/* * QEMU Sparc SLAVIO timer controller emulation * * Copyright (c) 2003-2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "sun4m.h" #include "qemu-timer.h" #include "sysbus.h" //#define DEBUG_TIMER #ifdef DEBUG_TIMER #define DPRINTF(fmt, ...) \ do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) do {} while (0) #endif /* * Registers of hardware timer in sun4m. * * This is the timer/counter part of chip STP2001 (Slave I/O), also * produced as NCR89C105. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt * * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0 * are zero. Bit 31 is 1 when count has been reached. * * Per-CPU timers interrupt local CPU, system timer uses normal * interrupt routing. * */ #define MAX_CPUS 16 typedef struct SLAVIO_TIMERState { SysBusDevice busdev; qemu_irq irq; ptimer_state *timer; uint32_t count, counthigh, reached; uint64_t limit; // processor only uint32_t running; struct SLAVIO_TIMERState *master; uint32_t slave_index; // system only uint32_t num_slaves; struct SLAVIO_TIMERState *slave[MAX_CPUS]; uint32_t slave_mode; } SLAVIO_TIMERState; #define SYS_TIMER_SIZE 0x14 #define CPU_TIMER_SIZE 0x10 #define SYS_TIMER_OFFSET 0x10000ULL #define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu) #define TIMER_LIMIT 0 #define TIMER_COUNTER 1 #define TIMER_COUNTER_NORST 2 #define TIMER_STATUS 3 #define TIMER_MODE 4 #define TIMER_COUNT_MASK32 0xfffffe00 #define TIMER_LIMIT_MASK32 0x7fffffff #define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL #define TIMER_MAX_COUNT32 0x7ffffe00ULL #define TIMER_REACHED 0x80000000 #define TIMER_PERIOD 500ULL // 500ns #define LIMIT_TO_PERIODS(l) ((l) >> 9) #define PERIODS_TO_LIMIT(l) ((l) << 9) static int slavio_timer_is_user(SLAVIO_TIMERState *s) { return s->master && (s->master->slave_mode & (1 << s->slave_index)); } // Update count, set irq, update expire_time // Convert from ptimer countdown units static void slavio_timer_get_out(SLAVIO_TIMERState *s) { uint64_t count, limit; if (s->limit == 0) /* free-run processor or system counter */ limit = TIMER_MAX_COUNT32; else limit = s->limit; if (s->timer) count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer)); else count = 0; DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit, s->counthigh, s->count); s->count = count & TIMER_COUNT_MASK32; s->counthigh = count >> 32; } // timer callback static void slavio_timer_irq(void *opaque) { SLAVIO_TIMERState *s = opaque; slavio_timer_get_out(s); DPRINTF("callback: count %x%08x\n", s->counthigh, s->count); s->reached = TIMER_REACHED; if (!slavio_timer_is_user(s)) qemu_irq_raise(s->irq); } static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr) { SLAVIO_TIMERState *s = opaque; uint32_t saddr, ret; saddr = addr >> 2; switch (saddr) { case TIMER_LIMIT: // read limit (system counter mode) or read most signifying // part of counter (user mode) if (slavio_timer_is_user(s)) { // read user timer MSW slavio_timer_get_out(s); ret = s->counthigh | s->reached; } else { // read limit // clear irq qemu_irq_lower(s->irq); s->reached = 0; ret = s->limit & TIMER_LIMIT_MASK32; } break; case TIMER_COUNTER: // read counter and reached bit (system mode) or read lsbits // of counter (user mode) slavio_timer_get_out(s); if (slavio_timer_is_user(s)) // read user timer LSW ret = s->count & TIMER_MAX_COUNT64; else // read limit ret = (s->count & TIMER_MAX_COUNT32) | s->reached; break; case TIMER_STATUS: // only available in processor counter/timer // read start/stop status ret = s->running; break; case TIMER_MODE: // only available in system counter // read user/system mode ret = s->slave_mode; break; default: DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr); ret = 0; break; } DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret); return ret; } static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { SLAVIO_TIMERState *s = opaque; uint32_t saddr; DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val); saddr = addr >> 2; switch (saddr) { case TIMER_LIMIT: if (slavio_timer_is_user(s)) { uint64_t count; // set user counter MSW, reset counter s->limit = TIMER_MAX_COUNT64; s->counthigh = val & (TIMER_MAX_COUNT64 >> 32); s->reached = 0; count = ((uint64_t)s->counthigh << 32) | s->count; DPRINTF("processor %d user timer set to %016" PRIx64 "\n", s->slave_index, count); if (s->timer) ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count)); } else { // set limit, reset counter qemu_irq_lower(s->irq); s->limit = val & TIMER_MAX_COUNT32; if (s->timer) { if (s->limit == 0) /* free-run */ ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1); else ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1); } } break; case TIMER_COUNTER: if (slavio_timer_is_user(s)) { uint64_t count; // set user counter LSW, reset counter s->limit = TIMER_MAX_COUNT64; s->count = val & TIMER_MAX_COUNT64; s->reached = 0; count = ((uint64_t)s->counthigh) << 32 | s->count; DPRINTF("processor %d user timer set to %016" PRIx64 "\n", s->slave_index, count); if (s->timer) ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count)); } else DPRINTF("not user timer\n"); break; case TIMER_COUNTER_NORST: // set limit without resetting counter s->limit = val & TIMER_MAX_COUNT32; if (s->timer) { if (s->limit == 0) /* free-run */ ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0); else ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0); } break; case TIMER_STATUS: if (slavio_timer_is_user(s)) { // start/stop user counter if ((val & 1) && !s->running) { DPRINTF("processor %d user timer started\n", s->slave_index); if (s->timer) ptimer_run(s->timer, 0); s->running = 1; } else if (!