/* * SuperH Timer modules. * * Copyright (c) 2007 Magnus Damm * Based on arm_timer.c by Paul Brook * Copyright (c) 2005-2006 CodeSourcery. * * This code is licenced under the GPL. */ #include "hw.h" #include "sh.h" #include "qemu-timer.h" //#define DEBUG_TIMER #define TIMER_TCR_TPSC (7 << 0) #define TIMER_TCR_CKEG (3 << 3) #define TIMER_TCR_UNIE (1 << 5) #define TIMER_TCR_ICPE (3 << 6) #define TIMER_TCR_UNF (1 << 8) #define TIMER_TCR_ICPF (1 << 9) #define TIMER_TCR_RESERVED (0x3f << 10) #define TIMER_FEAT_CAPT (1 << 0) #define TIMER_FEAT_EXTCLK (1 << 1) typedef struct { ptimer_state *timer; uint32_t tcnt; uint32_t tcor; uint32_t tcr; uint32_t tcpr; int freq; int int_level; int feat; int enabled; qemu_irq irq; } sh_timer_state; /* Check all active timers, and schedule the next timer interrupt. */ static void sh_timer_update(sh_timer_state *s) { #if 0 /* not yet */ /* Update interrupts. */ if (s->int_level && (s->tcr & TIMER_TCR_UNIE)) { qemu_irq_raise(s->irq); } else { qemu_irq_lower(s->irq); } #endif } uint32_t sh_timer_read(void *opaque, target_phys_addr_t offset) { sh_timer_state *s = (sh_timer_state *)opaque; switch (offset >> 2) { case 0: return s->tcor; case 1: return ptimer_get_count(s->timer); case 2: return s->tcr | (s->int_level ? TIMER_TCR_UNF : 0); case 3: if (s->feat & TIMER_FEAT_CAPT) return s->tcpr; default: cpu_abort (cpu_single_env, "sh_timer_read: Bad offset %x\n", (int)offset); return 0; } } static void sh_timer_write(void *opaque, target_phys_addr_t offset, uint32_t value) { sh_timer_state *s = (sh_timer_state *)opaque; int freq; switch (offset >> 2) { case 0: s->tcor = value; ptimer_set_limit(s->timer, s->tcor, 0); break; case 1: s->tcnt = value; ptimer_set_count(s->timer, s->tcnt); break; case 2: if (s->enabled) { /* Pause the timer if it is running. This may cause some inaccuracy dure to rounding, but avoids a whole lot of other messyness. */ ptimer_stop(s->timer); } freq = s->freq; /* ??? Need to recalculate expiry time after changing divisor. */ switch (value & TIMER_TCR_TPSC) { case 0: freq >>= 2; break; case 1: freq >>= 4; break; case 2: freq >>= 6; break; case 3: freq >>= 8; break; case 4: freq >>= 10; break; case 6: case 7: if (s->feat & TIMER_FEAT_EXTCLK) break; default: cpu_abort (cpu_single_env, "sh_timer_write: Reserved TPSC value\n"); break; } switch ((value & TIMER_TCR_CKEG) >> 3) { case 0: break; case 1: case 2: case 3: if (s->feat & TIMER_FEAT_EXTCLK) break; default: cpu_abort (cpu_single_env, "sh_timer_write: Reserved CKEG value\n"); break; } switch ((value & TIMER_TCR_ICPE) >> 6) { case 0: break; case 2: case 3: if (s->feat & TIMER_FEAT_CAPT) break; default: cpu_abort (cpu_single_env, "sh_timer_write: Reserved ICPE value\n"); break; } if ((value & TIMER_TCR_UNF) == 0) s->int_level = 0; value &= ~TIMER_TCR_UNF; if ((value & TIMER_TCR_ICPF) && (!(s->feat & TIMER_FEAT_CAPT))) cpu_abort (cpu_single_env, "sh_timer_write: Reserved ICPF value\n"); value &= ~TIMER_TCR_ICPF; /* capture not supported */ if (value & TIMER_TCR_RESERVED) cpu_abort (cpu_single_env, "sh_timer_write: Reserved TCR bits set\n"); s->tcr = value; ptimer_set_limit(s->timer, s->tcor, 0); ptimer_set_freq(s->timer, freq); if (s->enabled) { /* Restart the timer if still enabled. */ ptimer_run(s->timer, 0); } break; case 3: if (s->feat & TIMER_FEAT_CAPT) { s->tcpr = value; break; } default: cpu_abort (cpu_single_env, "sh_timer_write: Bad offset %x\n", (int)offset); } sh_timer_update(s); } static void sh_timer_start_stop(void *opaque, int