/* * QEMU Sparc SLAVIO interrupt controller emulation * * Copyright (c) 2003-2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" //#define DEBUG_IRQ_COUNT //#define DEBUG_IRQ #ifdef DEBUG_IRQ #define DPRINTF(fmt, args...) \ do { printf("IRQ: " fmt , ##args); } while (0) #else #define DPRINTF(fmt, args...) #endif /* * Registers of interrupt controller in sun4m. * * This is the interrupt controller part of chip STP2001 (Slave I/O), also * produced as NCR89C105. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt * * There is a system master controller and one for each cpu. * */ #define MAX_CPUS 16 typedef struct SLAVIO_INTCTLState { uint32_t intreg_pending[MAX_CPUS]; uint32_t intregm_pending; uint32_t intregm_disabled; uint32_t target_cpu; #ifdef DEBUG_IRQ_COUNT uint64_t irq_count[32]; #endif CPUState *cpu_envs[MAX_CPUS]; const uint32_t *intbit_to_level; uint32_t cputimer_bit; } SLAVIO_INTCTLState; #define INTCTL_MAXADDR 0xf #define INTCTL_SIZE (INTCTL_MAXADDR + 1) #define INTCTLM_MAXADDR 0x13 #define INTCTLM_SIZE (INTCTLM_MAXADDR + 1) #define INTCTLM_MASK 0x1f static void slavio_check_interrupts(void *opaque); // per-cpu interrupt controller static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr) { SLAVIO_INTCTLState *s = opaque; uint32_t saddr; int cpu; cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12; saddr = (addr & INTCTL_MAXADDR) >> 2; switch (saddr) { case 0: return s->intreg_pending[cpu]; default: break; } return 0; } static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { SLAVIO_INTCTLState *s = opaque; uint32_t saddr; int cpu; cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12; saddr = (addr & INTCTL_MAXADDR) >> 2; switch (saddr) { case 1: // clear pending softints if (val & 0x4000) val |= 80000000; val &= 0xfffe0000; s->intreg_pending[cpu] &= ~val; DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]); break; case 2: // set softint val &= 0xfffe0000; s->intreg_pending[cpu] |= val; slavio_check_interrupts(s); DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]); break; default: break; } } static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = { slavio_intctl_mem_readl, slavio_intctl_mem_readl, slavio_intctl_mem_readl, }; static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = { slavio_intctl_mem_writel, slavio_intctl_mem_writel, slavio_intctl_mem_writel, }; // master system interrupt controller static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr) { SLAVIO_INTCTLState *s = opaque; uint32_t saddr; saddr = (addr & INTCTLM_MAXADDR) >> 2; switch (saddr) { case 0: return s->intregm_pending & 0x7fffffff; case 1: return s->intregm_disabled; case 4: return s->target_cpu; default: break; } return 0; } static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { SLAVIO_INTCTLState *s = opaque; uint32_t saddr; saddr = (addr & INTCTLM_MASK) >> 2; switch (saddr) { case 2: // clear (enable) // Force clear unused bits val &= ~0x4fb2007f; s->intregm_disabled &= ~val; DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled); slavio_check_interrupts(s); break; case 3: // set (disable, clear pending) // Force clear unused bits val &= ~0x4fb2007f; s->intregm_disabled |= val; s->intregm_pending &= ~val; DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled); break; case 4: s->target_cpu = val & (MAX_CPUS - 1); DPRINTF("Set master irq cpu %d\n", s->target_cpu); break; default: break; } } static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = { slavio_intctlm_mem_readl, slavio_intctlm_mem_readl, slavio_intctlm_mem_readl, }; static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = { slavio_intctlm_mem_writel, slavio_intctlm_mem_writel, slavio_intctlm_mem_writel, }; void slavio_pic_info(void *opaque) { SLAVIO_INTCTLState *s = opaque; int i; for (i = 0; i < MAX_CPUS; i++) { term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]); } term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled); } void slavio_irq_info(void *opaque) { #ifndef DEBUG_IRQ_COUNT term_printf("irq statistic code not compiled.\n"); #else SLAVIO_INTCTLState *s = opaque; int i; int64_t count; term_printf("IRQ statistics:\n"); for (i = 0; i < 32; i++) { count = s->irq_count[i]; if (count > 0) term_printf("%2d: %" PRId64 "\n", i, count); } #endif } static void slavio_check_interrupts(void *opaque) { CPUState *env; SLAVIO_INTCTLState *s = opaque; uint32_t pending = s->intregm_pending; unsigned int i, j, max = 0; pending &= ~s->intregm_disabled; if (pending && !