/* * QEMU VMWARE PVSCSI paravirtual SCSI bus * * Copyright (c) 2012 Ravello Systems LTD (http://ravellosystems.com) * * Developed by Daynix Computing LTD (http://www.daynix.com) * * Based on implementation by Paolo Bonzini * http://lists.gnu.org/archive/html/qemu-devel/2011-08/msg00729.html * * Authors: * Paolo Bonzini * Dmitry Fleytman * Yan Vugenfirer * * This work is licensed under the terms of the GNU GPL, version 2. * See the COPYING file in the top-level directory. * * NOTE about MSI-X: * MSI-X support has been removed for the moment because it leads Windows OS * to crash on startup. The crash happens because Windows driver requires * MSI-X shared memory to be part of the same BAR used for rings state * registers, etc. This is not supported by QEMU infrastructure so separate * BAR created from MSI-X purposes. Windows driver fails to deal with 2 BARs. * */ #include "qemu/osdep.h" #include "qapi/error.h" #include "qemu/module.h" #include "hw/scsi/scsi.h" #include "migration/vmstate.h" #include "scsi/constants.h" #include "hw/pci/msi.h" #include "vmw_pvscsi.h" #include "trace.h" #define PVSCSI_USE_64BIT (true) #define PVSCSI_PER_VECTOR_MASK (false) #define PVSCSI_MAX_DEVS (64) #define PVSCSI_MSIX_NUM_VECTORS (1) #define PVSCSI_MAX_SG_ELEM 2048 #define PVSCSI_MAX_CMD_DATA_WORDS \ (sizeof(PVSCSICmdDescSetupRings)/sizeof(uint32_t)) #define RS_GET_FIELD(m, field) \ (ldl_le_pci_dma(&container_of(m, PVSCSIState, rings)->parent_obj, \ (m)->rs_pa + offsetof(struct PVSCSIRingsState, field))) #define RS_SET_FIELD(m, field, val) \ (stl_le_pci_dma(&container_of(m, PVSCSIState, rings)->parent_obj, \ (m)->rs_pa + offsetof(struct PVSCSIRingsState, field), val)) typedef struct PVSCSIClass { PCIDeviceClass parent_class; DeviceRealize parent_dc_realize; } PVSCSIClass; #define TYPE_PVSCSI "pvscsi" #define PVSCSI(obj) OBJECT_CHECK(PVSCSIState, (obj), TYPE_PVSCSI) #define PVSCSI_DEVICE_CLASS(klass) \ OBJECT_CLASS_CHECK(PVSCSIClass, (klass), TYPE_PVSCSI) #define PVSCSI_DEVICE_GET_CLASS(obj) \ OBJECT_GET_CLASS(PVSCSIClass, (obj), TYPE_PVSCSI) /* Compatibility flags for migration */ #define PVSCSI_COMPAT_OLD_PCI_CONFIGURATION_BIT 0 #define PVSCSI_COMPAT_OLD_PCI_CONFIGURATION \ (1 << PVSCSI_COMPAT_OLD_PCI_CONFIGURATION_BIT) #define PVSCSI_COMPAT_DISABLE_PCIE_BIT 1 #define PVSCSI_COMPAT_DISABLE_PCIE \ (1 << PVSCSI_COMPAT_DISABLE_PCIE_BIT) #define PVSCSI_USE_OLD_PCI_CONFIGURATION(s) \ ((s)->compat_flags & PVSCSI_COMPAT_OLD_PCI_CONFIGURATION) #define PVSCSI_MSI_OFFSET(s) \ (PVSCSI_USE_OLD_PCI_CONFIGURATION(s) ? 0x50 : 0x7c) #define PVSCSI_EXP_EP_OFFSET (0x40) typedef struct PVSCSIRingInfo { uint64_t rs_pa; uint32_t txr_len_mask; uint32_t rxr_len_mask; uint32_t msg_len_mask; uint64_t req_ring_pages_pa[PVSCSI_SETUP_RINGS_MAX_NUM_PAGES]; uint64_t cmp_ring_pages_pa[PVSCSI_SETUP_RINGS_MAX_NUM_PAGES]; uint64_t msg_ring_pages_pa[PVSCSI_SETUP_MSG_RING_MAX_NUM_PAGES]; uint64_t consumed_ptr; uint64_t filled_cmp_ptr; uint64_t filled_msg_ptr; } PVSCSIRingInfo; typedef struct PVSCSISGState { hwaddr elemAddr; hwaddr dataAddr; uint32_t resid; } PVSCSISGState; typedef QTAILQ_HEAD(, PVSCSIRequest) PVSCSIRequestList; typedef struct { PCIDevice parent_obj; MemoryRegion io_space; SCSIBus bus; QEMUBH *completion_worker; PVSCSIRequestList pending_queue; PVSCSIRequestList completion_queue; uint64_t reg_interrupt_status; /* Interrupt status register value */ uint64_t reg_interrupt_enabled; /* Interrupt mask register value */ uint64_t reg_command_status; /* Command status register value */ /* Command data adoption mechanism */ uint64_t curr_cmd; /* Last command arrived */ uint32_t curr_cmd_data_cntr; /* Amount of data for last command */ /* Collector for current command data */ uint32_t curr_cmd_data[PVSCSI_MAX_CMD_DATA_WORDS]; uint8_t rings_info_valid; /* Whether data rings initialized */ uint8_t msg_ring_info_valid; /* Whether message ring initialized */ uint8_t use_msg; /* Whether to use message ring */ uint8_t msi_used; /* For migration compatibility */ PVSCSIRingInfo rings; /* Data transfer rings manager */ uint32_t resetting; /* Reset in progress */ uint32_t compat_flags; } PVSCSIState; typedef struct PVSCSIRequest { SCSIRequest *sreq; PVSCSIState *dev; uint8_t sense_key; uint8_t completed; int lun; QEMUSGList sgl; PVSCSISGState sg; struct PVSCSIRingReqDesc req; struct PVSCSIRingCmpDesc cmp; QTAILQ_ENTRY(PVSCSIRequest) next; } PVSCSIRequest; /* Integer binary logarithm */ static int pvscsi_log2(uint32_t input) { int log = 0; assert(input > 0); while (input >> ++log) { } return log; } static void pvscsi_ring_init_data(PVSCSIRingInfo *m, PVSCSICmdDescSetupRings *ri) { int i; uint32_t txr_len_log2, rxr_len_log2; uint32_t req_ring_size, cmp_ring_size; m->rs_pa = ri->ringsStatePPN << VMW_PAGE_SHIFT; req_ring_size = ri->reqRingNumPages * PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE; cmp_ring_size = ri->cmpRingNumPages * PVSCSI_MAX_NUM_CMP_ENTRIES_PER_PAGE; txr_len_log2 = pvscsi_log2(req_ring_size - 1); rxr_len_log2 = pvscsi_log2(cmp_ring_size - 1); m->txr_len_mask = MASK(txr_len_log2); m->rxr_len_mask = MASK(rxr_len_log2); m->consumed_ptr = 0; m->filled_cmp_ptr = 0; for (i = 0; i < ri->reqRingNumPages; i++) { m->req_ring_pages_pa[i] = ri->reqRingPPNs[i] << VMW_PAGE_SHIFT; } for (i = 0; i < ri->cmpRingNumPages; i++) { m->cmp_ring_pages_pa[i] = ri->cmpRingPPNs[i] << VMW_PAGE_SHIFT; } RS_SET_FIELD(m, reqProdIdx, 0); RS_SET_FIELD(m, reqConsIdx, 0); RS_SET_FIELD(m, reqNumEntriesLog2, txr_len_log2); RS_SET_FIELD(m, cmpProdIdx, 0); RS_SET_FIELD(m, cmpConsIdx, 0); RS_SET_FIELD(m, cmpNumEntriesLog2, rxr_len_log2); trace_pvscsi_ring_init_data(txr_len_log2, rxr_len_log2); /* Flush ring state page changes */ smp_wmb(); } static int pvscsi_ring_init_msg(PVSCSIRingInfo *m, PVSCSICmdDescSetupMsgRing *ri) { int i; uint32_t len_log2; uint32_t ring_size; if (!ri->numPages || ri->numPages > PVSCSI_SETUP_MSG_RING_MAX_NUM_PAGES) { return -1; } ring_size = ri->numPages * PVSCSI_MAX_NUM_MSG_ENTRIES_PER_PAGE; len_log2 = pvscsi_log2(ring_size - 1); m->msg_len_mask = MASK(len_log2); m->filled_msg_ptr = 0; for (i = 0; i < ri->numPages; i++) { m->msg_ring_pages_pa[i] = ri->ringPPNs[i] << VMW_PAGE_SHIFT; } RS_SET_FIELD(m, msgProdIdx, 0); RS_SET_FIELD(m, msgConsIdx, 0); RS_SET_FIELD(m, msgNumEntriesLog2, len_log2); trace_pvscsi_ring_init_msg(len_log2); /* Flush ring state page changes */ smp_wmb(); return 0; } static void pvscsi_ring_cleanup(PVSCSIRingInfo *mgr) { mgr->rs_pa = 0; mgr->txr_len_mask = 0; mgr->rxr_len_mask = 0; mgr->msg_len_mask = 0; mgr->consumed_ptr = 0; mgr->filled_cmp_ptr = 0; mgr->filled_msg_ptr = 0; memset(mgr->req_ring_pages_pa, 0, sizeof(mgr->req_ring_pages_pa)); memset(mgr->cmp_ring_pages_pa, 0, sizeof(mgr->cmp_ring_pages_pa)); memset(mgr->msg_ring_pages_pa, 0, sizeof(mgr->msg_ring_pages_pa)); } static hwaddr pvscsi_ring_pop_req_descr(PVSCSIRingInfo *mgr) { uint32_t ready_ptr = RS_GET_FIELD(mgr, reqProdIdx); uint32_t ring_size = PVSCSI_MAX_NUM_PAGES_REQ_RING * PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE; if (ready_ptr != mgr->consumed_ptr && ready_ptr - mgr->consumed_ptr < ring_size) { uint32_t next_ready_ptr = mgr->consumed_ptr++ & mgr->txr_len_mask; uint32_t next_ready_page = next_ready_ptr / PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE; uint32_t inpage_idx = next_ready_ptr % PVSCSI_MAX_NUM_REQ_ENTRIES_PER_PAGE; return mgr->req_ring_pages_pa[next_ready_page] + inpage_idx * sizeof(PVSCSIRingReqDesc); } else { return 0; } } static void pvscsi_ring_flush_req(PVSCSIRingInfo *mgr) { RS_SET_FIELD(mgr, reqConsIdx, mgr->consumed_ptr); } static hwaddr pvscsi_ring_pop_cmp_descr(PVSCSIRingInfo *mgr) { /* * According to Linux driver code it explicitly verifies that number * of requests being processed by device is less then the size of * completion queue, so device may omit completion queue overflow * conditions check. We assume that this is true for other (Windows) * drivers as well. */ uint32_t free_cmp_ptr = mgr->filled_cmp_ptr++ & mgr->rxr_len_mask; uint32_t free_cmp_page = free_cmp_ptr / PVSCSI_MAX_NUM_CMP_ENTRIES_PER_PAGE; uint32_t inpage_idx = free_cmp_ptr % PVSCSI_MAX_NUM_CMP_ENTRIES_PER_PAGE; return mgr->cmp_ring_pages_pa[free_cmp_page] + inpage_idx * sizeof(PVSCSIRingCmpDesc); } static hwaddr pvscsi_ring_pop_msg_descr(PVSCSIRingInfo *mgr) { uint32_t free_msg_ptr = mgr->filled_msg_ptr++ & mgr->msg_len_mask; uint32_t free_msg_page = free_msg_ptr / PVSCSI_MAX_NUM_MSG_ENTRIES_PER_PAGE; uint32_t inpage_idx = free_msg_ptr % PVSCSI_MAX_NUM_MSG_ENTRIES_PER_PAGE; return mgr->msg_ring_pages_pa[free_msg_page] + inpage_idx * sizeof(PVSCSIRingMsgDesc); } static void pvscsi_ring_flush_cmp(PVSCSIRingInfo *mgr) { /* Flush descriptor changes */ smp_wmb(); trace_pvscsi_ring_flush_cmp(mgr->filled_cmp_ptr); RS_SET_FIELD(mgr, cmpProdIdx, mgr->filled_cmp_ptr); } static bool pvscsi_ring_msg_has_room(PVSCSIRingInfo *mgr) { uint32_t prodIdx = RS_GET_FIELD(mgr, msgProdIdx); uint32_t consIdx = RS_GET_FIELD(mgr, msgConsIdx); return (prodIdx - consIdx) < (mgr->msg_len_mask + 1); } static void pvscsi_ring_flush_msg(PVSCSIRingInfo *mgr) { /* Flush descriptor changes */ smp_wmb(); trace_pvscsi_ring_flush_msg(mgr->filled_msg_ptr); RS_SET_FIELD(mgr, msgProdIdx, mgr->filled_msg_ptr); } static void pvscsi_reset_state(PVSCSIState *s) { s->curr_cmd = PVSCSI_CMD_FIRST; s->curr_cmd_data_cntr = 0; s->reg_command_status = PVSCSI_COMMAND_PROCESSING_SUCCEEDED; s->reg_interrupt_status = 0; pvscsi_ring_cleanup(&s->rings); s->rings_info_valid = FALSE; s->msg_ring_info_valid = FALSE; QTAILQ_INIT(&s->pending_queue); QTAILQ_INIT(&s->completion_queue); } static void pvscsi_update_irq_status(PVSCSIState *s) { PCIDevice *d = PCI_DEVICE(s); bool should_raise = s->reg_interrupt_enabled & s->reg_interrupt_status; trace_pvscsi_update_irq_level(should_raise, s->reg_interrupt_enabled, s->reg_interrupt_status); if (msi_enabled(d)) { if (should_raise) { trace_pvscsi_update_irq_msi(); msi_notify(d, PVSCSI_VECTOR_COMPLETION); } return; } pci_set_irq(d, !!should_raise); } static void pvscsi_raise_completion_interrupt(PVSCSIState *s) { s->reg_interrupt_status |= PVSCSI_INTR_CMPL_0; /* Memory barrier to flush interrupt status register changes*/ smp_wmb(); pvscsi_update_irq_status(s); } static void pvscsi_raise_message_interrupt(PVSCSIState *s) { s->reg_interrupt_status |= PVSCSI_INTR_MSG_0; /* Memory barrier to flush interrupt status register changes*/ smp_wmb(); pvscsi_update_irq_status(s); } static void pvscsi_cmp_ring_put(PVSCSIState *s, struct PVSCSIRingCmpDesc *cmp_desc) { hwaddr cmp_descr_pa; cmp_descr_pa = pvscsi_ring_pop_cmp_descr(&s->rings); trace_pvscsi_cmp_ring_put(cmp_descr_pa); cpu_physical_memory_write(cmp_descr_pa, (void *)cmp_desc, sizeof(*cmp_desc)); } static void pvscsi_msg_ring_put(PVSCSIState *s, struct PVSCSIRingMsgDesc *msg_desc) { hwaddr msg_descr_pa; msg_descr_pa = pvscsi_ring_pop_msg_descr(&s->rings); trace_pvscsi_msg_ring_put(msg_descr_pa); cpu_physical_memory_write(msg_descr_pa, (void *)msg_desc, sizeof(*msg_desc)); } static void pvscsi_process_completion_queue(void *opaque) { PVSCSIState *s = opaque; PVSCSIRequest *pvscsi_req; bool has_completed = false; while (!QTAILQ_EMPTY(&s->completion_queue)) { pvscsi_req = QTAILQ_FIRST(&s->completion_queue); QTAILQ_REMOVE(&s->completion_queue, pvscsi_req, next); pvscsi_cmp_ring_put(s, &pvscsi_req->cmp); g_free(pvscsi_req); has_completed = true; } if (has_completed) { pvscsi_ring_flush_cmp(&s->rings); pvscsi_raise_completion_interrupt(s); } } static void pvscsi_reset_adapter(PVSCSIState *s) { s->resetting++; qbus_reset_all(BUS(&s->bus)); s->resetting--; pvscsi_process_completion_queue(s); assert(QTAILQ_EMPTY(&s->pending_queue)); pvscsi_reset_state(s); } static void pvscsi_schedule_completion_processing(PVSCSIState *s) { /* Try putting more complete requests on the ring. */ if (!QTAILQ_EMPTY(&s->completion_queue)) { qemu_bh_schedule(s->completion_worker); } } static void pvscsi_complete_request(PVSCSIState *s, PVSCSIRequest *r) { assert(!r->completed); trace_pvscsi_complete_request(r->cmp.context, r->cmp.dataLen, r->sense_key); if (r->sreq != NULL) { scsi_req_unref(r->sreq); r->sreq = NULL; } r->completed = 