enable) { sh_timer_state *s = (sh_timer_state *)opaque; #ifdef DEBUG_TIMER printf("sh_timer_start_stop %d (%d)\n", enable, s->enabled); #endif if (s->enabled && !enable) { ptimer_stop(s->timer); } if (!s->enabled && enable) { ptimer_run(s->timer, 0); } s->enabled = !!enable; #ifdef DEBUG_TIMER printf("sh_timer_start_stop done %d\n", s->enabled); #endif } static void sh_timer_tick(void *opaque) { sh_timer_state *s = (sh_timer_state *)opaque; s->int_level = s->enabled; sh_timer_update(s); } static void *sh_timer_init(uint32_t freq, int feat) { sh_timer_state *s; QEMUBH *bh; s = (sh_timer_state *)qemu_mallocz(sizeof(sh_timer_state)); s->freq = freq; s->feat = feat; s->tcor = 0xffffffff; s->tcnt = 0xffffffff; s->tcpr = 0xdeadbeef; s->tcor = 0; s->enabled = 0; bh = qemu_bh_new(sh_timer_tick, s); s->timer = ptimer_init(bh); /* ??? Save/restore. */ return s; } typedef struct { void *timer[3]; int level[3]; uint32_t tocr; uint32_t tstr; target_phys_addr_t base; int feat; } tmu012_state; static uint32_t tmu012_read(void *opaque, target_phys_addr_t offset) { tmu012_state *s = (tmu012_state *)opaque; #ifdef DEBUG_TIMER printf("tmu012_read 0x%lx\n", (unsigned long) offset); #endif offset -= s->base; if (offset >= 0x20) { if (!(s->feat & TMU012_FEAT_3CHAN)) cpu_abort (cpu_single_env, "tmu012_write: Bad channel offset %x\n", (int)offset); return sh_timer_read(s->timer[2], offset - 0x20); } if (offset >= 0x14) return sh_timer_read(s->timer[1], offset - 0x14); if (offset >= 0x08) return sh_timer_read(s->timer[0], offset - 0x08); if (offset == 4) return s->tstr; if ((s->feat & TMU012_FEAT_TOCR) && offset == 0) return s->tocr; cpu_abort (cpu_single_env, "tmu012_write: Bad offset %x\n", (int)offset); return 0; } static void tmu012_write(void *opaque, target_phys_addr_t offset, uint32_t value) { tmu012_state *s = (tmu012_state *)opaque; #ifdef DEBUG_TIMER printf("tmu012_write 0x%lx 0x%08x\n", (unsigned long) offset, value); #endif offset -= s->base; if (offset >= 0x20) { if (!(s->feat & TMU012_FEAT_3CHAN)) cpu_abort (cpu_single_env, "tmu012_write: Bad channel offset %x\n", (int)offset); sh_timer_write(s->timer[2], offset - 0x20, value); return; } if (offset >= 0x14) { sh_timer_write(s->timer[1], offset - 0x14, value); return; } if (offset >= 0x08) { sh_timer_write(s->timer[0], offset - 0x08, value); return; } if (offset == 4) { sh_timer_start_stop(s->timer[0], value & (1 << 0)); sh_timer_start_stop(s->timer[1], value & (1 << 1)); if (s->feat & TMU012_FEAT_3CHAN) sh_timer_start_stop(s->timer[2], value & (1 << 2)); else if (value & (1 << 2)) cpu_abort (cpu_single_env, "tmu012_write: Bad channel\n"); s->tstr = value; return; } if ((s->feat & TMU012_FEAT_TOCR) && offset == 0) { s->tocr = value & (1 << 0); } } static CPUReadMemoryFunc *tmu012_readfn[] = { tmu012_read, tmu012_read, tmu012_read }; static CPUWriteMemoryFunc *tmu012_writefn[] = { tmu012_write, tmu012_write, tmu012_write }; void tmu012_init(uint32_t base, int feat, uint32_t freq) { int iomemtype; tmu012_state *s; int timer_feat = (feat & TMU012_FEAT_EXTCLK) ? TIMER_FEAT_EXTCLK : 0; s = (tmu012_state *)qemu_mallocz(sizeof(tmu012_state)); s->base = base; s->feat = feat; s->timer[0] = sh_timer_init(freq, timer_feat); s->timer[1] = sh_timer_init(freq, timer_feat); if (feat & TMU012_FEAT_3CHAN) s->timer[2] = sh_timer_init(freq, timer_feat | TIMER_FEAT_CAPT); iomemtype = cpu_register_io_memory(0, tmu012_readfn, tmu012_writefn, s); cpu_register_physical_memory(base, 0x00001000, iomemtype); /* ??? Save/restore. */ }