_TABLE_POST; } #define MAX_T16_STD_SZ 0x80000000 /* 2T in Kilobytes */ static void smbios_build_type_16_table(unsigned dimm_cnt) { uint64_t size_kb; SMBIOS_BUILD_TABLE_PRE(16, T16_BASE, true); /* required */ t->location = 0x01; /* Other */ t->use = 0x03; /* System memory */ t->error_correction = 0x06; /* Multi-bit ECC (for Microsoft, per SeaBIOS) */ size_kb = QEMU_ALIGN_UP(current_machine->ram_size, KiB) / KiB; if (size_kb < MAX_T16_STD_SZ) { t->maximum_capacity = cpu_to_le32(size_kb); t->extended_maximum_capacity = cpu_to_le64(0); } else { t->maximum_capacity = cpu_to_le32(MAX_T16_STD_SZ); t->extended_maximum_capacity = cpu_to_le64(current_machine->ram_size); } t->memory_error_information_handle = cpu_to_le16(0xFFFE); /* Not provided */ t->number_of_memory_devices = cpu_to_le16(dimm_cnt); SMBIOS_BUILD_TABLE_POST; } #define MAX_T17_STD_SZ 0x7FFF /* (32G - 1M), in Megabytes */ #define MAX_T17_EXT_SZ 0x80000000 /* 2P, in Megabytes */ static void smbios_build_type_17_table(unsigned instance, uint64_t size) { char loc_str[128]; uint64_t size_mb; SMBIOS_BUILD_TABLE_PRE(17, T17_BASE + instance, true); /* required */ t->physical_memory_array_handle = cpu_to_le16(0x1000); /* Type 16 above */ t->memory_error_information_handle = cpu_to_le16(0xFFFE); /* Not provided */ t->total_width = cpu_to_le16(0xFFFF); /* Unknown */ t->data_width = cpu_to_le16(0xFFFF); /* Unknown */ size_mb = QEMU_ALIGN_UP(size, MiB) / MiB; if (size_mb < MAX_T17_STD_SZ) { t->size = cpu_to_le16(size_mb); t->extended_size = cpu_to_le32(0); } else { assert(size_mb < MAX_T17_EXT_SZ); t->size = cpu_to_le16(MAX_T17_STD_SZ); t->extended_size = cpu_to_le32(size_mb); } t->form_factor = 0x09; /* DIMM */ t->device_set = 0; /* Not in a set */ snprintf(loc_str, sizeof(loc_str), "%s %d", type17.loc_pfx, instance); SMBIOS_TABLE_SET_STR(17, device_locator_str, loc_str); SMBIOS_TABLE_SET_STR(17, bank_locator_str, type17.bank); t->memory_type = 0x07; /* RAM */ t->type_detail = cpu_to_le16(0x02); /* Other */ t->speed = cpu_to_le16(type17.speed); SMBIOS_TABLE_SET_STR(17, manufacturer_str, type17.manufacturer); SMBIOS_TABLE_SET_STR(17, serial_number_str, type17.serial); SMBIOS_TABLE_SET_STR(17, asset_tag_number_str, type17.asset); SMBIOS_TABLE_SET_STR(17, part_number_str, type17.part); t->attributes = 0; /* Unknown */ t->configured_clock_speed = t->speed; /* reuse value for max speed */ t->minimum_voltage = cpu_to_le16(0); /* Unknown */ t->maximum_voltage = cpu_to_le16(0); /* Unknown */ t->configured_voltage = cpu_to_le16(0); /* Unknown */ SMBIOS_BUILD_TABLE_POST; } static void smbios_build_type_19_table(unsigned instance, unsigned offset, uint64_t start, uint64_t size) { uint64_t end, start_kb, end_kb; SMBIOS_BUILD_TABLE_PRE(19, T19_BASE + offset + instance, true); /* required */ end = start + size - 1; assert(end > start); start_kb = start / KiB; end_kb = end / KiB; if (start_kb < UINT32_MAX && end_kb < UINT32_MAX) { t->starting_address = cpu_to_le32(start_kb); t->ending_address = cpu_to_le32(end_kb); t->extended_starting_address = t->extended_ending_address = cpu_to_le64(0); } else { t->starting_address = t->ending_address = cpu_to_le32(UINT32_MAX); t->extended_starting_address = cpu_to_le64(start); t->extended_ending_address = cpu_to_le64(end); } t->memory_array_handle = cpu_to_le16(0x1000); /* Type 16 above */ t->partition_width = 1; /* One device per row */ SMBIOS_BUILD_TABLE_POST; } static void smbios_build_type_32_table(void) { SMBIOS_BUILD_TABLE_PRE(32, T32_BASE, true); /* required */ memset(t->reserved, 0, 6); t->boot_status = 0; /* No errors detected */ SMBIOS_BUILD_TABLE_POST; } static void smbios_build_type_41_table(Error **errp) { unsigned instance = 0; struct type41_instance *t41; QTAILQ_FOREACH(t41, &type41, next) { SMBIOS_BUILD_TABLE_PRE(41, T41_BASE + instance, true); SMBIOS_TABLE_SET_STR(41, reference_designation_str, t41->designation); t->device_type = t41->kind; t->device_type_instance = t41->instance; t->segment_group_number = cpu_to_le16(0); t->bus_number = 0; t->device_number = 0; if (t41->pcidev) { PCIDevice *pdev = NULL; int rc = pci_qdev_find_device(t41->pcidev, &pdev); if (rc != 0) { error_setg(errp, "No PCI device %s for SMBIOS type 41 entry %s", t41->pcidev, t41->designation); return; } /* * We only handle the case were the device is attached to * the PCI root bus. The general case is more complex as * bridges are enumerated later and the table would need * to be updated at this moment. */ if (!pci_bus_is_root(pci_get_bus(pdev))) { error_setg(errp, "Cannot create type 41 entry for PCI device %s: " "not attached to the root bus", t41->pcidev); return; } t->segment_group_number = cpu_to_le16(0); t->bus_number = pci_dev_bus_num(pdev); t->device_number = pdev->devfn; } SMBIOS_BUILD_TABLE_POST; instance++; } } static void smbios_build_type_127_table(void) { SMBIOS_BUILD_TABLE_PRE(127, T127_BASE, true); /* required */ SMBIOS_BUILD_TABLE_POST; } void smbios_set_cpuid(uint32_t version, uint32_t features) { smbios_cpuid_version = version; smbios_cpuid_features = features; } #define SMBIOS_SET_DEFAULT(field, value) \ if (!field) { \ field = value; \ } void smbios_set_defaults(const char *manufacturer, const char *product, const char *version, bool legacy_mode, bool uuid_encoded, SmbiosEntryPointType ep_type) { smbios_have_defaults = true; smbios_legacy = legacy_mode; smbios_uuid_encoded = uuid_encoded; smbios_ep_type = ep_type; /* drop unwanted version of command-line file blob(s) */ if (smbios_legacy) { g_free(smbios_tables); /* in legacy mode, also complain if fields were given for types > 1 */ if (find_next_bit(have_fields_bitmap, SMBIOS_MAX_TYPE+1, 2) < SMBIOS_MAX_TYPE+1) { error_report("can't process fields for smbios " "types > 1 on machine versions < 2.1!"); exit(1); } } else { g_free(smbios_entries); } SMBIOS_SET_DEFAULT(type1.manufacturer, manufacturer); SMBIOS_SET_DEFAULT(type1.product, product); SMBIOS_SET_DEFAULT(type1.version, version); SMBIOS_SET_DEFAULT(type2.manufacturer, manufacturer); SMBIOS_SET_DEFAULT(type2.product, product); SMBIOS_SET_DEFAULT(type2.version, version); SMBIOS_SET_DEFAULT(type3.manufacturer, manufacturer); SMBIOS_SET_DEFAULT(type3.version, version); SMBIOS_SET_DEFAULT(type4.sock_pfx, "CPU"); SMBIOS_SET_DEFAULT(type4.manufacturer, manufacturer); SMBIOS_SET_DEFAULT(type4.version, version); SMBIOS_SET_DEFAULT(type17.loc_pfx, "DIMM"); SMBIOS_SET_DEFAULT(type17.manufacturer, manufacturer); } static void smbios_entry_point_setup(void) { switch (smbios_ep_type) { case SMBIOS_ENTRY_POINT_TYPE_32: memcpy(ep.ep21.anchor_string, "_SM_", 4); memcpy(ep.ep21.intermediate_anchor_string, "_DMI_", 5); ep.ep21.length = sizeof(struct smbios_21_entry_point); ep.ep21.entry_point_revision = 0; /* formatted_area reserved */ memset(ep.ep21.formatted_area, 0, 5); /* compliant with smbios spec v2.8 */ ep.ep21.smbios_major_version = 2; ep.ep21.smbios_minor_version = 8; ep.ep21.smbios_bcd_revision = 0x28; /* set during table construction, but BIOS may override: */ ep.ep21.structure_table_length = cpu_to_le16(smbios_tables_len); ep.ep21.max_structure_size = cpu_to_le16(smbios_table_max); ep.ep21.number_of_structures = cpu_to_le16(smbios_table_cnt); /* BIOS must recalculate */ ep.ep21.checksum = 0; ep.ep21.intermediate_checksum = 0; ep.ep21.structure_table_address = cpu_to_le32(0); break; case SMBIOS_ENTRY_POINT_TYPE_64: memcpy(ep.ep30.anchor_string, "_SM3_", 5); ep.ep30.length = sizeof(struct smbios_30_entry_point); ep.ep30.entry_point_revision = 1; ep.ep30.reserved = 0; /* compliant with smbios spec 3.0 */ ep.ep30.smbios_major_version = 3; ep.ep30.smbios_minor_version = 0; ep.ep30.smbios_doc_rev = 0; /* set during table construct, but BIOS might override */ ep.ep30.structure_table_max_size = cpu_to_le32(smbios_tables_len); /* BIOS must recalculate */ ep.ep30.checksum = 0; ep.ep30.structure_table_address = cpu_to_le64(0); break; default: abort(); break; } } void smbios_get_tables(MachineState *ms, const struct smbios_phys_mem_area *mem_array, const unsigned int mem_array_size, uint8_t **tables, size_t *tables_len, uint8_t **anchor, size_t *anchor_len, Error **errp) { unsigned i, dimm_cnt, offset; if (smbios_legacy) { *tables = *anchor = NULL; *tables_len = *anchor_len = 0; return; } if (!smbios_immutable) { smbios_build_type_0_table(); smbios_build_type_1_table(); smbios_build_type_2_table(); smbios_build_type_3_table(); smbios_smp_sockets = DIV_ROUND_UP(ms->smp.cpus, ms->smp.cores * ms->smp.threads); assert(smbios_smp_sockets >= 1); for (i = 0; i < smbios_smp_sockets; i++) { smbios_build_type_4_table(ms, i); } smbios_build_type_8_table(); smbios_build_type_11_table(); #define MAX_DIMM_SZ (16 * GiB) #define GET_DIMM_SZ ((i < dimm_cnt - 1) ? MAX_DIMM_SZ \ : ((current_machine->ram_size - 1) % MAX_DIMM_SZ) + 1) dimm_cnt = QEMU_ALIGN_UP(current_machine->ram_size, MAX_DIMM_SZ) / MAX_DIMM_SZ; /* * The offset determines if we need to keep additional space betweeen * table 17 and table 19 header handle numbers so that they do * not overlap. For example, for a VM with larger than 8 TB guest * memory and DIMM like chunks of 16 GiB, the default space between * the two tables (T19_BASE - T17_BASE = 512) is not enough. */ offset = (dimm_cnt > (T19_BASE - T17_BASE)) ? \ dimm_cnt - (T19_BASE - T17_BASE) : 0; smbios_build_type_16_table(dimm_cnt); for (i = 0; i < dimm_cnt; i++) { smbios_build_type_17_table(i, GET_DIMM_SZ); } for (i = 0; i < mem_array_size; i++) { smbios_build_type_19_table(i, offset, mem_array[i].address, mem_array[i].length); } /* * make sure 16 bit handle numbers in the headers of tables 19 * and 32 do not overlap. */ assert((mem_array_size + offset) < (T32_BASE - T19_BASE)); smbios_build_type_32_table(); smbios_build_type_38_table(); smbios_build_type_41_table(errp); smbios_build_type_127_table(); smbios_validate_table(ms); smbios_entry_point_setup(); smbios_immutable = true; } /* return tables blob and entry point (anchor), and their sizes */ *tables = smbios_tables; *tables_len = smbios_tables_len; *anchor = (uint8_t *)&ep; /* calculate length based on anchor string */ if (!strncmp((char *)&ep, "_SM_", 4)) { *anchor_len = sizeof(struct smbios_21_entry_point); } else if (!strncmp((char *)&ep, "_SM3_", 5)) { *anchor_len = sizeof(struct smbios_30_entry_point); } else { abort(); } } static void save_opt(const char **dest, QemuOpts *opts, const char *name) { const char *val = qemu_opt_get(opts, name); if (val) { *dest = val; } } struct opt_list { size_t *ndest; char ***dest; }; static int save_opt_one(void *opaque, const char *name, const char *value, Error **errp) { struct opt_list *opt = opaque; if (g_str_equal(name, "path")) { g_autoptr(GByteArray) data = g_byte_array_new(); g_autofree char *buf = g_new(char, 4096); ssize_t ret; int fd = qemu_open(value, O_RDONLY, errp); if (fd < 0) { return -1; } while (1) { ret = read(fd, buf, 4096); if (ret == 0) { break; } if (ret < 0) { error_setg(errp, "Unable to read from %s: %s", value, strerror(errno)); qemu_close(fd); return -1; } if (memchr(buf, '\0', ret)) { error_setg(errp, "NUL in OEM strings value in %s", value); qemu_close(fd); return -1; } g_byte_array_append(data, (guint8 *)buf, ret); } qemu_close(fd); *opt->dest = g_renew(char *, *opt->dest, (*opt->ndest) + 1); (*opt->dest)[*opt->ndest] = (char *)g_byte_array_free(data, FALSE); (*opt->ndest)++; data = NULL; } else if (g_str_equal(name, "value")) { *opt->dest = g_renew(char *, *opt->dest, (*opt->ndest) + 1); (*opt->dest)[*opt->ndest] = g_strdup(value); (*opt->ndest)++; } else if (!g_str_equal(name, "type")) { error_setg(errp, "Unexpected option %s", name); return -1; } return 0; } static bool save_opt_list(size_t *ndest, char ***dest, QemuOpts *opts, Error **errp) { struct opt_list opt = { ndest, dest, }; if (!qemu_opt_foreach(opts, save_opt_one, &opt, errp)) { return false; } return true; } void smbios_entry_add(QemuOpts *opts, Error **errp) { const char *val; assert(!smbios_immutable); val = qemu_opt_get(opts, "file"); if (val) { struct smbios_structure_header *header; int size; struct smbios_table *table; /* legacy mode only */ if (!qemu_opts_validate(opts, qemu_smbios_file_opts, errp)) { return; } size = get_image_size(val); if (size == -1 || size < sizeof(struct smbios_structure_header)) { error_setg(errp, "Cannot read SMBIOS file %s", val); return; } /* * NOTE: standard double '\0' terminator expected, per smbios spec. * (except in legacy mode, where the second '\0' is implicit and * will be inserted by the BIOS). */ smbios_tables = g_realloc(smbios_tables, smbios_tables_len + size); header = (struct smbios_structure_header *)(smbios_tables + smbios_tables_len); if (load_image_size(val, (uint8_t *)header, size) != size) { error_setg(errp, "Failed to load SMBIOS file %s", val); return; } if (header->type <= SMBIOS_MAX_TYPE) { if (test_bit(header->type, have_fields_bitmap)) { error_setg(errp, "can't load type %d struct, fields already specified!", header->type); return; } set_bit(header->type, have_binfile_bitmap); } if (header->type == 4) { smbios_type4_count++; } smbios_tables_len += size; if (size > smbios_table_max) { smbios_table_max = size; } smbios_table_cnt++; /* add a copy of the newly loaded blob to legacy smbios_entries */ /* NOTE: This code runs before smbios_set_defaults(), so we don't * yet know which mode (legacy vs. aggregate-table) will be * required. We therefore add the binary blob to both legacy * (smbios_entries) and aggregate (smbios_tables) tables, and * delete the one we don't need from smbios_set_defaults(), * once we know which machine version has been requested. */ if (!smbios_entries) { smbios_entries_len = sizeof(uint16_t); smbios_entries = g_malloc0(smbios_entries_len); } smbios_entries = g_realloc(smbios_entries, smbios_entries_len + size + sizeof(*table)); table = (struct smbios_table *)(smbios_entries + smbios_entries_len); table->header.type = SMBIOS_TABLE_ENTRY; table->header.length = cpu_to_le16(sizeof(*table) + size); memcpy(table->data, header, size); smbios_entries_len += sizeof(*table) + size; (*(uint16_t *)smbios_entries) = cpu_to_le16(le16_to_cpu(*(uint16_t *)smbios_entries) + 1); /* end: add a copy of the newly loaded blob to legacy smbios_entries */ return; } val = qemu_opt_get(opts, "type"); if (val) { unsigned long type = strtoul(val, NULL, 0); if (type > SMBIOS_MAX_TYPE) { error_setg(errp, "out of range!"); return; } if (test_bit(type, have_binfile_bitmap)) { error_setg(errp, "can't add fields, binary file already loaded!"); return; } set_bit(type, have_fields_bitmap); switch (type) { case 0: if (!qemu_opts_validate(opts, qemu_smbios_type0_opts, errp)) { return; } save_opt(&type0.vendor, opts, "vendor"); save_opt(&type0.version, opts, "version"); save_opt(&type0.date, opts, "date"); type0.uefi = qemu_opt_get_bool(opts, "uefi", false); val = qemu_opt_get(opts, "release"); if (val) { if (sscanf(val, "%hhu.