1; QTAILQ_REMOVE(&s->pending_queue, r, next); QTAILQ_INSERT_TAIL(&s->completion_queue, r, next); pvscsi_schedule_completion_processing(s); } static QEMUSGList *pvscsi_get_sg_list(SCSIRequest *r) { PVSCSIRequest *req = r->hba_private; trace_pvscsi_get_sg_list(req->sgl.nsg, req->sgl.size); return &req->sgl; } static void pvscsi_get_next_sg_elem(PVSCSISGState *sg) { struct PVSCSISGElement elem; cpu_physical_memory_read(sg->elemAddr, (void *)&elem, sizeof(elem)); if ((elem.flags & ~PVSCSI_KNOWN_FLAGS) != 0) { /* * There is PVSCSI_SGE_FLAG_CHAIN_ELEMENT flag described in * header file but its value is unknown. This flag requires * additional processing, so we put warning here to catch it * some day and make proper implementation */ trace_pvscsi_get_next_sg_elem(elem.flags); } sg->elemAddr += sizeof(elem); sg->dataAddr = elem.addr; sg->resid = elem.length; } static void pvscsi_write_sense(PVSCSIRequest *r, uint8_t *sense, int len) { r->cmp.senseLen = MIN(r->req.senseLen, len); r->sense_key = sense[(sense[0] & 2) ? 1 : 2]; cpu_physical_memory_write(r->req.senseAddr, sense, r->cmp.senseLen); } static void pvscsi_command_complete(SCSIRequest *req, uint32_t status, size_t resid) { PVSCSIRequest *pvscsi_req = req->hba_private; PVSCSIState *s; if (!pvscsi_req) { trace_pvscsi_command_complete_not_found(req->tag); return; } s = pvscsi_req->dev; if (resid) { /* Short transfer. */ trace_pvscsi_command_complete_data_run(); pvscsi_req->cmp.hostStatus = BTSTAT_DATARUN; } pvscsi_req->cmp.scsiStatus = status; if (pvscsi_req->cmp.scsiStatus == CHECK_CONDITION) { uint8_t sense[SCSI_SENSE_BUF_SIZE]; int sense_len = scsi_req_get_sense(pvscsi_req->sreq, sense, sizeof(sense)); trace_pvscsi_command_complete_sense_len(sense_len); pvscsi_write_sense(pvscsi_req, sense, sense_len); } qemu_sglist_destroy(&pvscsi_req->sgl); pvscsi_complete_request(s, pvscsi_req); } static void pvscsi_send_msg(PVSCSIState *s, SCSIDevice *dev, uint32_t msg_type) { if (s->msg_ring_info_valid && pvscsi_ring_msg_has_room(&s->rings)) { PVSCSIMsgDescDevStatusChanged msg = {0}; msg.type = msg_type; msg.bus = dev->channel; msg.target = dev->id; msg.lun[1] = dev->lun; pvscsi_msg_ring_put(s, (PVSCSIRingMsgDesc *)&msg); pvscsi_ring_flush_msg(&s->rings); pvscsi_raise_message_interrupt(s); } } static void pvscsi_hotplug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { PVSCSIState *s = PVSCSI(hotplug_dev); pvscsi_send_msg(s, SCSI_DEVICE(dev), PVSCSI_MSG_DEV_ADDED); } static void pvscsi_hot_unplug(HotplugHandler *hotplug_dev, DeviceState *dev, Error **errp) { PVSCSIState *s = PVSCSI(hotplug_dev); pvscsi_send_msg(s, SCSI_DEVICE(dev), PVSCSI_MSG_DEV_REMOVED); qdev_simple_device_unplug_cb(hotplug_dev, dev, errp); } static void pvscsi_request_cancelled(SCSIRequest *req) { PVSCSIRequest *pvscsi_req = req->hba_private; PVSCSIState *s = pvscsi_req->dev; if (pvscsi_req->completed) { return; } if (pvscsi_req->dev->resetting) { pvscsi_req->cmp.hostStatus = BTSTAT_BUSRESET; } else { pvscsi_req->cmp.hostStatus = BTSTAT_ABORTQUEUE; } pvscsi_complete_request(s, pvscsi_req); } static SCSIDevice* pvscsi_device_find(PVSCSIState *s, int channel, int target, uint8_t *requested_lun, uint8_t *target_lun) { if (requested_lun[0] || requested_lun[2] || requested_lun[3] || requested_lun[4] || requested_lun[5] || requested_lun[6] || requested_lun[7] || (target > PVSCSI_MAX_DEVS)) { return NULL; } else { *target_lun = requested_lun[1]; return scsi_device_find(&s->bus, channel, target, *target_lun); } } static PVSCSIRequest * pvscsi_queue_pending_descriptor(PVSCSIState *s, SCSIDevice **d, struct PVSCSIRingReqDesc *descr) { PVSCSIRequest *pvscsi_req; uint8_t lun; pvscsi_req = g_malloc0(sizeof(*pvscsi_req)); pvscsi_req->dev = s; pvscsi_req->req = *descr; pvscsi_req->cmp.context = pvscsi_req->req.context; QTAILQ_INSERT_TAIL(&s->pending_queue, pvscsi_req, next); *d = pvscsi_device_find(s, descr->bus, descr->target, descr->lun, &lun); if (*d) { pvscsi_req->lun = lun; } return pvscsi_req; } static void pvscsi_convert_sglist(PVSCSIRequest *r) { uint32_t chunk_size, elmcnt = 0; uint64_t data_length = r->req.dataLen; PVSCSISGState sg = r->sg; while (data_length && elmcnt < PVSCSI_MAX_SG_ELEM) { while (!sg.resid && elmcnt++ < PVSCSI_MAX_SG_ELEM) { pvscsi_get_next_sg_elem(&sg); trace_pvscsi_convert_sglist(r->req.context, r->sg.dataAddr, r->sg.resid); } chunk_size = MIN(data_length, sg.resid); if (chunk_size) { qemu_sglist_add(&r->sgl, sg.dataAddr, chunk_size); } sg.dataAddr += chunk_size; data_length -= chunk_size; sg.resid -= chunk_size; } } static void pvscsi_build_sglist(PVSCSIState *s, PVSCSIRequest *r) { PCIDevice *d = PCI_DEVICE(s); pci_dma_sglist_init(&r->sgl, d, 1); if (r->req.flags & PVSCSI_FLAG_CMD_WITH_SG_LIST) { pvscsi_convert_sglist(r); } else { qemu_sglist_add(&r->sgl, r->req.dataAddr, r->req.dataLen); } } static void pvscsi_process_request_descriptor(PVSCSIState *s, struct PVSCSIRingReqDesc *descr) { SCSIDevice *d; PVSCSIRequest *r = pvscsi_queue_pending_descriptor(s, &d, descr); int64_t n; trace_pvscsi_process_req_descr(descr->cdb[0], descr->context); if (!d) { r->cmp.hostStatus = BTSTAT_SELTIMEO; trace_pvscsi_process_req_descr_unknown_device(); pvscsi_complete_request(s, r); return; } if (descr->flags & PVSCSI_FLAG_CMD_WITH_SG_LIST) { r->sg.elemAddr = descr->dataAddr; } r->sreq = scsi_req_new(d, descr->context, r->lun, descr->cdb, r); if (r->sreq->cmd.mode == SCSI_XFER_FROM_DEV && (descr->flags & PVSCSI_FLAG_CMD_DIR_TODEVICE)) { r->cmp.hostStatus = BTSTAT_BADMSG; trace_pvscsi_process_req_descr_invalid_dir(); scsi_req_cancel(r->sreq); return; } if (r->sreq->cmd.mode == SCSI_XFER_TO_DEV && (descr->flags & PVSCSI_FLAG_CMD_DIR_TOHOST)) { r->cmp.hostStatus = BTSTAT_BADMSG; trace_pvscsi_process_req_descr_invalid_dir(); scsi_req_cancel(r->sreq); return; } pvscsi_build_sglist(s, r); n = scsi_req_enqueue(r->sreq); if (n) { scsi_req_continue(r->sreq); } } static void pvscsi_process_io(PVSCSIState *s) { PVSCSIRingReqDesc descr; hwaddr next_descr_pa; assert(s->rings_info_valid); while ((next_descr_pa = pvscsi_ring_pop_req_descr(&s->rings)) != 0) { /* Only read after production index verification */ smp_rmb(); trace_pvscsi_process_io(next_descr_pa); cpu_physical_memory_read(next_descr_pa, &descr, sizeof(descr)); pvscsi_process_request_descriptor(s, &descr); } pvscsi_ring_flush_req(&s->rings); } static void pvscsi_dbg_dump_tx_rings_config(PVSCSICmdDescSetupRings *rc) { int i; trace_pvscsi_tx_rings_ppn("Rings State", rc->ringsStatePPN); trace_pvscsi_tx_rings_num_pages("Request Ring", rc->reqRingNumPages); for (i = 0; i < rc->reqRingNumPages; i++) { trace_pvscsi_tx_rings_ppn("Request Ring", rc->reqRingPPNs[i]); } trace_pvscsi_tx_rings_num_pages("Confirm Ring", rc->cmpRingNumPages); for (i = 0; i < rc->cmpRingNumPages; i++) { trace_pvscsi_tx_rings_ppn("Confirm Ring", rc->cmpRingPPNs[i]); } } static uint64_t pvscsi_on_cmd_config(PVSCSIState *s) { trace_pvscsi_on_cmd_noimpl("PVSCSI_CMD_CONFIG"); return PVSCSI_COMMAND_PROCESSING_FAILED; } static uint64_t pvscsi_on_cmd_unplug(PVSCSIState *s) { trace_pvscsi_on_cmd_noimpl("PVSCSI_CMD_DEVICE_UNPLUG"); return PVSCSI_COMMAND_PROCESSING_FAILED; } static uint64_t pvscsi_on_issue_scsi(PVSCSIState *s) { trace_pvscsi_on_cmd_noimpl("PVSCSI_CMD_ISSUE_SCSI"); return PVSCSI_COMMAND_PROCESSING_FAILED; } static uint64_t pvscsi_on_cmd_setup_rings(PVSCSIState *s) { PVSCSICmdDescSetupRings *rc = (PVSCSICmdDescSetupRings *) s->curr_cmd_data; trace_pvscsi_on_cmd_arrived("PVSCSI_CMD_SETUP_RINGS"); if (!rc->reqRingNumPages || rc->reqRingNumPages > PVSCSI_SETUP_RINGS_MAX_NUM_PAGES || !rc->cmpRingNumPages || rc->cmpRingNumPages > PVSCSI_SETUP_RINGS_MAX_NUM_PAGES) { return PVSCSI_COMMAND_PROCESSING_FAILED; } pvscsi_dbg_dump_tx_rings_config(rc); pvscsi_ring_init_data(&s->rings, rc); s->rings_info_valid = TRUE; return PVSCSI_COMMAND_PROCESSING_SUCCEEDED; } static uint64_t pvscsi_on_cmd_abort(PVSCSIState *s) { PVSCSICmdDescAbortCmd *cmd = (PVSCSICmdDescAbortCmd *) s->curr_cmd_data; PVSCSIRequest *r, *next; trace_pvscsi_on_cmd_abort(cmd->context, cmd->target); QTAILQ_FOREACH_SAFE(r, &s->pending_queue, next, next) { if (r->req.context == cmd->context) { break; } } if (r) { assert(!r->completed); r->cmp.hostStatus = BTSTAT_ABORTQUEUE; scsi_req_cancel(r->sreq); } return PVSCSI_COMMAND_PROCESSING_SUCCEEDED; } static uint64_t pvscsi_on_cmd_unknown(PVSCSIState *s) { trace_pvscsi_on_cmd_unknown_data(s->curr_cmd_data[0]); return PVSCSI_COMMAND_PROCESSING_FAILED; } static uint64_t pvscsi_on_cmd_reset_device(PVSCSIState *s) { uint8_t target_lun = 0; struct PVSCSICmdDescResetDevice *cmd = (struct PVSCSICmdDescResetDevice *) s->curr_cmd_data; SCSIDevice *sdev; sdev = pvscsi_device_find(s, 0, cmd->target, cmd->lun, &target_lun); trace_pvscsi_on_cmd_reset_dev(cmd->target, (int) target_lun, sdev); if (sdev != NULL) { s->resetting++; device_reset(&sdev->qdev); s->resetting--; return PVSCSI_COMMAND_PROCESSING_SUCCEEDED; } return PVSCSI_COMMAND_PROCESSING_FAILED; } static uint64_t pvscsi_on_cmd_reset_bus(PVSCSIState *s) { trace_pvscsi_on_cmd_arrived("PVSCSI_CMD_RESET_BUS"); s->resetting++; qbus_reset_all(BUS(&s->bus)); s->resetting--; return PVSCSI_COMMAND_PROCESSING_SUCCEEDED; } static uint64_t pvscsi_on_cmd_setup_msg_ring(PVSCSIState *s) { PVSCSICmdDescSetupMsgRing *rc = (PVSCSICmdDescSetupMsgRing *) s->curr_cmd_data; trace_pvscsi_on_cmd_arrived("PVSCSI_CMD_SETUP_MSG_RING"); if (!s->use_msg) { return PVSCSI_COMMAND_PROCESSING_FAILED; } if (s->rings_info_valid) { if (pvscsi_ring_init_msg(&s->rings, rc) < 0) { return PVSCSI_COMMAND_PROCESSING_FAILED; } s->msg_ring_info_valid = TRUE; } return sizeof(PVSCSICmdDescSetupMsgRing) / sizeof(uint32_t); } static uint64_t pvscsi_on_cmd_adapter_reset(PVSCSIState *s) { trace_pvscsi_on_cmd_arrived("PVSCSI_CMD_ADAPTER_RESET"); pvscsi_reset_adapter(s); return PVSCSI_COMMAND_PROCESSING_SUCCEEDED; } static const struct { int data_size; uint64_t (*handler_fn)(PVSCSIState *s); } pvscsi_commands[] = { [PVSCSI_CMD_FIRST] = { .data_size = 0, .handler_fn = pvscsi_on_cmd_unknown, }, /* Not implemented, data size defined based on what arrives on windows */ [PVSCSI_CMD_CONFIG] = { .data_size = 6 * sizeof(uint32_t), .handler_fn = pvscsi_on_cmd_config, }, /* Command not implemented, data size is unknown */ [PVSCSI_CMD_ISSUE_SCSI] = { .data_size = 0, .handler_fn = pvscsi_on_issue_scsi, }, /* Command not implemented, data size is unknown */ [PVSCSI_CMD_DEVICE_UNPLUG] = { .data_size = 0, .handler_fn = pvscsi_on_cmd_unplug, }, [PVSCSI_CMD_SETUP_RINGS] = { .data_size = sizeof(PVSCSICmdDescSetupRings), .handler_fn = pvscsi_on_cmd_setup_rings, }, [PVSCSI_CMD_RESET_DEVICE] = { .data_size = sizeof(struct PVSCSICmdDescResetDevice), .handler_fn = pvscsi_on_cmd_reset_device, }, [PVSCSI_CMD_RESET_BUS] = { .data_size = 0, .handler_fn = pvscsi_on_cmd_reset_bus, }, [PVSCSI_CMD_SETUP_MSG_RING] = { .data_size = sizeof(PVSCSICmdDescSetupMsgRing), .handler_fn = pvscsi_on_cmd_setup_msg_ring, }, [PVSCSI_CMD_ADAPTER_RESET] = { .data_size = 0, .handler_fn = pvscsi_on_cmd_adapter_reset, }, [PVSCSI_CMD_ABORT_CMD] = { .data_size = sizeof(struct PVSCSICmdDescAbortCmd), .handler_fn = pvscsi_on_cmd_abort, }, }; static void pvscsi_do_command_processing(PVSCSIState *s) { size_t bytes_arrived = s->curr_cmd_data_cntr * sizeof(uint32_t); assert(s->curr_cmd < PVSCSI_CMD_LAST); if (bytes_arrived >= pvscsi_commands[s->curr_cmd].data_size) { s->reg_command_status = pvscsi_commands[s->curr_cmd].handler_fn(s); s->curr_cmd = PVSCSI_CMD_FIRST; s->curr_cmd_data_cntr = 0; } } static void pvscsi_on_command_data(PVSCSIState *s, uint32_t value) { size_t bytes_arrived = s->curr_cmd_data_cntr * sizeof(uint32_t); assert(bytes_arrived < sizeof(s->curr_cmd_data)); s->curr_cmd_data[s->curr_cmd_data_cntr++] = value; pvscsi_do_command_processing(s); } static void pvscsi_on_command(PVSCSIState *s, uint64_t cmd_id) { if ((cmd_id > PVSCSI_CMD_FIRST) && (cmd_id < PVSCSI_CMD_LAST)) { s->curr_cmd = cmd_id; } else { s->curr_cmd = PVSCSI_CMD_FIRST; trace_pvscsi_on_cmd_unknown(cmd_id); } s->curr_cmd_data_cntr = 0; s->reg_command_status = PVSCSI_COMMAND_NOT_ENOUGH_DATA; pvscsi_do_command_processing(s); } static void