/* * QEMU Sparc SLAVIO interrupt controller emulation * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "vl.h" //#define DEBUG_IRQ_COUNT /* * Registers of interrupt controller in sun4m. * * This is the interrupt controller part of chip STP2001 (Slave I/O), also * produced as NCR89C105. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt * * There is a system master controller and one for each cpu. * */ #define MAX_CPUS 16 typedef struct SLAVIO_INTCTLState { uint32_t intreg_pending[MAX_CPUS]; uint32_t intregm_pending; uint32_t intregm_disabled; uint32_t target_cpu; #ifdef DEBUG_IRQ_COUNT uint64_t irq_count[32]; #endif } SLAVIO_INTCTLState; #define INTCTL_MAXADDR 0xf #define INTCTLM_MAXADDR 0xf // per-cpu interrupt controller static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr) { SLAVIO_INTCTLState *s = opaque; uint32_t saddr; int cpu; cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12; saddr = (addr & INTCTL_MAXADDR) >> 2; switch (saddr) { case 0: return s->intreg_pending[cpu]; default: break; } return 0; } static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { SLAVIO_INTCTLState *s = opaque; uint32_t saddr; int cpu; cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12; saddr = (addr & INTCTL_MAXADDR) >> 2; switch (saddr) { case 1: // clear pending softints if (val & 0x4000) val |= 80000000; val &= 0xfffe0000; s->intreg_pending[cpu] &= ~val; break; case 2: // set softint val &= 0xfffe0000; s->intreg_pending[cpu] |= val; break; default: break; } } static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = { slavio_intctl_mem_readl, slavio_intctl_mem_readl, slavio_intctl_mem_readl, }; static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = { slavio_intctl_mem_writel, slavio_intctl_mem_writel, slavio_intctl_mem_writel, }; // master system interrupt controller static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr) { SLAVIO_INTCTLState *s = opaque; uint32_t saddr; saddr = (addr & INTCTLM_MAXADDR) >> 2; switch (saddr) { case 0: return s->intregm_pending & 0x7fffffff; case 1: return s->intregm_disabled; case 4: return s->target_cpu; default: break; } return 0; } static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val) { SLAVIO_INTCTLState *s = opaque; uint32_t saddr; saddr = (addr & INTCTLM_MAXADDR) >> 2; switch (saddr) { case 2: // clear (enable) // Force clear unused bits val &= ~0x7fb2007f; s->intregm_disabled &= ~val; break; case 3: // set (disable, clear pending) // Force clear unused bits val &= ~0x7fb2007f; s->intregm_disabled |= val; s->intregm_pending &= ~val; break; case 4: s->target_cpu = val & (MAX_CPUS - 1); break; default: break; } } static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = { slavio_intctlm_mem_readl, slavio_intctlm_mem_readl, slavio_intctlm_mem_readl, }; static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = { slavio_intctlm_mem_writel, slavio_intctlm_mem_writel, slavio_intctlm_mem_writel, }; void slavio_pic_info(void *opaque) { SLAVIO_INTCTLState *s = opaque; int i; for (i = 0; i < MAX_CPUS; i++) { term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]); } term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled); } void slavio_irq_info(void *opaque) { #ifndef DEBUG_IRQ_COUNT term_printf("irq statistic code not compiled.\n"); #else SLAVIO_INTCTLState *s = opaque; int i; int64_t count; term_printf("IRQ statistics:\n"); for (i = 0; i < 32; i++) { count = s->irq_count[i]; if (count > 0) term_printf("%2d: %lld\n", i, count); } #endif } static const uint32_t intbit_to_level[32] = { 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12, 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 0, 0, }; /* * "irq" here is the bit number in the system interrupt register to * separate serial and keyboard interrupts sharing a level. */ void slavio_pic_set_irq(void *opaque, int irq, int level) { SLAVIO_INTCTLState *s = opaque; if (irq < 32) { uint32_t mask = 1 << irq; uint32_t pil = intbit_to_level[irq]; if (pil > 0) { if (level) { s->intregm_pending |= mask; s->intreg_pending[s->target_cpu] |= 1 << pil; } else { s->intregm_pending &= ~mask; s->intreg_pending[s->target_cpu] &= ~(1 << pil); } if (level && !(s->intregm_disabled & mask) && !(s->intregm_disabled & 0x80000000) && (pil == 15 || (pil > cpu_single_env->psrpil && cpu_single_env->psret == 1))) { #ifdef DEBUG_IRQ_COUNT if (level == 1) s->irq_count[pil]++; #endif cpu_single_env->interrupt_index = TT_EXTINT | pil; cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD); } } } } static void slavio_intctl_save(QEMUFile *f, void *opaque) { SLAVIO_INTCTLState *s = opaque; int i; for (i = 0; i < MAX_CPUS; i++) { qemu_put_be32s(f, &s->intreg_pending[i]); } qemu_put_be32s(f, &s->intregm_pending); qemu_put_be32s(f, &s->intregm_disabled); qemu_put_be32s(f, &s->target_cpu); } static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id) { SLAVIO_INTCTLState *s = opaque; int i; if (version_id != 1) return -EINVAL; for (i = 0; i < MAX_CPUS; i++) { qemu_get_be32s(f, &s->intreg_pending[i]); } qemu_get_be32s(f, &s->intregm_pending); qemu_get_be32s(f, &s->intregm_disabled); qemu_get_be32s(f, &s->target_cpu); return 0; } static void slavio_intctl_reset(void *opaque) { SLAVIO_INTCTLState *s = opaque; int i; for (i = 0; i < MAX_CPUS; i++) { s->intreg_pending[i] = 0; } s->intregm_disabled = ~0xffb2007f; s->intregm_pending = 0; s->target_cpu = 0; } void *slavio_intctl_init(uint32_t addr, uint32_t addrg) { int slavio_intctl_io_memory, slavio_intctlm_io_memory, i; SLAVIO_INTCTLState *s; s = qemu_mallocz(sizeof(SLAVIO_INTCTLState)); if (!s) return NULL; for (i = 0; i < MAX_CPUS; i++) { slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s); cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_MAXADDR, slavio_intctl_io_memory); } slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s); cpu_register_physical_memory(addrg, INTCTLM_MAXADDR, slavio_intctlm_io_memory); register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s); qemu_register_reset(slavio_intctl_reset, s); slavio_intctl_reset(s); return s; }