%hhu", &type0.major, &type0.minor) != 2) { error_setg(errp, "Invalid release"); return; } type0.have_major_minor = true; } return; case 1: if (!qemu_opts_validate(opts, qemu_smbios_type1_opts, errp)) { return; } save_opt(&type1.manufacturer, opts, "manufacturer"); save_opt(&type1.product, opts, "product"); save_opt(&type1.version, opts, "version"); save_opt(&type1.serial, opts, "serial"); save_opt(&type1.sku, opts, "sku"); save_opt(&type1.family, opts, "family"); val = qemu_opt_get(opts, "uuid"); if (val) { if (qemu_uuid_parse(val, &qemu_uuid) != 0) { error_setg(errp, "Invalid UUID"); return; } qemu_uuid_set = true; } return; case 2: if (!qemu_opts_validate(opts, qemu_smbios_type2_opts, errp)) { return; } save_opt(&type2.manufacturer, opts, "manufacturer"); save_opt(&type2.product, opts, "product"); save_opt(&type2.version, opts, "version"); save_opt(&type2.serial, opts, "serial"); save_opt(&type2.asset, opts, "asset"); save_opt(&type2.location, opts, "location"); return; case 3: if (!qemu_opts_validate(opts, qemu_smbios_type3_opts, errp)) { return; } save_opt(&type3.manufacturer, opts, "manufacturer"); save_opt(&type3.version, opts, "version"); save_opt(&type3.serial, opts, "serial"); save_opt(&type3.asset, opts, "asset"); save_opt(&type3.sku, opts, "sku"); return; case 4: if (!qemu_opts_validate(opts, qemu_smbios_type4_opts, errp)) { return; } save_opt(&type4.sock_pfx, opts, "sock_pfx"); save_opt(&type4.manufacturer, opts, "manufacturer"); save_opt(&type4.version, opts, "version"); save_opt(&type4.serial, opts, "serial"); save_opt(&type4.asset, opts, "asset"); save_opt(&type4.part, opts, "part"); /* If the value is 0, it will take the value from the CPU model. */ type4.processor_id = qemu_opt_get_number(opts, "processor-id", 0); type4.max_speed = qemu_opt_get_number(opts, "max-speed", DEFAULT_CPU_SPEED); type4.current_speed = qemu_opt_get_number(opts, "current-speed", DEFAULT_CPU_SPEED); if (type4.max_speed > UINT16_MAX || type4.current_speed > UINT16_MAX) { error_setg(errp, "SMBIOS CPU speed is too large (> %d)", UINT16_MAX); } return; case 8: if (!qemu_opts_validate(opts, qemu_smbios_type8_opts, errp)) { return; } struct type8_instance *t; t = g_new0(struct type8_instance, 1); save_opt(&t->internal_reference, opts, "internal_reference"); save_opt(&t->external_reference, opts, "external_reference"); t->connector_type = qemu_opt_get_number(opts, "connector_type", 0); t->port_type = qemu_opt_get_number(opts, "port_type", 0); QTAILQ_INSERT_TAIL(&type8, t, next); return; case 11: if (!qemu_opts_validate(opts, qemu_smbios_type11_opts, errp)) { return; } if (!save_opt_list(&type11.nvalues, &type11.values, opts, errp)) { return; } return; case 17: if (!qemu_opts_validate(opts, qemu_smbios_type17_opts, errp)) { return; } save_opt(&type17.loc_pfx, opts, "loc_pfx"); save_opt(&type17.bank, opts, "bank"); save_opt(&type17.manufacturer, opts, "manufacturer"); save_opt(&type17.serial, opts, "serial"); save_opt(&type17.asset, opts, "asset"); save_opt(&type17.part, opts, "part"); type17.speed = qemu_opt_get_number(opts, "speed", 0); return; case 41: { struct type41_instance *t; Error *local_err = NULL; if (!qemu_opts_validate(opts, qemu_smbios_type41_opts, errp)) { return; } t = g_new0(struct type41_instance, 1); save_opt(&t->designation, opts, "designation"); t->kind = qapi_enum_parse(&type41_kind_lookup, qemu_opt_get(opts, "kind"), 0, &local_err) + 1; t->kind |= 0x80; /* enabled */ if (local_err != NULL) { error_propagate(errp, local_err); g_free(t); return; } t->instance = qemu_opt_get_number(opts, "instance", 1); save_opt(&t->pcidev, opts, "pcidev"); QTAILQ_INSERT_TAIL(&type41, t, next); return; } default: error_setg(errp, "Don't know how to build fields for SMBIOS type %ld", type); return; } } error_setg(errp, "Must specify type= or file="); }