pvscsi_io_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) { PVSCSIState *s = opaque; switch (addr) { case PVSCSI_REG_OFFSET_COMMAND: pvscsi_on_command(s, val); break; case PVSCSI_REG_OFFSET_COMMAND_DATA: pvscsi_on_command_data(s, (uint32_t) val); break; case PVSCSI_REG_OFFSET_INTR_STATUS: trace_pvscsi_io_write("PVSCSI_REG_OFFSET_INTR_STATUS", val); s->reg_interrupt_status &= ~val; pvscsi_update_irq_status(s); pvscsi_schedule_completion_processing(s); break; case PVSCSI_REG_OFFSET_INTR_MASK: trace_pvscsi_io_write("PVSCSI_REG_OFFSET_INTR_MASK", val); s->reg_interrupt_enabled = val; pvscsi_update_irq_status(s); break; case PVSCSI_REG_OFFSET_KICK_NON_RW_IO: trace_pvscsi_io_write("PVSCSI_REG_OFFSET_KICK_NON_RW_IO", val); pvscsi_process_io(s); break; case PVSCSI_REG_OFFSET_KICK_RW_IO: trace_pvscsi_io_write("PVSCSI_REG_OFFSET_KICK_RW_IO", val); pvscsi_process_io(s); break; case PVSCSI_REG_OFFSET_DEBUG: trace_pvscsi_io_write("PVSCSI_REG_OFFSET_DEBUG", val); break; default: trace_pvscsi_io_write_unknown(addr, size, val); break; } } static uint64_t pvscsi_io_read(void *opaque, hwaddr addr, unsigned size) { PVSCSIState *s = opaque; switch (addr) { case PVSCSI_REG_OFFSET_INTR_STATUS: trace_pvscsi_io_read("PVSCSI_REG_OFFSET_INTR_STATUS", s->reg_interrupt_status); return s->reg_interrupt_status; case PVSCSI_REG_OFFSET_INTR_MASK: trace_pvscsi_io_read("PVSCSI_REG_OFFSET_INTR_MASK", s->reg_interrupt_status); return s->reg_interrupt_enabled; case PVSCSI_REG_OFFSET_COMMAND_STATUS: trace_pvscsi_io_read("PVSCSI_REG_OFFSET_COMMAND_STATUS", s->reg_interrupt_status); return s->reg_command_status; default: trace_pvscsi_io_read_unknown(addr, size); return 0; } } static void pvscsi_init_msi(PVSCSIState *s) { int res; PCIDevice *d = PCI_DEVICE(s); res = msi_init(d, PVSCSI_MSI_OFFSET(s), PVSCSI_MSIX_NUM_VECTORS, PVSCSI_USE_64BIT, PVSCSI_PER_VECTOR_MASK, NULL); if (res < 0) { trace_pvscsi_init_msi_fail(res); s->msi_used = false; } else { s->msi_used = true; } } static void pvscsi_cleanup_msi(PVSCSIState *s) { PCIDevice *d = PCI_DEVICE(s); msi_uninit(d); } static const MemoryRegionOps pvscsi_ops = { .read = pvscsi_io_read, .write = pvscsi_io_write, .endianness = DEVICE_LITTLE_ENDIAN, .impl = { .min_access_size = 4, .max_access_size = 4, }, }; static const struct SCSIBusInfo pvscsi_scsi_info = { .tcq = true, .max_target = PVSCSI_MAX_DEVS, .max_channel = 0, .max_lun = 0, .get_sg_list = pvscsi_get_sg_list, .complete = pvscsi_command_complete, .cancel = pvscsi_request_cancelled, }; static void pvscsi_realizefn(PCIDevice *pci_dev, Error **errp) { PVSCSIState *s = PVSCSI(pci_dev); trace_pvscsi_state("init"); /* PCI subsystem ID, subsystem vendor ID, revision */ if (PVSCSI_USE_OLD_PCI_CONFIGURATION(s)) { pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, 0x1000); } else { pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, PCI_VENDOR_ID_VMWARE); pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, PCI_DEVICE_ID_VMWARE_PVSCSI); pci_config_set_revision(pci_dev->config, 0x2); } /* PCI latency timer = 255 */ pci_dev->config[PCI_LATENCY_TIMER] = 0xff; /* Interrupt pin A */ pci_config_set_interrupt_pin(pci_dev->config, 1); memory_region_init_io(&s->io_space, OBJECT(s), &pvscsi_ops, s, "pvscsi-io", PVSCSI_MEM_SPACE_SIZE); pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->io_space); pvscsi_init_msi(s); if (pci_is_express(pci_dev) && pci_bus_is_express(pci_get_bus(pci_dev))) { pcie_endpoint_cap_init(pci_dev, PVSCSI_EXP_EP_OFFSET); } s->completion_worker = qemu_bh_new(pvscsi_process_completion_queue, s); scsi_bus_new(&s->bus, sizeof(s->bus), DEVICE(pci_dev), &pvscsi_scsi_info, NULL); /* override default SCSI bus hotplug-handler, with pvscsi's one */ qbus_set_hotplug_handler(BUS(&s->bus), OBJECT(s), &error_abort); pvscsi_reset_state(s); } static void pvscsi_uninit(PCIDevice *pci_dev) { PVSCSIState *s = PVSCSI(pci_dev); trace_pvscsi_state("uninit"); qemu_bh_delete(s->completion_worker); pvscsi_cleanup_msi(s); } static void pvscsi_reset(DeviceState *dev) { PCIDevice *d = PCI_DEVICE(dev); PVSCSIState *s = PVSCSI(d); trace_pvscsi_state("reset"); pvscsi_reset_adapter(s); } static int pvscsi_pre_save(void *opaque) { PVSCSIState *s = (PVSCSIState *) opaque; trace_pvscsi_state("presave"); assert(QTAILQ_EMPTY(&s->pending_queue)); assert(QTAILQ_EMPTY(&s->completion_queue)); return 0; } static int pvscsi_post_load(void *opaque, int version_id) { trace_pvscsi_state("postload"); return 0; } static bool pvscsi_vmstate_need_pcie_device(void *opaque) { PVSCSIState *s = PVSCSI(opaque); return !