(s->intregm_disabled & 0x80000000)) { for (i = 0; i < 32; i++) { if (pending & (1 << i)) { if (max < s->intbit_to_level[i]) max = s->intbit_to_level[i]; } } env = s->cpu_envs[s->target_cpu]; if (!env) { DPRINTF("No CPU %d, not triggered (pending %x)\n", s->target_cpu, pending); } else { if (env->halted) env->halted = 0; if (env->interrupt_index == 0) { DPRINTF("Triggered CPU %d pil %d\n", s->target_cpu, max); #ifdef DEBUG_IRQ_COUNT s->irq_count[max]++; #endif env->interrupt_index = TT_EXTINT | max; cpu_interrupt(env, CPU_INTERRUPT_HARD); } else DPRINTF("Not triggered (pending %x), pending exception %x\n", pending, env->interrupt_index); } } else DPRINTF("Not triggered (pending %x), disabled %x\n", pending, s->intregm_disabled); for (i = 0; i < MAX_CPUS; i++) { max = 0; env = s->cpu_envs[i]; if (!env) continue; for (j = 17; j < 32; j++) { if (s->intreg_pending[i] & (1 << j)) { if (max < j - 16) max = j - 16; } } if (max > 0) { if (env->halted) env->halted = 0; if (env->interrupt_index == 0) { DPRINTF("Triggered softint %d for cpu %d (pending %x)\n", max, i, pending); #ifdef DEBUG_IRQ_COUNT s->irq_count[max]++; #endif env->interrupt_index = TT_EXTINT | max; cpu_interrupt(env, CPU_INTERRUPT_HARD); } } } } /* * "irq" here is the bit number in the system interrupt register to * separate serial and keyboard interrupts sharing a level. */ static void slavio_set_irq(void *opaque, int irq, int level) { SLAVIO_INTCTLState *s = opaque; DPRINTF("Set cpu %d irq %d level %d\n", s->target_cpu, irq, level); if (irq < 32) { uint32_t mask = 1 << irq; uint32_t pil = s->intbit_to_level[irq]; if (pil > 0) { if (level) { s->intregm_pending |= mask; s->intreg_pending[s->target_cpu] |= 1 << pil; slavio_check_interrupts(s); } else { s->intregm_pending &= ~mask; s->intreg_pending[s->target_cpu] &= ~(1 << pil); } } } } static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level) { SLAVIO_INTCTLState *s = opaque; DPRINTF("Set cpu %d local level %d\n", cpu, level); if (!s->cpu_envs[cpu]) return; if (level) { s->intreg_pending[cpu] |= s->cputimer_bit; } else { s->intreg_pending[cpu] &= ~s->cputimer_bit; } slavio_check_interrupts(s); } static void slavio_intctl_save(QEMUFile *f, void *opaque) { SLAVIO_INTCTLState *s = opaque; int i; for (i = 0; i < MAX_CPUS; i++) { qemu_put_be32s(f, &s->intreg_pending[i]); } qemu_put_be32s(f, &s->intregm_pending); qemu_put_be32s(f, &s->intregm_disabled); qemu_put_be32s(f, &s->target_cpu); } static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id) { SLAVIO_INTCTLState *s = opaque; int i; if (version_id != 1) return -EINVAL; for (i = 0; i < MAX_CPUS; i++) { qemu_get_be32s(f, &s->intreg_pending[i]); } qemu_get_be32s(f, &s->intregm_pending); qemu_get_be32s(f, &s->intregm_disabled); qemu_get_be32s(f, &s->target_cpu); return 0; } static void slavio_intctl_reset(void *opaque) { SLAVIO_INTCTLState *s = opaque; int i; for (i = 0; i < MAX_CPUS; i++) { s->intreg_pending[i] = 0; } s->intregm_disabled = ~0xffb2007f; s->intregm_pending = 0; s->target_cpu = 0; } void slavio_intctl_set_cpu(void *opaque, unsigned int cpu, CPUState *env) { SLAVIO_INTCTLState *s = opaque; s->cpu_envs[cpu] = env; } void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg, const uint32_t *intbit_to_level, qemu_irq **irq, qemu_irq **cpu_irq, unsigned int cputimer) { int slavio_intctl_io_memory, slavio_intctlm_io_memory, i; SLAVIO_INTCTLState *s; s = qemu_mallocz(sizeof(SLAVIO_INTCTLState)); if (!s) return NULL; s->intbit_to_level = intbit_to_level; for (i = 0; i < MAX_CPUS; i++) { slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s); cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE, slavio_intctl_io_memory); } slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s); cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory); register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s); qemu_register_reset(slavio_intctl_reset, s); *irq = qemu_allocate_irqs(slavio_set_irq, s, 32); *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS); s->cputimer_bit = 1 << s->intbit_to_level[cputimer]; slavio_intctl_reset(s); return s; }