(val & 1) && s->running) { DPRINTF("processor %d user timer stopped\n", s->slave_index); if (s->timer) ptimer_stop(s->timer); s->running = 0; } } break; case TIMER_MODE: if (s->master == NULL) { unsigned int i; for (i = 0; i < s->num_slaves; i++) { unsigned int processor = 1 << i; // check for a change in timer mode for this processor if ((val & processor) != (s->slave_mode & processor)) { if (val & processor) { // counter -> user timer qemu_irq_lower(s->slave[i]->irq); // counters are always running ptimer_stop(s->slave[i]->timer); s->slave[i]->running = 0; // user timer limit is always the same s->slave[i]->limit = TIMER_MAX_COUNT64; ptimer_set_limit(s->slave[i]->timer, LIMIT_TO_PERIODS(s->slave[i]->limit), 1); // set this processors user timer bit in config // register s->slave_mode |= processor; DPRINTF("processor %d changed from counter to user " "timer\n", s->slave[i]->slave_index); } else { // user timer -> counter // stop the user timer if it is running if (s->slave[i]->running) ptimer_stop(s->slave[i]->timer); // start the counter ptimer_run(s->slave[i]->timer, 0); s->slave[i]->running = 1; // clear this processors user timer bit in config // register s->slave_mode &= ~processor; DPRINTF("processor %d changed from user timer to " "counter\n", s->slave[i]->slave_index); } } } } else DPRINTF("not system timer\n"); break; default: DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr); break; } } static CPUReadMemoryFunc *slavio_timer_mem_read[3] = { NULL, NULL, slavio_timer_mem_readl, }; static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = { NULL, NULL, slavio_timer_mem_writel, }; static void slavio_timer_save(QEMUFile *f, void *opaque) { SLAVIO_TIMERState *s = opaque; qemu_put_be64s(f, &s->limit); qemu_put_be32s(f, &s->count); qemu_put_be32s(f, &s->counthigh); qemu_put_be32s(f, &s->reached); qemu_put_be32s(f, &s->running); if (s->timer) qemu_put_ptimer(f, s->timer); } static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id) { SLAVIO_TIMERState *s = opaque; if (version_id != 3) return -EINVAL; qemu_get_be64s(f, &s->limit); qemu_get_be32s(f, &s->count); qemu_get_be32s(f, &s->counthigh); qemu_get_be32s(f, &s->reached); qemu_get_be32s(f, &s->running); if (s->timer) qemu_get_ptimer(f, s->timer); return 0; } static void slavio_timer_reset(void *opaque) { SLAVIO_TIMERState *s = opaque; s->limit = 0; s->count = 0; s->reached = 0; s->slave_mode = 0; if (!s->master || s->slave_index < s->master->num_slaves) { ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1); ptimer_run(s->timer, 0); } s->running = 1; } static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr, qemu_irq irq, SLAVIO_TIMERState *master, uint32_t slave_index, uint32_t num_slaves) { DeviceState *dev; SysBusDevice *s; SLAVIO_TIMERState *d; dev = qdev_create(NULL, "slavio_timer"); qdev_prop_set_uint32(dev, "slave_index", slave_index); qdev_prop_set_uint32(dev, "num_slaves", num_slaves); qdev_prop_set_ptr(dev, "master", master); qdev_init(dev); s = sysbus_from_qdev(dev); sysbus_connect_irq(s, 0, irq); sysbus_mmio_map(s, 0, addr); d = FROM_SYSBUS(SLAVIO_TIMERState, s); return d; } static void slavio_timer_init1(SysBusDevice *dev) { int io; SLAVIO_TIMERState *s = FROM_SYSBUS(SLAVIO_TIMERState, dev); QEMUBH *bh; sysbus_init_irq(dev, &s->irq); if (!s->master || s->slave_index < s->master->num_slaves) { bh = qemu_bh_new(slavio_timer_irq, s); s->timer = ptimer_init(bh); ptimer_set_period(s->timer, TIMER_PERIOD); } io = cpu_register_io_memory(slavio_timer_mem_read, slavio_timer_mem_write, s); if (s->master) { sysbus_init_mmio(dev, CPU_TIMER_SIZE, io); } else { sysbus_init_mmio(dev, SYS_TIMER_SIZE, io); } register_savevm("slavio_timer", -1, 3, slavio_timer_save, slavio_timer_load, s); qemu_register_reset(slavio_timer_reset, s); slavio_timer_reset(s); } void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq, qemu_irq *cpu_irqs, unsigned int num_cpus) { SLAVIO_TIMERState *master; unsigned int i; master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0, num_cpus); for (i = 0; i < MAX_CPUS; i++) { master->slave[i] = slavio_timer_init(base + (target_phys_addr_t) CPU_TIMER_OFFSET(i), cpu_irqs[i], master, i, 0); } } static SysBusDeviceInfo slavio_timer_info = { .init = slavio_timer_init1, .qdev.name = "slavio_timer", .qdev.size = sizeof(SLAVIO_TIMERState), .qdev.props = (Property[]) { { .name = "num_slaves", .info = &qdev_prop_uint32, .offset = offsetof(SLAVIO_TIMERState, num_slaves), }, { .name = "slave_index", .info = &qdev_prop_uint32, .offset = offsetof(SLAVIO_TIMERState, slave_index), }, { .name = "master", .info = &qdev_prop_ptr, .offset = offsetof(SLAVIO_TIMERState, master), }, {/* end of property list */} } }; static void slavio_timer_register_devices(void) { sysbus_register_withprop(&slavio_timer_info); } device_init(slavio_timer_register_devices)