(s->compat_flags & PVSCSI_COMPAT_DISABLE_PCIE); } static bool pvscsi_vmstate_test_pci_device(void *opaque, int version_id) { return !pvscsi_vmstate_need_pcie_device(opaque); } static const VMStateDescription vmstate_pvscsi_pcie_device = { .name = "pvscsi/pcie", .needed = pvscsi_vmstate_need_pcie_device, .fields = (VMStateField[]) { VMSTATE_PCI_DEVICE(parent_obj, PVSCSIState), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_pvscsi = { .name = "pvscsi", .version_id = 0, .minimum_version_id = 0, .pre_save = pvscsi_pre_save, .post_load = pvscsi_post_load, .fields = (VMStateField[]) { VMSTATE_STRUCT_TEST(parent_obj, PVSCSIState, pvscsi_vmstate_test_pci_device, 0, vmstate_pci_device, PCIDevice), VMSTATE_UINT8(msi_used, PVSCSIState), VMSTATE_UINT32(resetting, PVSCSIState), VMSTATE_UINT64(reg_interrupt_status, PVSCSIState), VMSTATE_UINT64(reg_interrupt_enabled, PVSCSIState), VMSTATE_UINT64(reg_command_status, PVSCSIState), VMSTATE_UINT64(curr_cmd, PVSCSIState), VMSTATE_UINT32(curr_cmd_data_cntr, PVSCSIState), VMSTATE_UINT32_ARRAY(curr_cmd_data, PVSCSIState, ARRAY_SIZE(((PVSCSIState *)NULL)->curr_cmd_data)), VMSTATE_UINT8(rings_info_valid, PVSCSIState), VMSTATE_UINT8(msg_ring_info_valid, PVSCSIState), VMSTATE_UINT8(use_msg, PVSCSIState), VMSTATE_UINT64(rings.rs_pa, PVSCSIState), VMSTATE_UINT32(rings.txr_len_mask, PVSCSIState), VMSTATE_UINT32(rings.rxr_len_mask, PVSCSIState), VMSTATE_UINT64_ARRAY(rings.req_ring_pages_pa, PVSCSIState, PVSCSI_SETUP_RINGS_MAX_NUM_PAGES), VMSTATE_UINT64_ARRAY(rings.cmp_ring_pages_pa, PVSCSIState, PVSCSI_SETUP_RINGS_MAX_NUM_PAGES), VMSTATE_UINT64(rings.consumed_ptr, PVSCSIState), VMSTATE_UINT64(rings.filled_cmp_ptr, PVSCSIState), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_pvscsi_pcie_device, NULL } }; static Property pvscsi_properties[] = { DEFINE_PROP_UINT8("use_msg", PVSCSIState, use_msg, 1), DEFINE_PROP_BIT("x-old-pci-configuration", PVSCSIState, compat_flags, PVSCSI_COMPAT_OLD_PCI_CONFIGURATION_BIT, false), DEFINE_PROP_BIT("x-disable-pcie", PVSCSIState, compat_flags, PVSCSI_COMPAT_DISABLE_PCIE_BIT, false), DEFINE_PROP_END_OF_LIST(), }; static void pvscsi_realize(DeviceState *qdev, Error **errp) { PVSCSIClass *pvs_c = PVSCSI_DEVICE_GET_CLASS(qdev); PCIDevice *pci_dev = PCI_DEVICE(qdev); PVSCSIState *s = PVSCSI(qdev); if (!(s->compat_flags & PVSCSI_COMPAT_DISABLE_PCIE)) { pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS; } pvs_c->parent_dc_realize(qdev, errp); } static void pvscsi_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); PVSCSIClass *pvs_k = PVSCSI_DEVICE_CLASS(klass); HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(klass); k->realize = pvscsi_realizefn; k->exit = pvscsi_uninit; k->vendor_id = PCI_VENDOR_ID_VMWARE; k->device_id = PCI_DEVICE_ID_VMWARE_PVSCSI; k->class_id = PCI_CLASS_STORAGE_SCSI; k->subsystem_id = 0x1000; device_class_set_parent_realize(dc, pvscsi_realize, &pvs_k->parent_dc_realize); dc->reset = pvscsi_reset; dc->vmsd = &vmstate_pvscsi; dc->props = pvscsi_properties; set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); hc->unplug = pvscsi_hot_unplug; hc->plug = pvscsi_hotplug; } static const TypeInfo pvscsi_info = { .name = TYPE_PVSCSI, .parent = TYPE_PCI_DEVICE, .class_size = sizeof(PVSCSIClass), .instance_size = sizeof(PVSCSIState), .class_init = pvscsi_class_init, .interfaces = (InterfaceInfo[]) { { TYPE_HOTPLUG_HANDLER }, { INTERFACE_PCIE_DEVICE }, { INTERFACE_CONVENTIONAL_PCI_DEVICE }, { } } }; static void pvscsi_register_types(void) { type_register_static(&pvscsi_info); } type_init(pvscsi_register_types);